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Abstract : We discuss some fundamentallquestions related to the
Langevin-Braffort equation of stochastic electrodynamics, and
derive from it, by a simple and direct procedure, the correspon-

ding Fokker-Planck-type equation to order 2.

Résumé : On discute certaines questions fondamentales relatives
a l'équation de Langevin-Braffort de L'électrodynamique stochasti-
que et on en dérive, suivant une méthode simple et directe, une

équation du type Fokker-Planck 4 L 'approximation e2.
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I. INTRODUCTION

In view-of the accumulating evidence in favour of stochast
electrodynamics (SED) as a foundation to quantum mechanics (QM), w
consider that an analysis of some of its basic hypotheses is neces
sary and can be of help for a further development of the theory. W
have in mind, in particular, certain questions'related to the equa
tion of ﬁotion postulated in SED, namely, the so-called Langevin-
Braffort equation

e cos

-
mxX = FR) +mwX + eg_ (z= 2&¥/3mc>), m

One of the main lines of research of SED is to use this equation,
with adequately selected statistical properties for the zero-point

=Y
radiation field E, (which SED takes for granted), as a basis fo

a statistical description of the electron, and try to show that it

coincides at least in its most relevanf'aspects with that given by
QM. This point of view-which is shared also by Boyer(1), Braffort
etlal(z), Claverie and Dhler(s), Marshall(4), Santos(s) and others
-is producing what we may hopefully call a stochastic alternative
to orthodox QM: a physical explanation of the quantum mechanical
behaviour of matter from a very reduted set of postulates. We
feel that the results obtained to date are intereéting and pro-
mising enough as to call for a th'orough discussion of these pos-
tulatess; the present note is intended as a partial answer to this
demand. ‘ »

The equation mi = F(® +mz;:z. is a well-known classic
equation of motion; however, the derivation of its stochastic coun

part - the Langevin-Braffort equation - from first principles seem

to have been overlooked. Moreover, it implies some - also well-
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known - formal problems whi¢husually are dealt with in a formal
way, without entering into a deeper discussion about their origin
and meaning. It seems useful, therefore, to derive the Langevin-
Braffort equation from first principles and use thé opportunity to
discuss the difficulties associated with it.

Another fundameﬁtai pfoblem of SED.is the transition from
a stochastic descriptibn in terms of the Laﬁgevin-Braffort equation,
to a statistical description in terms of a Fokker-Planck-type equa-
tion. In this note (Section III) we present a simplé and direct.
method of performing this transition, which is carried out only to
order ez, for simplicity.

We wish to emphasize that this note is limited to the dis-
cussion of certain methological questions of SED; the relevance of
this theory to QM can be grasped by resorting to results putlished

elsewhere(3’6’7).

In this sens€, the present note is one in a se-
ries of papers intended to demonstrate that SED can in fact be used
as a fundamental theory of QM, or even of QED, as concerns the

(non-relativistic, spinless) electron.



II. THE LANGEVIN-BRAFFORT EQUATION

- The description of the motion of an individual (non-rela-
tivistic) particle in SED is usually made in terms of the Langevi\n-
Braffort eq. ‘(i), where Eoi§ the random zero-point electric field
with spectral energy density given by

hw®

2n2e?

P(“’) = (2)

corresponding to an energy Y %w per normal mode. Let us take
a close look at the origin of this postulate.
The non-relativistic hamiltonian for a charged particle

embedded in the electromagnetic radiation field is

H =5 (g_%x)z r V(R) + He ' 3)

m

where ? is the canonical momentum conjugate to the position coor-
dinate X of the particle and H,. isythe hamiltonian of the ra-
diation field.

The field may be décomposéd into plane waves; in terms of
associated with each . mode

the canonical variables Q¢ , P,
nt and polarization & , we write, as usual,
$=0
Ry 5 & sk X - Por a2 )
I vy Z.;ens(c%rco n ’Jﬂsm "
Q,

~

- . )
K € =0 , €’ Eqp * Sep (T=1,2),
ko= Wnlc , .-\2" =£E(n‘?,+nzj* ”3‘\;) .
Eqs. (4) are written in the Coulomb gauge and under the assumption
that the- field is contained in a cavity of volume > with perfec-

tly conducting walls; we may let L -»eoo and replace the sums
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over rvigq, Y3 ; "s by integrals, so that

L oy f W )
L"§n: Lo (2me) dww’d Ly (5)

Eqs. (4) give for the hamiltonian of the field within the cavity:

He = o= jd’x (Bz+ %) = + ‘w(ef.,* Waqne).  (6)

The hamiltonian equations for particle and field are there

fore:
TaVu=L(g-eg )
X=VH=s(p-ER) | . (7)
. ! [ o Sl P s -
P=-YH=F- e.';.r’(i‘z- € o) kn[q“,mnk;x * ﬁu'}:wsi',.'x]

-
T LA (3 a sinkeX ‘
Q™ 3{)“—, Pue ¥ € x-em——sn— (8)
i - ) hed

.nr=—%~~= -uWa Qae ¥ e’(;'énrc‘osk‘\‘;

where "

e = e *lf/LS ‘

In the nonrelativistic, long-wavelength or dipole approxi-
mation (which we can take without missing essential information) the
radiation field becomes homogeneous in space. The equation of mo-
tion for the particle reduces then, according to eqs. (7), to

- > >

-
MX = F-eZ Eufue = FreE (9)
w,

-8 .2:
where E = €2t

The equations of motion for the field variables, eqs. (é),

can be recadily solved, yielding

s



AR S . (10a)
qm_({—)= q:{(t) + f—; Ldy €, NIsin W, (-1

Par (&) = 'F‘:f )+ e’J tdt? ém; i’(t’)c.oswn (e-¢) ’ (10b)
‘where

g W) = q () cosw, N &‘L(E-) simwat (11a)

P"‘c:' W) = Pnc(o) wsw“t - Wn q“'(o)wsw“.t (1"3)

are the source-free contributions to the radiation field, and we
have assumed that the particle-field interaction is suddenly con-

nected at £t=0. Hence, the electric force acting on the particle
consists of two terms:

eE = eE, v+ e ) (12)

E, being the vacuum field::
= d A ° - !
ek, = -~ e’ 2 €as Pr\r . ((133)
e N
and E, being the electric field radiated by the particle itself:

2> 2 A ® A > ' (.Hb)
A PR JO LN
", o

Eqs. (9), (12) and‘(13) combined yield an i‘nt'egro-differ-
ential equation of motion for the particle, which is usually
transformed into a differential equation of third order by means
of two integrations by parts. In fact, acco’rding to eq. (5), as .

{.—>ec eq. (13b) goes over to
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2 o % a
g ' ) = 24/MmE * ) S -
fdt. X () cosw (t-t) = ¥ [dw[dg E-3 t)du_cosm(t 1%

=,mz[-% wlae + Fw]. | (14)

. This result reveals that the non-locality in time of the
self-force giyen by eq. (13b) may be expressed as the combined
action of an electroméﬁgnetic‘ contribution to the inertia of the
point partlcle rne“,|='-,7;r mzfdw and the Lorentz radlatlon
reaction force mzi Therefore, the physical mass m of the

particle is, in this approximation, the sum of the bare mass Myare

and the electromagnetic mass m, 5 but since m in ‘the hamiltonian (
being the observable mass, already contains Mo this mass M, mus
Vbe subtracted. This mass renormalization may be formally done,

although, as is usually the case with the classical point elekctron,

mem‘ comes out infinite.

We small return below to an analysis of the preceding

results. Here we simply adopt the renormalized mass as. the physica:

one, and write the equation of motion in the form

A4 L1 Ty _‘
m3 = FermexX + eE, us)

with the vacuum field E, given by (13a).
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We now proceed to define the statistical properties of the ;
3
vacuum field €, . The random character of the field is introduced
through the canonical variables Peory Fne 5 it is clear that in the

absence of particles, the vacuum field must average to zero, i.e.,

(P> = <aH>=0 (16)

and the average energy per mode must be ji hew,, i.e.,
L(poy> = wa<(aqnf> 2 L how,. ' (7

In addition, we will assume that the vacuum field had .

reached equilibrium before the interaction is connected, so that the

initial distribution of the field variables is stationary. These
conditions are not sufficient to define uniquely the distribution
of the vacuum field amplitudes, but they are sufficient for our

present purposes, as we shall see below.

From eqs. (13a), (16) and (17) we obtain
<E,>=0 (18)
and

S ’
CE,WE, Q> = ‘*_‘:_;h S W, coswn -t)
) n .

* The symbol <> denotes average over the distribution S of

amplitudes, i.e., <q> = [A%Gued"ParQ(1qne}, 1Pned, T, 24 S(1quel, {pned,
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or if we let L —»eoo ,
i d - Y oo Aaud .
CE, W) E,00> = %3 Law.w"‘wsm(t-u) = "H\’ldwf(w) Cosw (1), (19)

where the spectral energy density of the vacuum field is given b:
eq. (2). We have thus recovered‘, in the non-relativistic long-w:
length limit, the basic postulates of SED, namely, eqs. (1) and
The radiation reaction force m“e;:(;, being of third orde:
allows for spurious’ solutions to eq. (15A); since such unphysical
solutions are characterized by being self-accelerating (coloquia:
runaway) we can eliminate them by the usual expedient; of imposing
the asymptotic condition ;_2::;0 , i.e., by writing eq. (15) in 1

form s

mI = 4‘- e{:/z ic\’d c_t'/-‘ [ E(iw)) v ego (t’)-] . (20)
In view of the smallness of % (=2e73m<:3 ~ 1072 sec.), we may el
t:—"(;t(u)) .in Taylor's series around g(? (¢£) ); retaining the first
two terms only, we obtain an/equatio.n which is correct only up t«¢
terms containing e? (eor T ): k

mE =BG+ tXDF v e (21)

-

where €., is the vacuum electric field with a modified spectral

energy density:

(w)
))m(w)--i-i- . , (22)

A vkt
' We have met as yet with four important difficulties in
our treatment, whjich are clearly related among each other, namel)
i) the divergent electromagnetic mass: ii) the appearance of a

’third-orde‘r term in the equation of motion, allowing the introduc

of an additional initial condition, iii) the appearance of runaw¢
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solutions; iv) the unphysical spectral energy density assigned to
the vacuum field. » -

The need for a mass renormalization can be avoided from the
‘beginning, by an adecuate modification of the basic postulates of

the theory: for instance, by redefining the action for the field

in such a form as to cancél the troublesome terms without introduci

undesirable effects, or by using an appropriate combination of‘
retarded and advanced potentials ; la Dirac. A discussion of this
point, including references to the mogt relevant work, may be found
in Rohrlich's book{'"),

' Recognizing that both difficulties (ii) and (iii) above
are a product of our procedure, since they do’not appear in the
original hamiltonian formulation, we have proposed to get rid of
them by using one and the same mathematical trick, namely, by impos
a condition on.the acceleration which guarantees that it remain
bounded. The need for'this sort of asymptotic condition was alread
recogniied by Dirac inkhis early work on the subject (1938). Thoug
the method is not entirely satisfactory, we know of no other proced
to write down in closed form the equation of motion for the radiati
particle in the electromagnetic field, without resorting to integro
differential equations - or to eq. (9) in its primitive form. This
problem (in its relativistic version) is discussed in the same book
by .Rohrlich(11).

The above considerations point to eq. (21) as a reasonable

equation of motion for the radiating electron, devoid of the

classical difficulties (i)-(iii). As to the fourth difficulty,

namely the unphysical spectral density, we will not have opportunit
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in this paper to discuss its consequences; we therefore content

ourselves with stressing that it is apparently due to our neglect

of several relativistic effects. For instance, by taking account
of pairlproduction the modes with energies greater than w_=Z2mc’/¥
would be considerably affected; we must expect that all such
considerations taken togethér,carry us to a real,Aintegrable spect:
density for the vaccum field. This points to the need of developi:
a wholly consistent relativistic stochastic theory, able to accou

for the quantal properties of the field.

I11. GENERALIZED FOKKER-PLANCK EQUATION

In order to construct a st#tistical description for the-
electron, it ié necessary to eliminate any explicit dependence on
the random field variables. Different procedures way be followed
for this purpose. For instance, one may try to solve eq. (21)for
2(&& and use the solution to compute the correlations of the
various dynamical variables for the particle. This technique has
been successfully applied in the linear case, showing that the
harmonic oscillator of SED possesses indeed quantum-mechanical
PfOPertieS(4’8’g). However, it is virtually impossible to solve
eq. (21) for a non-linear force; one must resort to other procedur

In the following we present a procedure applicable to any
conservative-force problem, but we shall, for simplicity, work
it out in the non-relativistic, dipole approximation, and through

second order in the electric charge € .
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We start by observing that the density of states of the

whole system (particle + field) obeys a Liouville equation

B3R ¢
ex =0
% rie e

. R
where the liouvillian operator L. is determined by the hamilto-

nian equations (10) and (11). Let us redefine 3 = mx ,- then

we can write t. in the form
A ~ ~ -~ ~ A
L= Lo+l +L, 2 Lot (24)

where the particle-, field- and interaction liouvillians are,

respectively, !
a ' ’ I 4 J
L~L3v+¥Ey, (252) {

Lem © (pur 2 - wolaque 2= ) ase)

n,¢ - ne ’bq“r nan a?nc \’ i

Lime® v+ 272 86,2 . (25¢) :

n,* ne afnf

A reduced Liouville equation for the particle is obtained by avera

ing eq. (23) over the field variables:

i Largcet>a =0 A (26)

where !

AOQ = IA(K, P, 1qne ), tpaed, )R A% AP (272)
for any function A, and in-particular,

QB0 = [Ra% . a% , (27b)
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is’ the phase-space distribution function for the particle.
Incidentally, an entirely analogous procedure leads to a
reduced Liouville equation for the field, by integration over the

- -2
variables X, P, namely:

2—5—-\"(_;,5*

2 2 g =
2t Z‘ E‘nf <‘F(1le,l?«9>5 =0,

i, af,,,

EL

which can be used for a4 statistical analysié of the radiation field
in the presence of matter. '

Returning to eq. (26), we see that it contains an unknown
function, namely, the (phase-space) local average electric force
e(é) . In oi‘der to compute this term we resort once more to

the complete Liouville equation (23), and write its solution for-

mally as

. A .
-Lt
R) = e R (o)
where R ( 0 ) is the distribution function at some initial time
{ £=0 ) at which we assume that the particle-field interaction is
suddenly connected.
Since we want to compute the electric force only through

second order in e, an expression for R ( t ) correct fo first or-

" der in e will suffice. This is obtained by applying the formula

~(Arpt -AL t ~(A+8) (&-¥) -at!
(=2 Ha'=e:."—Ld+.’e—3‘ Be

a~ -~ ~
with A= L, and B= L., and making the substitution e (—*“dt, o-Let
in the integrand:

»

’ K —a S iy 't'),\ _A ’
RW=eR 2 e \*’tRCD)"J‘.dt' et et

t’
L. e R(0). (29}
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Hence the average electric force becomes

» e 4 v L Gew) LA
e@®>a = favq  a%, eEle " ro-[ave Le " RO .(30)

For times t $O, when particle and field are mﬁtuélly in-
dependent, one can write the distribution function as a product of

two functions:
R = Qol%, B S0 (1g0d, Lpned ) (t<0)

satisfying the uncoupled Liouville equations:

B3R 1 _
> ¥ Le@.=0 (31a)
?% , L g, =
B v besem 0 (31b)

If we assume that the vacuum field reached equilibrium before t=0,

then S, is stationary:

N o~
31-=O H LeSe =0

and hence, is a function of the vactuum-field energy. Ai:tually, sin
the vacuum normal modes are mutually independent, we may write Se

as a product of functions of the normal-mode energies:

» 2
So= 3—‘; sng(E'“v‘) ; E‘nc’ = !2- [.(Pﬂf)l+ w: (q:\') ] .
According to eqs. (10), the source-free variables q:., P:c
coincide at £=0 with Qe s Pre 3 W may therefore write
: 2 T
$@ =SB 5 Bae = 5 (pae +wiqe),  (32)
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whereby

i P (PRI ‘ Lot
et RO = e (Lested QO Slo) = S(e) e | UL (33)

"since l:.- s(o) = 0.

On the other hand, we recall from eq. (9) that the appro-
ximate expression for the electric force in the long-wavelength

limit is

eg =-e' T & . Par (34)

o,

and this gives for the interaction liouvillian, eq.(26),

a / 2 e s 2 2 2 (35)
Liﬁ—e— “er‘Pr\l'enl’ vp * “":é_“'.P €ne BPne

By using eqs. (32)-(35) we see that the first term on the

r.h.s. of eq. (30) integrates to zero and the remaining term yields

e<E>a = -e' 2fd"qm. d;’P“, 3(0) :z%_é,,, ?,,,.L:L' (e" L (k-t’)ﬂ‘,) c—t'(t-tz“_“;_ Y}' e L *é.(o)
v [d"qned"par Zé. ?“L:\L' (e’t'“'“f—%% e et 0 %'L'té<o)
e e<ESQ .e <ESa . (36)

_ From L. Pas= ~Waqne and f.fq“, = Pne We obtain
e’f"’(t'w?ﬂ, = Pre 03w (tt) - OnQune st W, (-t)
.whereby the first term in eq. (36) takes on the form
el g,)& --e? fd" ar Qe S(o):[; E e Prc J::\t’ coswn-te C,(u:).". Y e.’?*téi(o)
+ e'l‘[d" we @ Poe SO ?‘.:.’@_nvw“ ne e J;;-L' sin w, (t-te ‘:"&Jv)é_m- G e't"ﬂa(o)
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This expression involves the initial distribution S(ig,.},1p..3,0)
which coincides with the source-free distribution s.({q‘:‘,}‘{?&},o};

we can therefore use eqs. (16) and (17), whereby we obtain:

et () Y
e.<E.>GL ---——*4 Zre.“,.w J'd«,’ Cos W, (tau)el" &9, eL' alo)
nyl
or letting L.-vco,
~lplt4)
e(E,>Q = -————Id ‘W [d‘L C.osw(t ) e LP( V,&(Q,‘f?,-t.')

--eIdL <EWEW > e v, (%, B (37)

where we have used eq. (19) and have written e_.L'uGL(O) =Q),
wﬁich is correct to zero 'order in e, according to eq. (26).

The second term in eq. (36) can be integrated by parts over
Pue * yielding )

X3

(&-%)
e<E,>a - ’%’r\ Z €\..,j a' c,osx.a,\(-\-.—t') e -t e’ g a W)
oo 4+ R )
— -—z}—fdw-w"f At cosw -t e L'“' $G(t’).
{Soo T Jo o

A procedure similar to that used in the calculation of eq. (14) yie!
2z = 22 aved]
¢_<§;>@_ = - %2 F’(,’{)Q(t)j dw + ;[(P-V)F]&(t)
. ®

which is precisely the (phase-space) local average of eq.(14), excep
that the radiative reaction force is written already to order g ;

cf. eq. (21).

Therefore, after mass renormalization we are ieft vgith

edBoa = —‘,;,[(13' V)%’]am . ’ (38)
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We recall ihat in aeriving eq. (21), the vacuum field spéc-
trum was modified according to eq. (22); due to the presence of the -

radiation reaction. Close inspection shows that the same modifi-

‘cation would have appeared in eq. (37), had we not prematurely ap-

prox1mated to second order in e. We can st111 repair thlS fault by

writing instead of eq. (37):

.

Gt

e(E,)& = -e.fét'(E (t)E (‘L’)) e Y, QL) (39)
where E;,;(e) is the vacuum electric field with spectral density mo-
dified étéoraing to eq. (22j.

infi‘odﬁcin'g into eq. (27) tﬁe two cdﬁfi‘ibu_tions to thé ave-
rage electric force, given by (38) and (39), we obtain a generalized
Fokkét-i’lénck équation for the electron in phase-space, correct to
order T (or e*):

3°~ é V&* q, (F+_§VF)Q—
- et Q Idt <E (aEm(u)> c'L'“”*’) V &(f.’)= o. (40)

- The éxéct version of eq. (40) would contain an infinite
number of integrai terms with higher powers of e, representing, of
course, higher-order contributions of the éiectrbmagnetic interac-
tion between particle ahd field.

It is instrutfive to combéfe this resuif with the éne ob-
talned prev1ously( ) using the (approxlmate) method of the stochas-
tlc L10uv111e equation. 'In follow1ng this method we use eq. (21)
to write ébﬁn a stochastic Liouville equation for the particle only:

W, 290+ (B L F e =0 s
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and use it to derive an equation for the averaged phase-space dis-

tribution function

Q=<LR>.

. .
This is accomplished by introducing a smoothing operator P the
action of which is equivalent to averaging over the distribution of

the random field variébies:
L
PA = <AD. 42)

In particular, ‘TS(Q =<Q>=Q -

By applying this smoothing procedure to eq. (41) we obtain
two coupled equations for Pa =@ and (1-P)Q = 8Q , which can be
combined to eliminate the irrelevant contribution &®& . The ensu-
ing equation for Gi feduces in the e - approximation to:

2, R.9a s B (FripoPla-
Lela-t)

‘ 2 * 1= Y & ! - ¢ -
- G [av PR ELWDe 9auI =0 (1

which coincides with eq. (40), since ﬁgm&,)é“(u)* <§m (!—.)E.,&t’)).
It should be noted that the smallness of the non-classical
terms appeariﬁg in eq. (40) - or (43) - does not at all imply that
we can dismiss them; it is precisely through the interaction with
the radiation field that thec material system may reach a state of
equilibrium. Only in the eduilibriuﬁ fégime, when the interaction
has already accomplished the task of determining the essentiall&
non-classical structure-of the distribution functiom, do the non-
classical terms represent corrections. In fact, as is shown in’'re

-(6’7), one can derive the SchrBdinger equation from eq. (40) when
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system is close to equilibrium; the remanent effect of the radiation

field gives then rise to the (nonrelativistic) radiative corrections

‘of QED, namely, the Lamb shift and the decay of otherwise stable

excited atomic states. It is precisely in connection with results

of this sort that the present note acquires its full meaning.
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