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Abstract : In the present paper an unique correspondence
rule from the class of the Non=Newmarnn rules. of constructing
quantum operators is fized and problems of certainty of angular
momentum of a particle are considered. Equation, which solu-
tions are the states of maximum certainty of a phystcal quan-—
tity, <8 solved for angular momentwn and one of its compornents.

Résumé : Dans ce travail on fize une régle de cerrespon~
dance appartenant q la classe des régles non-neumaniennes de
construction des opérateurs quantiques. On considére des ques~
tions relatives 4 la certitude du moment einétique de la par—
ticule. On trouve des solutions de 1'dquation du moment cind—
tique et de ses composantes ; ces solutions sont les dtats

- de certitude maximale de la grandeur physique.
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On Certainty of the Angular Momentum
Values in Quéntum Mechanics with the

Non~Neumann Correspondence Rule

I.4A, Lyabis

INTRODUCTION

In the preViO;SwpapC? [ﬁ} the class of the Non-
Neumgynn rules of constructing quantum operators (cor-
respondence rules) has been ﬁetermined. The main con=—
sequences to which the application of such rules to
quantum theory lqeds are obtained. 8o, in the quantum
theory with the Nen~Neumann correspondence rule the
concept of certaint& becomes more general and funda-
mental than it is in the conventional quantum’ theory,
The accuracy of determining even a single physical
quantity is limited.:The states, in which the averege

value < A> of the physical quantity A ié *jvén with

max1muu accuracy (i.e. the dispersion ~<(Z§A} > reaches’

its minimum in these gtates), sallsfy some nonlinear
equation. (In the generally accepted qﬁantum theory
such states are the eigenstates of the dperatbr C>(A>
representing the physical quantity A4 .)

Sé, the question of certainty of physical quanti-
ties characterising concrete quantum~mechanical systews
is of nétural interest, In order to solve a quantum-
mechanical problem one ;hould know a concrete form of
operators (i.ec. it is necessary o use some correspon

dence rule)., In the present paper for this UIpose
P pay P
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Non-—-Neuwmann

Cuantum operators C(A) corresponding to physical
gquantitics A according to this rule depend on some set of
functions of coordinates and time {%’(& *\L . The rule XZE
is unigue wh:n the setb {(fR} is Tixed, but choice of ano-
ther set chanmes operators and, hence, the theory itsel
That is why the rule of constructing guantunm operators {2}
Getermincs indeed the whole class of unigue cOrrespondsnce
rules and 2ll of thém are {he Non—-Neumann.

& set of functions ,( {§ determines according Lo

the acceplted lLerminology gj} 50me
in which a mechanical system is placed

t ¢ Adctermines its quan-—
interacts with a mechanical system and determines s

; Y .,‘ R S T nwabtion
tum- behaviour. In tho present work cn bvase of the eguation
L = - -~

-~ i
obtaiped in paper E”g ticn of cert
1 - N © A s e
L*> ] of a particle, placed ia different

&

“subguantum situations™, is considered,

A Unerators

- 2 JRVES T Yer Fhe
Zuryshkin's correspondence rule &2} is delined by the
uryshkin®s 1
action of the operator OA) associated to the physical

guantity A on the arbitrary state %)(é,f) A )
‘ 0
) 0«0%{1{) @vh {w %t) & P+V{)e g ) 2 Wdldo

where A(i)Pf) ig a function of coordinates 1(%1w<“ifﬂﬁ,

: ¢ im haracterising the
momentum F(r@)“u)J%O and time 1 , charac 5
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considered system in the clsssical theory, (%_P) is the

scalar product of the vectors 7 and {) ,if(i'% {) is
t i

the auxiliary function of phase-space and tine

M
2

(2 ?(5,Pﬁ3:(“ﬁ§ a P>ZE:%? (4 w))

e
Fo(p) = (25t < (g E("Pljg
The set of Ffunctions &fK{%‘{> is normalised as follows

, < {/ N ¥
@2 ) G R (1) dE = 1
In ordsr to make culeulgtions simpler we shall consid

only stationary homogenecus isctropic and re

Y ip /8 — e N L ek e
o RN = 9 (T = 9T
Ihe correspondencs rule (1), the requirements (5), (4) mak

possible Lo write down main operaiors connected with Hhe

anpular momentun.

fa(te‘)r-%&wﬁﬁh; OO ETTAR
5 40 L) 0ke) +D(ke) 3 O =0T + 2(TY;
R S G sy (P 4
DITY = 2(8py 5%+ 2052 p e 3
Here PQ‘"Zé(;a%E: By omy no=a,2,3, S omu  is the

cormpletly antisvy

ctrical rseudotensor, (55)2

(Ep°,

z
. are U y {
J he Functionals of the auxiliaxy function (2
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G

r

;g?z (%, ll)hcl
(6) ﬁ(SP\)z ggg

Van
Co
s
—
"
i

i
P (L) c(?JF,

2= (1751

£11 wvhe perwutational correlations of

are determined by the commutators

o , 7 ‘ ~ A
iifﬁtaﬁ,ﬁﬂmﬁﬂ;“ﬁ %? éwumgﬁﬁu§>
(7) 4
él E(LKJ; O(Lm)é = 0.

-2 2 _ N
The operators {}(L )and O(L2> do not commubte, Lhat

is why the equation determining the states of maximum

_certainty of angular momentum differs Lfrom thgt for its

. component,

2 The states of the angular mementum
maximum csrtainty
In accordance with the result ol the pape f j tbe

states, in which the averapd value of angular nomantun

is deternined with muxlmum accuracy, are the solutions

{ the equation

@ O((C-<D=)) «(®) =d

v rossible to
The commubators (7) and operators (5) make possible to

F )
wiad

w(?),

~

. i R e
search for the solutions of the eqguation (8) in the form
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el

(9 Lf)ﬁ ) ;«Lf(§: 0’{(> = '1‘)(§> \/QM /9 (f}\‘)

3

where Yekh are the spherical harmonics, 3 =/%[ , B=alccns(-2
Y ! g, C*— Q/LC(_U\‘L e

o= ~F fn Wby 4 s ’

f)ﬁa%cgi(g/ig. With the help of the expression (9) and

P T e
the following substitubions

o Iars
;&uszéﬁg;,a=ge:ya§5§

e

(10) | ﬁ‘ 2 | (\5,‘)3 );
[ = 3T = U8 + 4 (0% -

Lo 1 R o T
from the correiation (8) we obtain the equation for the

function  U(})

d* 2
an Iy U +(28 -3~ o) Tl = 0,

Taking into account the behaviour of {{ at zero and in

infinity we shall seek the solubions of (11) in the form

u(y) = M/j}){_ };} }'éd U(}).

Substitution of this expressicn in the equation (11) leads to

d* 2+
(12) [CT‘;T‘" ‘?“2( N_,— o+ 2(;2)&@_%)]%‘.@) =0,

The soluticn of the equutlon (12) is the degenerate

a4 come LCa. fun hl g f "‘—‘ 1vs
_’DCIb et C ¥

ctk on Q El 8) p Eé S
asympbollcal b } ﬂ/lOuY LO”ethGl‘ \Jl‘un. t.rh@ Ienn I‘G""}QILL o

decroment of ;{(Q) in inf;;ity gives the restriction
(13) P+ S -3 = -
, >~ 8 2K,

o - — ~ -+ : N "
where K = 0,1,.., . In this case the degenerate hipergeo—

metrical function f‘(‘K,C,’ﬁ ig proportional to the gene-
c
rated Laguerre's polynomial L,K(x). So, the states of the

angular momentum maximum certainty are found
¥ 2 ’( TS eﬁa )y .
w A (69)
() 2mK (Tglv)%, k'(?ﬂ’?K*.{)' ) L L]p .

Phe corrolations (10) and (13) determinc the spectrum of the

angular momentum and its despersion values

(45) <Z“A>QWK :<Z:>M4 :(o)o:wi:>)

(16) (c(

2r 2 Iy
= _ ky )
EM( i\(?*? W >-+ l[f;[S’I)(SFXgHw /2>+5Iz
where £ = 0,156 3 ™M = = Preees05e0sy 83 K=0,10000
The average values of the maln quantitics characterising

the motion of & particle in the states of the angular momen—

tum maximum certainty are the following

<> gk 2(010'05» <§>Q‘MK ‘;(C,O,()))
<=2
“7) <Y 2o = R2<ZK +Q+'3§) + 3(8%)2)

< Fg(}wk = —:—2(2K+€ +%> -+ 3(8f)>2_

'3, The states of makximum certainty

of the angular momentum component

In this secetion the states, im wh*ch,the angular momen-
tum component is determined with® makimum accuracy, will be

oblained. Let us choose z-component for consideration, then
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the scught for states are the solutions of the equation

(see paper [1})
2
18 O((Lz-<Lz>))¥(F) = d, ¥(F).

Equalities (5), (7) make possible t6 find the solutions of

eqguation (18) in the form .-
$(I) =w(2,p.¢) - Z(z)u(f)e‘”‘f’
~ where P ..\/) .,J = 071012(3’/3()

The procedur@ of obtaining oolutlons of equation (18)

is the same as it is for equailion (8). After substitutions

‘ :1(1%@_““ oy
! () bR,

2

LC(LZ -7 = (81)(5p)c,

it is not so difficult to zet the eigenstates and elgen—

{19

values of eguabion (18).

(20)  <lz>,a, = < Ly>. = Wk,

(21) (cﬁi}w = QH(88)(Sp) (2w Im| +1) + z

23 “I - P
(22) == > . -
SERRC =Y oy (K> (P ) !

where W= O, 2%, 00077 TK=0,1y 00
too Theaverage values of the main dynsmic guantities in

stabes (22) ape the following -
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f‘ i» Y . :
<3>MK':‘<X7HK=07 N <Px>kkz <P3>W»K:D

5 §<X YT = RP(2k 4w +1) + 2(39)

=) z .2 ‘ 2
< Pt Py = %(wﬂwﬁ + 205,

Tho z—component values of coordinate and momentum remain
arbitrary because of the function 2?(Z> arbitrariness.
Formulae (16) and (21) determine the minimum possible

dispersion (“subquantum unéentainty“) of angular momentum
2
oy (ELY = 2R(ED)(T )
i.e. the dlspex sion values in any state are subject to the
limitations

<(6LY'> 2 3(5L) ) <(sbg)> = (R)

Expression (24) establishes the physical meaning of the
functional :ﬁa (€.

Note that the average value of the square of angular
momentum differs from zero if § = O. (In the generally ac-
cepted gquantum mechanics this value equals zero.) The inter—
pretation or this result and appearence of a new guantum

number R may be found in the further investigations
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