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Abstract : In the present papeér a class of correspendence
rules (rules of eonstructing quantum operators) is determined, in
which Newmann's requirement (an operator of the function is equal
to the function of the operator) has been replaced by a weaker one.
This class may contain both unique and non-unique correspondence
rules and includes every Neumann correspondence rule.

The main consequences, to which the application of the cor-
respondence rules from the determined class to quantum theory
leads, are considered.

Résumé : On définit la classe des régles de correspondance .
(régles de la construction des opérateurs quantiques) dans la-
quelle la condition de Neumann (1L'opérateur de la fonction est
égal a la fonction de l'opérateur) est remplacée par une condi~
tion plus faible. Cette classe peut contenir les régles de
correspondance aussi bien wiivoques que non univoques, y compris
toutes les régles de correspondance de Neummin.

Des conséquences essentielles découlant de 1'utilisation
de ces régles de correspondance en théorie quantique sont exami-

nées.
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INTRODUCTION

The problem of constructing quantum operators O(A) which
represent the physical quantities A in quantum theory was formu—
lated at thé time of the birth of quantum mechanics. -"y. In
the course of the development:of quantum theory quite a few
works have been published (see (1-9) for example) which offered
various recipes of constructing quantum operators (i.e. various
correspondence rules).

The best known of them are the symmetrizatiom rule (%) and
the correspondence rules of Neumana (%), Dirac 2y, Weyl (%),
Born-Jordan ().

The number of the correspondence rules alone, which are
currently under consideration, indicates that the problem has
neither complete nor conventional solution so far. Moreover,

a detailed analysis (!0~!3) shows that all generally accepted
correspondence rules have essential drawbacks. Thus, in the
case of non-unique rules (},2) the technique of constructing
quantum operators has not been fully defined and all attempts
to eliminate non-uniqueness inevitably lead to contradictions
(10-12y  Most of the unique correspondence rules do not-guaran-
tee positive definiteness of operators for the non-negative
functions of physical quantities, such as dispersions (11-12y,

The operators of the current quantum theory satisfy the
well-known Neumann set of requirements (1), presupposing in
particular, that :

O(£(A)) = £(0(A)).

The above requirement is incompatible with those of line-
arity and uniqueness of the correspondence rule %y, i.e.
the Neumann set of requirements camnot determine the unique
correspondence rule.

In this conmnection it seems reasonable to sacrifice the
above requirement and replace it by its sequence

<Oo(f(n) >>0, if E£(A) 0.

The resulting set of requirements is essentially the same
Neumann rule, though slightly less restricted, and it can deter-
mine the unique rule of correspondence. (As an example, onme can
cite the principle of comstructing quantum operators in the
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s?—called guantgg mechanics with a non-negative quantum distribu-
tl?n fu?ctlon.( }). In a general case, however, 0(A2) # 0(A) 0(4)
which gLV;; rise to a number of mathematical and physical conse-
quences. The study of these consequences is the princi i

of the present work. 4 - principal aim

I . The Neumann rule of correspondence and its consequences

The Neumann correspondence rule, which is the basis of the
current (modern) quantum theory, includes the following require-
ments for quantum operators :

(1a) o =1,

(1b) O(A+A}) = O(A) + 0(4)),
(Ic) 0(ad) = o 0(A),
(1d) 0" (a) = o),

(1e) 0(£(A)) = £(0(A)).

H?re, 1 %s a unit operator, A, A are arbitrary physical quanti-’
ties, o is a real'constant, 0 (A) is an operator, conjugated on
0(a), £ is an arbitrary rational funéttion of A.

%e? any c?rrespondence rule, in which operators of physical
quantities satisfy the set of requirements, listed in (1), be
called the Neumann correspondence rule. The properties of,opera—
tors (1) involve a few physical consequences of the quantum
theory based on the Neumann correspondence rule, such as :

)] T?e value <A> of the physical quantity A, characterizing
a system in the state |W> and calculdted by the formula

2 <A> = <v|o(a)lys,

can be inter?reted as some average value, i.e. as the mathemati-
cal expectation for the quantity A.

2) ?h? average values <A> of physical quantities are real.
The specific Neumann requirement (Ie) in the particular case
’
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whén f(A) = A? takes the form
(3) , 0(A2) = 0%(A)
and leads to the three following consequences :

3) The average value of the square of any physical quantity
in an arbitrary state is non-negative.

4) The dispersion <(8A)?> of the quantity A, i.e. the avera-
ge value of the quantity's squared deviation from its average
value, which is a functional of the state |W>

<(28)%> = <v]od A-<A>1 2y |¥>,

is a positive number. Indeed, in conformity with (3) and the con-
dition of self-adjoint operators (Id), we have :

(&) <A = <¥|od A-<a>1 D) |¥> = <¥fo?(a-<a>)|¥> > 0.

5) The value <A> is exact for the state, represented by the
eigenvector of- the operator O(A), i.e. the dispersiom of the quan-
tity A in this state is zero.

The property of the operators (3) and consequence 5) are of
equal value in the sense, that we inevitably obtain equality (3),
provided that the statement 5) is postulated (I1).

Thus, the set of requirements (I), which determine the class

of the Neumann correspondence rules, brings about reasonable phy-
sical consequences of the quantum theory 1) - 5).

However, due to the requirement (of the uniqueness) of the

one~to-one correspondence of quantum operators and physical quan-—
P . : . 14

tities, the properties (Ib) and (Ie) become incompatible (7).
Therefore, we propose that certain changes be introduced into
the set of requirements for the correspondence rules, so that
they gain the property of uniqueness while retaining as many as
possible of the above-mentioned consequences 1) - 5).

2. General formulation of the Non-Neumann correspondence rule

Let us introduce the following set of requirements for quan-
— 48 -

tum operaters. :

(5a) o) =1,

(5b) O(A+A1) = O(A) + O(A;),

(5¢) 0(ad) = a 0A),

(5d) 0 (a) = o(a)

(5e) O(£(A)) a positive operator for any non-negative

function f(AY

and let any correspondence rule, in which operators of physical
quantities satisfy the set of requirements (5), be called the
Non-Reumann rule.

The requirements, imposed on quantum operators in (5) differ
from those in (I) only in that the requirement (5e) is less re-
stricted than (Ie). Any Neumann correspondence rule, therefore,
can be considered as a Non-Neumann one. However, the‘class of
Non-Neumann correspondence rules includes both the unique and
the non-unique rules of quantum operator comstruction (in con-
trast to the class of the Neumann rules which comprises only
non-unique ones).

Attempts have been made to use the Non-Neumann unique rule for
quantum operator construction. Paper (18) offers the so-called
quantum mechanics with non-negative distribution function,
based on the unique correspondence rule; satisfying the non-
Neumann definition (5).

Let us formulate the physical consequences of the quantum
theory with the Non-Neumann correspondence rule resulting from
the set of requirements for operators.

1. The value <A> of the physical quantity A, characterizing
the quantum system in the state |¥> which is calculated by using
(2), can be interpreted as an average value. The requirements
(5a), (5b) and (5¢) make it possible to consider the value <A>
as the mathematical expectation of the quantity A,
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2. The average values <A> of physical quantities are real,
which is obvious from the self-adjointness of quantum operators
(property (5d)). : : .

The requirement (5e), imposed on quantum operators im a
special case when £(A) = AZ?, ‘means a positive definiteness of
the operator 0(A?), which we can symbolically write in the form

(6) 0(A%) = 0.
In a general case instead of Eq. (3), we have
("N 0(A%) = 02(a) + D(A).

The last formula should be considered as a definition of some
operator D(A).

3. The average value of the square of any physical quanti-
ty in an arbitrary state is non-negative due to the inequality
(6) which follows from the requirement (5e).

4. The dispersion of the quantity A
8) <vlo A-<a>12)|¥> = <v|02(A-<A>)|¥> + <¥|D(A)|¥>,

is positive due to the requirement (5e). Indeed, when f(A) =
(A~<A>)2 the operator 0((A-<A>)?) is positive and its average
. value in any state is non-negative.

There is no analogue of consequeénce 5) in this case.
Moreover, the dispersion of the quantity A in the eigenstates
of the operator O0(A) is not equal to zero.

<(8A)?> = <¥|Daylv> # 0.

Now the physical meaning of operator D(A) is quite clear :

D(A) is the dispersion operator in the eigenstates of the ope-
rator O(A). Since the dispersion of the quantity A in the eigen-
states of the operator O(A) is not zero, the value A in these
states can no longer be determined exactly. Thus, the problem
-of definiteness of physical quantities aquires a particular si-

gnificance.
_SO.—

3. The states of maximum certainty

Let us set the task of finding the states |W> in which the
value <A> is determined with maximum accuracy. The degree of
certainly of the value <A> has also a particular meaning because
of the general statistical nature of quantum theory.

One can consider dispersion, i.e. the conditional .functional of
the state |W> (8), as the quantitative measure of certainty.
The requirement of the minimum uncertainly can be writtenm in
the form ’

9 s{<(ap)?>} = 0.

The functional's minimum (8) is guaranteed by its zero restric-
tion from below, since the dispersion of any physical value in
an arbitrary state is positive (see §2).

The conditior of the normalization of quantum states can
be taken into account by transforming the formula the calcula-
tion of average values (2)

<¥|oqa)|e>

(10) <A> = W'

Then, by using the definition (8) and the operator properties
(5a), (5b), (5c) problem (9) with a conditional extremum can be
reduced to the following unconditional one :

<tloa?y|v> _ (<¥oa)[v>)2)_
an R - [l o

Considering variations of IW> and <W| independent let us
fulfil the procedure of variating analogous to that made in
book (17). By varying <¥|, and making some simple transforma-—
tions, we arrive at

2
(12) ?WT%; <s¥[0(A2) - 2 fﬁé%f%%ifi»d(A) +2 [ﬁ!ég%%%lf:J

_ <¥|o@a?)|y>

ST J¥> = o.

Taking into account the arbitrary choice of variation <8Y],
from Eq. (12) we get

(13)  {0(A?) - 200(a) + o2}|¥> = d2|v>,
__5‘._



where
<A> = q, <AZ> - (<A>)2 = 42,

Thus, the physical meaning of « and d? is obvious. The nonlinear
equation (13) (a depends on ]W>) defines some family of quantum
states [¥>, related to the physical quantity A in the sense,
that the uncertainty <(MA)?> increases with the transition

> > > + |8vs.

It is, therefore, natural that these states be called the
states of maximum certainty of the physical quantity A.

Note should be made, that Eq. (13) defines the extremum
states, i.e. the family of its solutions may contain, apart
from the states of maximum certainty of the quantity A, some
other extremum states.

4. Some properties of the equation of maximum certainty

In the present section we consider some properties of the
above equation of maximum certainty (I13) and its eigenvalues.

1. In spite of the non-linearity of Eq. (13), the state
vector C|W> (C = const) is a solution of Eq. (13) if |¥> is a
solution in conformity with (10). That is why any solution of
Eq. (13) can be normalized te unity.

2. In accordance with the Neumann correspondence rule
Eq. (13) is transformed into an eigenvalue equation of the ope—
rator 0(A)
(14) o) |y> = afvs.

Indeed, let us rewrite Eq. (13) using the definition for the
operator D(A)

(15) {{0@a) ~ al? + DAY }|¥> = d?]v>.
The Neumann correspondence rule implies D(A) = O (property
(Ie)). One can, therefore, easily extract the root of the ope-

rator in the left-hand-part of Eq. (15).

o(ay|v> = (¢ + a)|v>.
_52_

Multiplying both sides of this equation by <¥|, we find that

d = 0 and obtain Eq. (14). Thus, for the Neumann correspondence
rule the states of maximum certainty of the physical quantity
A are the eigenstates of the operator O(A).

3. Egs. (13) and (14) are equivalent when
(16) [0(a%, o(a)] =0
From the commutator (I6)$and the definition (7) follows the com-
mutation of the operator D(A) and 0(A), and, consequently the

coincidence of the solution of Eqs. (13) and (14).

Really, commutation of the opérators 0(A) and 0(A2) means

]

O(A)|¢m> am|¢m>,

L}

0N o> = b le >,

where {f¢m>} is a complete orthonormalized system of vectors,
a = a if and only if m = n. Let [¢u> be the solution of (13)

?nd lw > does not satisfy Eq. (14), After. substitution of‘lw >
in the form ¥

u
> =5
lwu n Cn|¢n>
to Eq. (I3) one can easily get
u.
c - 2 42y o
n(bn 2auan + au du) 0.
For any n if Cz # 0 the last equality transforms to
- 2 .42 .
bn 2auan + oy d 0

o
and

The obvious correlation bn =d? + 5? has been used here
n n )
Let us substitute this value of au in Eq. (13)
M2 42 - 2
IZI:I Cm[ dm dn M (am an) 2(am B an) an Mm> = O .
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1f some m % n exists for which € # 0, then
dz_dz m
=0 B L, -

n  2(a -a_ ) m n’

m n 3

X
Comparing now the two equal expressions a Xy and a tox, we
obtain a =a ;3 this is possible only when m = n. Therefore the
state |wu> coincides with |¢n>, i.e. !wu> satisfies Eq. (14).

The commutation (16) can, naturally, be achieved only for

some concrets realizations of the Non-Neumann correspondence
rule.

4, Theorem. If the family of solutions of the equation of ma-
ximum certainty (13) forms a complete orthonormalized system of
vectors in the state-space, and o, ¥ a, for k * ¢, then equations

. k L
(13), (14) are equivalent.

To prove the theorem, let us consider the functional
<¢£|O(A2)ka>, here 1¢k>, I¢£> are solutions of Equ. (13). By
using (13), the self-adjointness of the operators (5d) and their
orthonormalization, we obtain :

b loa®y |y, > = 20, <o Jo) |, > = 20 < [0CA) >

. +
and, since o4 T,

an < lo@yy > = o.

In view of the completeness of the system of vectors {lw>}
correlation (17) can be rewritten as

(18) : o v > = o v, >,

i.e. any solution of Eq. (13) satisfies Eq. (14). Using (18)
it is easy to obtain from the equation of maximum certainty (13)
the following :

(19 o> = (@ + Oy

Eqs. (18) and (19) imply the commutation of the operators 0(A?)
and 0(A) on a complete system of vectors, i.e. condition (16)

;i fu;filled. The commutation of operators (16) makes it possi-
€, by means of a mere substitution, to see that i
. . ) n
of Eq. (14) satisfies Eq. (15). ’ any solution

. 5. Provided the conditions of the above theorem are fulfil-
ed, the operator D(A) is positively defined. Indeed, let lw>
be an arbitrary state, then ’

lv> = g clv>

and 4
WP v = gle, |2 a2 >0,

AF an ar?l?rary value of !w> the last correlation indicates posi-
tive definiteness of the operator D(a).

6. If the uncertainty of the physical quantity A reaches its

minimum in the state > N N . S
is tron s |¢k s !Wl s then the following inequality

2. g2
(20) Idk dll < S aE)Z.
To prove this statement we must make use of i i
E the identit
< oCa-a))?) ]y, > Y

@ G Iy

= q2 - 2
dk + (u2 gk) .
The dispersion minimum in the state 'w > implies
by + vi loccaa) Dy, + vy > b

(22)
Ty TV, T Vs

42>
>0

W < B ing 1 1ty aKi a na-
( )
here Y 1 Usin, dentit 20) and mak ng a few tr nsform

dz—dig(ak-—u

2
2 g) .

Replacing lwk> by lw1> and vice versa in expression (22) we im-
mediately find that

a2 - g2 - 2

i dl?,((ak al) .

f;g)last two inequalities constirute the required correlation



7. After finding a family of solutions for Eq. (13) f‘wk>}

and the corresponding values of o and d? one may state that for

k k
any state’
i def
(23) <(AAY?> 2 (8A)2=== min {di}.
k

Hence, the accuracy of determining even a simple physical quan-
tity in the quantum theory with the Non-Neumann correspondence

rule is limited. The quantity (8A) is determined by a concrete

realization of the correspondence rule.

It has no analogue either in classical or in quantum theo-
ries, so it will further be called the "subquantum uncertainty”
of the quantity A.

Since the quantities (SA) are contained in the experimen-
tally verified values of physical quantities, "subquantum un-
certainties” should reflect some Yhysical reality, which nature
was considered briefly in paper (!8
cal quantities are not strictly determined, that is why the
appearence of "subquantum uncertainties" may be interpreted as
a result of interaction between the regarded physical system
and something surrounding it. The idea of considering a physi-
cal system interacting with some environment is not new. Pre—
sent investigation shows that hypophesises of existence of the
"hidden thermostat" (19), the "imaginary thermostat" (20), the
"subquantum medium" (2!) and so on with necessary changes may
find application in the quantum theory with the Non-Neumann
correspondence rule.

8. Let |#g> be the state of the absolute minimum of the
dispersion of the quantity A, i.e. (SA)? = d% ; then, ine-
qualities (20) and (23) form the following correlation :

(24) (88)2 < a2 < (s0)2 + (o - ).

Hence, the eigenvalues of the dispersion are founded both from
below and from above.

5. The correlation of uncertainties

The appearance of the "subquantum uncertainty” (23) of a
separate physical quantity in the quantum theory with the Non-
Neumann correspondence rule leads to the obvious correlation
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}. Generally values of physi-

of uncertainties for two physical quantities

(25) <(8A)2> <(8B)?> > (8A)2(5B)2.

Expression (25) has no analogue in the conventional quantum the-
ory. But it can be shown that the product of uncertainties of
two physical quantities in the quantum theory based on the Non-
Neumann correspondence rule also depends on the commutator of
their resgpective operators.

Indeed, let 0(A), O(B) be the operators representing the
physical quantities A and B. The self-adjoint operator 0(C) is
defined by the equality :

(26) ifo(a), o(B)] = o(c).

Let the physical system under consideration be in an arbitrary
state |Y>. For the operators of the deflection of the physical
quantities from their average values O(AA) = O(A -<A>) and
0(AB) we have

27) ilo(aay, o(aB)l = o(C).

Let us consider now the auxiliary expression

(28) <pl{o(aa) + ia0(aB)|2 |y> >0,

where « is a real parameter. Commutator (27) makes it possible
to rewrite the inequality (28) in form

<p]02(a0) Jy> — a<p|O(C) |y> + aZ<yp|02(aB) |y> = O.

The last expression implies, due to the arbitrariness of a, that
1

(29)  <«p|02(a8) Ju> <p|02(aB)|y> =7 (p|o(@) [y>)?.

With the aid of the operator p(A)(7) we obtain an expression for
one of the factors of (29)

<p|02(aA) [g> = <p|0((aRI2) |y = <y|D(A) [y>.

The same equality is also true for the quantity B. Therefore,
inequality (29) is transformed into the uncertainty correlation
for two physical quantities in the quantum theory with the Non-
Neumann correspondence rule
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(30) [ <(88)2> = <D(A)>1[ <(8B)2> - <D(A)>]>=% (<0(€)>)2.

The general analysis of the above expression is a thorough inves-
tigation of the properties of the operator D(A), which is outside
the limits of the present work, since it is not concerned with

the results of any concrete realization of the Non-Neumann corres-—
pondence rule.

It should be stressed, however, that in the particular case,
when the conditions of the theorem (§4.4.) are fulfilled, the mi~—
nimum of the dispersion is reached in the eigenstates of the
corresponding operators. Thus, for the operator O(A) it is
<D(A)>, and the inequality

<D(A)> = (8A)2
is true.

Hence, the inequality (30) will become stronger if we write it
in the form :

<(8R)2><(8B)2> > 7 (<0(C)>)2 + <(AA)Z>(8B)2 + <(AB)2>(5A)2

1
4
- (84)2(8B)?.

Finally, with (23) taken into account the last expression
gives :

(1) <(N)?><(B)?> > L (<0(0)>)? + (5M2(sB)2,

The uncertainty correlation for two physical quantities, to—
gether with the appearence of the "subquantum uncertainty' shows
that, in the quantum theory with the Non-Neumanu correspondence
rule, the concept of certainty becomes more general and fundamen-
tal than it is in the conventional quantum theory and, of course,
includes the uncertainty principle of the generally excepted quan-
tum theory, as a particular case.

Conclusion

The class of the Non—Neumann éorrespondence rules introdu-
ced in the present paper includes every Neumann rule of construc-
ting quantum operators. The set of the requirement for quantum
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operators (5) formulated here, determining the Non-Neumann class
of correspondence rules may be extended to provide a concrete
unique recipe for constructing quantum operators (18). Apparent-
ly, other concrete realizations of the Non-Neumann correspondence
rule are possible. However, the investigations made in the pre-
sent work show that the following statements in the theory with
any Non-Neumann correspondence rule are true.

I. Out of all the possible states of the physical system,
two families of states relative to the physical quantity A can
be picked out : ; ’

a) The family of the eigenstates of the operator O(A).

b) The family of the states, in which the physical quantity
A is determined with maximum accuracy. These states satisfy the
non-linear equation, constructed on the operators O(A) and O(A2).

II. The sets of states a) and b) are the same for :

1) The Neumann correspondence rule.

2) The completeness of the system of states of. maximum
certainty.

3) Such a realization of the Non~Neumann correspondence
rule, when the operators O(A) and 0(A2) commute.

I1II. The accuracy of determining even a simple physical
quantity in the quantum theory with the Non-Neumann correspon-
dence rule is limited. It, naturally, leads to the generaliza-
tion of the uncertainty correlation for two physical quantities.
Thus, the concept of certainty in this case becomes more general
and fundamental than it is in the conventional quantum theory.

"Appearance of the “subquantum uncertainty" (54), exclu-
ding in general the dispersionless states, admits the idea
of presence of some unknown "subquanfum medium" interacting
with a physical system."

The results predicted by the theory with the Non-Neumann
correspondence rule will not, apparently, be in contradiction
with the experimental data for the case when the operators O(A)
and 0(A2) commute, and the "subquantum uncertainties’ (§A) are
small enough for physical quantities measured experimentally.
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