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dbstract : Part I of this series, which surveys and analyzes -
Einstein's views in the velativity and quantum theories, is conti-
nued in this paper. to a discussion of his views of a wiified field
theory vesolution of the problem of matter, and- the author's tmple-

entation of these views.

.

Résumé : A la suite du premier de des articles, gui analy-
se  Ll'ensemble des vues d'Einstein sur la relad té et les
théories quantiques, celui-ct discute son point de vue sur la
solution du problime de la matiére par wne thiorie du champ unifis,
et sa mise en osuvre par L'auteur.

® Dedicated to the memecry of Albert Einstein, in houor of the
160ch anniversary of his birth (1879-1579)

= 175 -

~ E L7 o N\



1. Introduction

This cwo-part series discusses Einstein's ideas about the
relativity and quantum theories that were seminal toward the evo-
lution of twentieth century physics. Emphasis was placed in

Fart I l) on his turn of philosophical bases, from the earlier
epistemological view of c¢perationalism and positivism, when the
theory of special ralativity and the quantum theory were in their
initial stages of development, to his later epistemological view
of abstract realism, when special relativity theory had evolved '
to general relativicy theory. Along with this change in his phi-
losopliical outlook, Einstein looked toward the resolution of the
problem of matter in terms of a nonlinear, concinuum field
approach, requiring a complete, deterministic theory of matter,
in which the basic variables must be the regular solutiocns of the
underlying field equations.

The latter view led Einstein to reject the Copenhagen
approach to matter, in terms of a linear, nondeterministic, sub-
jective approach, since he saw this as an incomplete representa-
tion for elementary matter. He anticipated that the complete
theory, guided by what he had already discovered in the general
relativistie approach to gravitation, would lead to the eigen-
function, Hilbert space formalism of quantum mechanics only as a
nonrelativistic, linear approximation, for generally nonlinear,
nonhowogeneous field equations, applicable to any domain of matter
and incorperating macroscopic physics and microscopic physics in
a single dynamical scheme =-extending from the domain of fermis to
that of light-years.

Just as Einstein's later view of general relativity logical=-
ly rejected the idea that the Copenhagen approach could be a fun~-
damental theory of matter, so it equally implied that the complete
representation of elementary matter must be a unified Ffiald theory
~fusing the inertial manifestations of matter with its. force mani-
festations- gravitation, electromagnetism and whatever other for—
ces matter may manifest; under one set of physical conditions or
another. In the studies during the latter part of his life,
Einstein felt that the initial stage of such a unified field
theoty might attempt to fuse the gravitational and the electroma-
gnetic force manifestations of matter by generalizing his field
equations in general relativity so as to incorporate the implica-
tions of Maxwell's field equations. He anticipated that such a
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unification may lead to the way of incorporating the inertial

manifestations of matter and then the observed features of elemen-

tary particle physics might follow.

In this paper I will focus my attention on Einstein's sug-
gestions toward the structuring of a unified field theory, and I
will outline my own research program based essentially on'these
suggestions, showing how it reveals conclusions that‘are indeed
compatible with the data of elementary perticle physics anq
astronomy, from a wholistic unified field structure. A sa?*ent
feature of these results is that some of them are not predicted,
even qualitatively, by the aspects of the conventional approaches
in contemporary physics that are logically and mathematigally in~
compatible with the approach taken here toward a reso}utlo§ of
the problem of matter. Thus, there is sufficient conflrmat%on of
Einstein's approach to encourage further research along this path
of inquiry, which is indeed in opposition to curreat approac?es
in physics, such as the Copenhagen school in elementary ?a?t1c1e
‘physics and the opposing views of contemporary astroph¥51c1sts,
such as researches toward quantizing gravity, explanations for
the features of "black holes" in terms of quantum dynamics, etc.

Two current texts that outlime and clearly discuss attempts -

to sét up a unified field theory are by W. Pauli 2y and by

M.~A. Tomnelat 3). The latter text alsc contains an extensive
bibliography on published works in this field (including the
attempts to quantize gravitation) until 1964,

2. Factorization of Einstein's field equations and unification
with electromagnetism

In the Introduction of one of his last attempts to formu-
late a unified field theory, Einstein Suggested the following
basic approach (while the theory developed in that paper did mnot
yet take this approach) : *) .

MEvery attempt to establish a unified field theory must

start, in my opinion, from the group of transformations

which is no less general than that of the continuous
transformations.of the four cvordinates. For we should
hardly be successful in looking for the subsequent enlar-
gement of the group for a theory based on a narrower group.

It is further reasonable to attempt the establishment of a
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unified theory by a generalization of the relativistic
theory of gravitation. Such a generalization, which does not
seem to have been discovered so far, is described in the
following. " :

If‘we speak about a unified theory we have two possible
points of view, whose distinction is essential for che
following :

1) That the field appear as a unified covariant entity. As
ag example T cite the unificarion of the electric and the
magnetic fields by the special ‘theory of relativity. The
unification here consists inm this that the entite field
considered is described as a skew-symmetric tensor. The ha=-
sic group of Lorentz transformations does not-enahle us to
§p1it this field independently of the system of coordinates,
into an electric and a wagnetic one.

2°Y ¥either the field equations nor the Hamiltonian function
can be expressed as the sum of several iavariant parts, but
are formally unified entities. Also, this (weaker) criterion
of uniformity is satisfied in our example of the special
rvelativisfic description of Maxwell's equations.

The theory I shall describe is unified according to erite~
rion 2%), but not according to criterion 1°), Such a theory
is' to be considered unified only in a limited sense.”

My investigation into the structuring of a unified field
theory proceeds according to Einstein's criterion 1%). According
to Einstein's suggestion, I started out by exawining the role of
the ggneral transformation group in general relativity theory. I
have interpreted this to mean that one should fully exploit the
a}gebfaic part of che logic of space~time, in addition to exploi-
ting its geometrical part. That is to say, the space-time of rela-
tivity theory does not have any ontological connotation. It rather
serves only as a language whose purpose is to facilitate an ex-

EreSSL?E of th? laws of nature in a totally objective way 3). The

syntax'. of phls mathematical language, analogous to the subject~
predlcaFe relation ‘of ordinary language, is in two parts -ome is
geometrical and the other is algebraic.

P

The geometrical part of the syntax of the space-time lan-

tion between these geometrical relations and the detailed variable
nature of the matter whose behavior this language is to represent
—thus necessitating an abandonment of Euclidean geometry for the
Riemannian geometrical system of relations.

The algebraic part of the syntax of the space-time language
relates to the relations between the space-time coordinates having
to do with countability, rules of combinarion, associativity, dis-
tributivity, commutativity, etc. The essence of the latter part of
the logic of space-time is expressed in the form of the irreducible
representations of the Einstein group ~this is the-Lie group that
is the set of continuous, analytic. transformations that undérlie
the covariance requirements of the theory of general relativity.

I published the first mathematical results of my investiga-

tions of a unified field theory in 1967 6. My study was based on
Einstein's two suggestions as to the mode of approach : 1) to ge-
nerate a wholistic, irreducible, covariant unified field from the
outset (rather than setting up a sum of fields and adjoining their
equations) anmd 2) .to structure the general theory in accordance
with the full symmetry group of gemeral relativity. theory. These
suggestions were also implicit in Pauli's comments on research

toward a unified theory 7). T have found from these investigatious
that indeed a unified field theory of the type that Einstein anti-
cipated does appear. I will now briefly outline this analysis as

I have developed it. ‘

The Einstein group, that is asserted in general relativity
to leave all of the laws of nature covariant, is a l6-parameter
Lie group. It is characterizéd by the 16 essential parameters,

'axﬂv
5%
. ) v . . . .
{x"'1, to those of another, {x }. An implication of the covariance
requirement of this symmetry group is that the basic field equa-
rions must be a set of 16 independent relations at each space~

that relate the coordinates of one space-time frame,

H

time point 8). On the other hand, the symmetric second-rank
tensor field equations that Einstein first proposed :
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is a set of only 10 independent relations at each space-time point.

Thus, there are too few relations im Einstein's field equatioms to
fully satisfy the symmetry requirements of the Einstein group.

- Of course, Einstein -did not claim that the.symmetric tensor
field equations (1) must be the final form that relates geometry

(gpv) to matcer (Tuv)’ In his Autobiographical Notes he said ENI

"Not for & moment, of course, did I doubt that this formu-
lation was merely a makeshift in order to give the general
principle of velativity a preliminary closed expression. For
it was not anything more than a theory of the gravitational
field, which was somewhat artificially isolated from a total
field of as yet unknown structure."

When I examined the symmetry properties of Einstein's tenmsor
field equations (1), in 1966, 1 came to the realization that the
reason there are only 10 relations instead of 16 is that they are
covariant with respect to the (discontinuous) reflections in
space-time -which Is not required by general relativity theory-
in addition to their covariance with respect to the continuous
space-time transformations ~which is required by general relativi-
ty. Thus, by removing the reflection symmetry elements from the
underlying group of eq. (1), these field equatioms thereby
factorize, yielding 16 independent relatioms:

This procedure is entiresly analogous to Dirac's discovery
of the electrouw equation from a factorization of the Klein~Gordon
equation in special relativity. The latter equation is covariant
with respect to the full Lorentz group. But special relativity
theory only requires covariance with respect to the continuous
subgroup of the full Lorentz group ~i.e. the Poincaré group. With
this reduction of the underlying symmetry group of special rela-
tivity, the scalar Klein-Gordon field equation factorizes into a
two-comporient spinor field equation and its conjugate equation.
Thus Diraec discovered that to fully exploit the Poincaré group of
special relativity theory, while maintaing the Schrodinger form
of wave mechanics, extra degrees of freedom must appear in the
field variables of ‘the theory. He was. then able to identify these
degrees of fresdom with the components of the (previously empiri~
cally derermimed) "electron spin' angular momeantum. The resulting
simultaneous spinor and conjugate spinor equations (egs. 2n
below) that come from the factorizatiom of the Klein—-Gordon
equation, are then not covariant with respect to reflectious in
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space and time, as the original scalar (Klein-Gordon) equation
was. In the next step, to recover reflection symmetry, Dirac com—
bined the pair of conjugated two—component spinor equations in .a
special way, thereby forming the (motre restricted) four-component

bispinor equation for the electron -a form that has been most

commonly used in relativistic wave mechanics, until the discovery
of parity nonconservation in weak interactions, in 1957. However,
it is still to be noted that to fully expleit the Peincaré group
of special relarivity theory one wmust go back to the two-coumponent
spinor formalism.

¢ disccvered the spin
ecause of a particular
hat he wished to ex-
;a5 rather because
posed on the wave
ueuce of quantum

Ve see, then, that the reason that Di
degrees of freedom for the electron is oo
mathematical form (Schrodinger's equati
press in a t wa
of the covariance requirement itself that was im
equation. That is to say, "spin" is not a conseq
mechanics, per se. It is ratrher a comsequence of the theory of
relativity, when its symmetry requirements (i.e. the algebraic
part of the logic of the space-time language) would be imposed oun
any theory that is to be expressed in its irreducible form.

This fact was discovered explicitly in the early 1930's by

Einstein and Mayer 10y when they examined the algebraic structu~
re of the irreducible representations of the Poincaré group. They
discovered that when the full Lorentz group, containing the re-
flections of the spatial and .temporal coovdinates, as well as the
continuous transformations of special relativity, is reduced to
its continuous transformations alome, then the four-dimensional
representations of the full Lorventz group reduce to the direct
sum of two (hermitian) two~dimensional representations. The basis
functions of the latter are the spinor (and conjugate spinor)
variables. Thus the spimor-variable arises as rhe .irreducible
basis function of the most primitive represestaticns of the sym~
metry group of relativity. theory. Thus it is not an expression
that is unique to quantum mechanics in particular !

More explicitly, what Einstein and Mayer showdd, in effect,
was the following. The irreducible representatious of the syumme-
try group that leaves invariant the 4-dimensional metric of
spatial relativity theory,

n

dgs = dxé - dr? (xg = ct) )



are the elements of the real, orthegonal, unimodular group of
four-dimensional matrices, {V(@a)}, defined in terms of the trans-
formations “

ix“,> = v(ea)[xu> (3)

that leave {2) imvariant, where eu ara the essential parameters

that characterize the group. For the Poincard group of special
relacivity, which is a i0-parameter continuous group, & rums over
the 10 values that correspond to : 3 Eulerian anglas for the spa-

. . v . . ,
tial rotations, 3 cowponents of =z -the relative velocity of

inertial reference frames- and the 4 translations along the tem~
poral and spatial axes. There are further physical reasoms for
the transfoymations of the space-time coordinates to be analytic
a5 well as comtinuous ; for example, the requirement thac the
theory incorporates comservation laws. Thus this group cof trans-
formaticns is to apply to the set of regular solutions of the
field equations. Thus, the Poincaré group of special relativity
theory is a l0-parameter Lie gioup.

Now oné can equally arrange the column of coordinates,
!x >, in the form of a 2-dimensional hermitian matrix

(xg =~ x3 =(x; ~ ixp)
Q t*(xl +oixs) xg + X3 u

is the upnit 2-dimensional matrix and

sl = 0 1 ,0% 10 ~i ,03 _ |t o
10 i 4] 0 -1
are the Pauli matrices. The set of nimbers {Q} rhea cbey the al-
gebra of quateérnions, where the Pauli matrices and the unit
matrix play the role of (i, j, k ; 1) ~the basis elements of

Hamilton's quaternion number field 11).
It then follows that, corresponding to each transformation

of the space and time coordinates, répresented by the 4-dimensio-
nal real matrix V(Bd), there must correspond the transformations

.s(eu) of Q, such that the transformations of the coordinates under

the Poincaré group induce the quaternion transformations
1.
b +Qf(x ") = §Q(x) S (5
Q=) > Q S Qx, ) )
The imvariant hermitian product of four-vectors

< ->=2—12 [
xplx}j X ()

is then in one~to-ome correspondence with the invariant determi-
nant of the quaternion Q

detq = (xi - 2ol f ' (7

Since the vector transformations (3) entail V linearly, the four-
vector is a "first-rank" entity. However, with the transformations
S appearing in (5) quadratically, Q is a "gecond-rank' entity.
That is, Q is expressible as the direct product of two first-rank
entities ("spinors")

e =qrvox : (®
one transforming as

Yix) 9 (x") = S¢(x) (9a)
and the other as

xex) » XK )= ST"xcx) (9b)

The first-rank spinor fields, ¥ and X, are (conjugate) fields that
are the space or time reflections of each other. The fact that
they are distinguishable in this factorizatiom is because of the
loss of the space-time reflection symmetries in the wnderlying
covariaunce group. ‘

it follows from eqs. (3) and (5) that the rwo-dimensional
hermitian representations {8} of the Poincaré group relate to the
four-dimensional representations {V} according to the relation

Y

s b
[ SN Hi o ;
5'aMs = v(evju (10)
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The solutions of this equation are the (double-valued) representa-

tions :- »
S oexnl [ MoPsVe |
s[aw] = e‘(p((z}c o ew] an

Tt follows Ffurther from egs. (8) and (9) that if ¢ and § are
two -apiuors that transform the same way (i.e. according to (9a),
thea in accordance with the invariance in eq. (7),

i

|2 = 2

detQ v |18y -~ ¥2€) inv (xg - r2ygf

Thus, the square roct of this invariant is also invariant, i.e.
0162 = watil| = Jweg| = inv (12)

This is the invariant metric of the (first-rank) spinor space ;
e is the Levi-Civita matrix

o 1)
|+ o

It follows that the correspondence between the vector and
the spinor representations of the Poincard group of special rela-
tivity theory entails omly the continuous transformations. That
is, these representations are not entirely equivalent because
there are no solutions § of eq. (10) that correspond to the dis-
crete transformations (the reflections in space or time,

Xy » ~x or r + -r) while the transformations V that leave ds?
(eq. (2)) invariant do indzed include thesa reflections. The
latter full group of transformations is the "Lorentz group' -it
then contains more symmetry than is required by the theory of
special relativity, which only requires the continuous transfor-
mations of this group (the Poincard greoup). It is the latter
group that indeed spells out the underlying algebraic logic of
space-time, according to the theory of special relativity.

What we have seen, then, is that the remcval of the space
and time reflections that leave (2) invariant yields a factoriza-
tion (8) of the vector representation of the symmetry group,
yielding the sum of two first-rank spinor representations. The
spinor representation in itself is thus the irreducible (most
general) way of expressing any field theory that would be compa-
tible with the symmetry requirements of the theory of special
relativity.
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It is important that the two-dimensional representations of
the Poincaré group obey the algebra of a quaternion number field
-which, in turn, is.a form of a second-rank spinor field. When
the Poincaré group of special relativity is globally extended to
the Einstein group of general relativity, the geometric implica-
tions of the group representations change (e.g. replacing the
linear vector transformations in space-time by non-linear trans-
formations). But the algebraic properties of the group represen—
tations do not change. Thus; the irreducible representations of
the Einstein group are still a quaternion number field whose basis
functions are spinor variables, though these field variables are
now mapped in a curved space-time, obeying the rules of Riemannian
gecmetry.

With these developments of the theory of relativity in mind,
what ‘sort of covariant metrical field should one expect to fully
represent the symmetry requirement of the theory of general rela-
tivity ? Firstly, it must be a 16 component variable -because the
Lie group of gemeral relativity is a l6-parameter group, implying
that there must be 16 (irreducible) relationms. at each space~time-
point to determine the components of the fundamental metrical
field. If one should extract 10 of these and show that they cor—
respond to Einstein's original symmetric teasor field equations
M, phy51cally representing gravxtatlon, then 6 relations would
remain. It is salient at this point to'note that indeed there are
6 independent components of the electromagnetic force field.

The second feature of the metrical field that is implied
by the algebraic properties of the Einstein group is that it
would obey the tules of quaternion algebra. This might then be
implemented by consideripg the invariant metric of the Riemannian
space-time to have the form :

ds = qu(x)dxu ’ (13)
where qu(x) is, geometrically, a four vector ; thus, ds iz, geo-

metrically, a scalar. But each of the cowponents of q“(x) is a

quaternion. Since a quaternion has 4 independent cemponents (it
is represented moskt primitively in terms of a 2-dimensiocnal

N

hermitian matrix), the four-vector field qu(x) has 4x4 = )
independent components.

Since ds is the sum of four quaternions it is itself a qua-
ternion, algebraically. The real number field that corresponds
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where the explicit form for Kpl is

ol K, =9, +Q,8 =230 ~0& (16)
to ds, in accordance with the calenlus of quaternions, is the pro— oA e Mo e P

duct of ds with its conjugate quaternion, d3 = §'dx . The real and @, is the "spin-affine comnection" of the curved space, defi-
’ number field corresponding to ds is then H ned in terms of the first covariant derivative of the two-compo-
: nent spinor as follows :
ds d& = »(—H "3V o+ V““] 2 L uv '
5119 4 q q jdx dx ® dg? = N
- o ” we gy - ' Sy T Ay - un
This factorization of ds® into the product of the gquaternion where
(geometrical) invariant, ds = q~ ;
- ant, ds = q dx  and its conjugate, di = = 1 ~ 8 § .1
u 2 § = g dx ) = | b
s . : Qu 7 .3ug + Fruq s (18)

corresponds to WSK} Hamilton's four-dimensional extension of the : :
two-dimensione ctordaa bt 8 T s : : :
imensional factorization of the real number dr? into the and {FTU} are the components of the ordinary affine cobnection of
conj : = . . . . ‘ ;
Jugated complex numbers, dz and d3 11), the Riemannian space-time. The "dagger" in eqs. (15) denotes the
) hermitian adjoint. :

ar? = dx? + dy? @ dz di ~ faz = ax + idy

! d3 = dx - id (14) The factorization of the Einstein tensorffield equations
J : (1) is then the quaternion field equaticn (i5a) (or, equivalently,
The complex number i its space or time reflected equation —the conjugated field equa-
igber = (23 1/22 entails more degrees of freedom thanithe real . tion (I15b)). The quaternion field equaticn (15a) then has the al-
= (z %) . The extra degrees of freedom are only revea- s gebraic properties of the quaternion q -thus, it corresponds to

led - : 3 : ‘ : . i ; . ; .
when the factorization (14) is carried out, Similarly, the 16 covariant relations at each space~tgme point. The right—~hand

izi:ydziiei;eﬂgaiisigom are revealed in the quatarnion ds when we . side of eq. (15a) ‘is the matter field quaternion, obtained grom
zation , u the variational derivative of .the part of the total Lagrangian
ds? uv . ds = q dx : density that yields the matter field equations (wheh taken with
s = g dx dr < ds ds u R . ] : . . -
[Tt . i (14" respect to the quaternion variables).This source term for the
48 = g dx metrical field equations is then analogous to the matter tensor
s on the righ-hand side of Einstein's equations (1) -which'is
The factorization (14') of ds then leads to the followi determined in the samé way, except that the variational deriva-
factorization of Einstein' . ] ollowing tives are taken in the tensor theory with respect to the compo-
. ion of Einstein's field equations (1) : ) nents of the metric tensor NS ‘ o
( (l} [K qA +'qAKT J . {l] R = ¥ An important point that has been emphasized in regard to
Moo [l}opvR = 7MY 4 l pA pA 8)qp ' (15a) the quaternion field equatioms (15) is that they are covariant
24° ) ouly with respect to the continuous transformations of general
{_P%J {Kf qk . qAK } . [l}ﬁ R = K% (15b relativity theory, while the original tensor field equations
LA A PA 8 p ) are also covariant with respect to the reflections in space and
S fo . o . time. This is the reason for the increase in the number of compo-
fo these conjugated quacernion field equations, pr is the "spin nents of the metrical field, from 10 to 16, as requived by the
curvature", ?efined with the relation to the difference of th algebraic group of general relativity.
second covariant derivatives of a two-component spinor field ?

Vioon ¥

R = KpK¢
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What I discovered next in these investigatioms, 12) was that
by iterating the quaternion field equatiomns with a conjugated
quaternion solution, thereby generating a second-rank, nonsymmer
tric temsor equation,-the latter could be expressed as the ‘sum of
a symmeétric tensor part and an antisymmetric tensor part. It was
then shown that the 10 relations of the symmetric tensor part are
in one—to-one correspondence with Einstein's tensor field equa-
tions (1). Taking the covariant divergence of the remaining 6
antisymmetric temsor field equations, I then showed that they can
be expressed precisely in the form of Maxwell's field equations
for electromagnetism. This follows because of the feature that
the symmetric tensor equations and the antisymmetric tensor equa~
tions have opposite reflection properties. Thus, equations emerge
from the antisymmetric tensor part of this formalism that are odd
under reflections, as one expects of Maxwell's equations since
their source is a current density,

)

N

Such implicit inclusion of the gravitational and electroma-
gnetic features of matter in a single covariant metrical field

variable, qu, is indeed the type of unified field theory that
Einstein anticipated ghould emerge when the full unification had

been achieved, according to his criterion (1) L*). It was achieyed
here by appealing to the most general group structure that under-
lies general relativity theory, as Einstein suggested. The latter,
in turn, was in terms of the group that rejects the reflection
symmetry elements in space and time.

3. The geodesic equation in general relativity, motiou, time and
the equivalence principle )

The structure of the metrical field equations that relate the
geometrical logic of space-time to the matter field -Einstein's
tensor- field équations (l) or the quaternion field equations (15)-
incorporate a geometrical equation whose solutions prescriba the
family of geodesics ‘of the curved space-time. The latter "geodesic
equation', which follows from the extrema of the path integral,
i.e.

6st =0

has the form :

a2<" . a| | ax? -0 a9y
ds? vilds Jlds
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The derivation of this form in the 2nd-rank tensor theory is gi-

ven in most standard texts on general relativity 13y, 1ts deri-
vation in the quaternion theory of this author is demonstrated

in ref. %),

Though the formal form of the geodesic equation is the same
in the tensor and the gquaternion field theories, it is important
to note that the latter is a more general expression, implicitly,
since ds hers is a quaternion, thus depending on a-set of four
parameters, while ds is a real number in the tensor theory, thus
expressed in terms of a single parameter set. Since the quater-
nion may be represented in its irreducible form in terms of a
two-dimensional heimitian matrix, the geodesic equation (19) in
the quaternion theory stands for four independent equations

: A
a2 o ax’) {dx _ PR 20
( +Fv>\[3§- @) <Oy BinhD 20

ds?

The geometrical difference between the (real number) geo—
desic equation (19) and the quaternion form of the geodesic
equation (20) is that (19) is characterized by the‘single parame-

ter trajectory solutions, " (s), in space-time, wheéreas (20) has
. . : . i
solutions necessarily chavacterized by trajectories X (sij) that

entail four parameters at each space—time point. That is to say,
one need only specify the change of a single parameter in (19)
to indicate how the spatial point of a trajectory proceeds to
another (continvously comnected) spatial point of the path. But
in rhe more general formulation (20), one must specify four
parameters (sij} at each space-time point in order to prescribe

the evolution of the trajéectory, umambiguously. One way of in-
terpreting "time'" is in terms of the parametric representation
of the evolution of such a trajectory. Thus, the indepeudent

variable s in x"(s) may be interpreted as "proper time'. Theu,
"proper time" is a one-parameter set in the standard interpre-
tation of the geodesic equation as the equation of motion of

4 tést body in general relativity. But the proper time, g
the quaternion theory is a four-parameter set. Thus, we see
that the quaternicn representation (13) of ds ~which is sugges-
ted by the group structure of gemeral relativity theoly= appears
o present a more general expression of the proper time" concept
in the description of the motion of a test body.

in
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In this regard, it is interesting to note that the idea that
the quaternion algebra may lead to a more general expression of
"time" evolution was expressed more than a century ago by the

discoverer of the quaternion algebra, W.R. Hamilton, who said 1) :
"It early appeared to me ... to regard ALGEBRA as being no

mere Art, nor Language, nor primarilv as science of Quantity ;

but rather as the Science of Order in Progression. It was,
‘however, a part of this conception, that the progression here
spoken of was understood to be coutinuous and unidimensional
extending indefinitely forward and backward, but not im any
lateral direction. And although the successive states of such
a progression might {no doubt) be represented by Eoiﬂts upon
a_lioe, yet I thought that’ their simple successiveness was
betrter couceived by comparing them with moments of time, di-
vested, however, of all reference to cause and effect ; so
that the "rime" here considered might be said to be abstract,
ideal, or pure, like that "space" which is the object of geo-
wetry. In this manner I was led, many years ago, to regard
Algebra as the SCIENCE OF PURE TIME.

.+» And with respect to anything unusual in.the interpreta-
tions thus proposed, ... it is my wish to be understood as
not ‘at all insisting on them as necessary, but merely propo-
sing them as consistent among themselves, and preparatory to
thé study of quaternions, in at least one aspect of the
latter.”

I have applied this more general expression of the geodesic
equation in its quaternion form (20) to the problem of planetary

motion 1%), to the derivarion of the Hubble law in cosmologyyls)
and to the problem of the spiral structures of galaxies in

astrophysics !%). In these applications, it was found that indeed
extra predictions are made that transcend those of the usual
tensor formulation, and areée compatible with the observational
facts.

A basic ingredient in the early stages of Einstein's analysis
in general relativity theory was his assertiou of the principle of
equivalence. This was based on the following reasoning. Since the
geodesic of a Riemannian space-time is a curve rather than a
straight line, relative to any other frame of reference of an ob-
server of a moving body, Einstein said that the effect of a force
field exerted by another massive body on the observed moving body,
in also causing it to move along a curved, rather than a straight
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line path, might be "equivalent™ to the "free motion" of the test
body in a Riemannian space-~time. This is the principle of equiva-
lence. In the early stages of his theory, Einstein found that the
metric tensor solutions of his field equations (1), together with
the geodesic equation (19), as the equation of motion of a test
body, predicted everything that Newton's theory of universal gra-
vitation gave, in addition to three extra predictions, not even
qualitatively predicted by the classical theory. These were the
wall known crirfical tests of ‘his theory — 1) the advence of the
perehelion of Mercury's orbit, (or, rally, the orbit of any
planetary body), 2) the bending of the path of Tight as it pro-
pagates past the vicinity of the sun and 2} the "graviraticnal

red shift' of vadiation when comparing its wavelength in gravita-

. o oo - P 13
tional potentials of increasing vealue L3y,

1t should be noted in regard to the conceptual aspects of
the principle of equivalence that this should be undevstood only
in the sense of expressing a feature of the motion of a test body
in an approximate way. For the test body itself -aniisolated quan-
tity of radiation or matter— is, in gemeral relativity (a conti~
nuum field theory) omly a usefutl approximation for a component of
closed system, represented most genérally in this theory in terms
of regular field solutions of the basic equations of the theory.
This field must, in principle, prescribe all of the features of
the matrer system it refers to, with the requirement, nevertheless,
that in some asymptotic limit it would appear as though there is
a "separate test body" that is acted upon by the field of force
of the "remainder" of the material system. The salient point here
is that, in principle, one should start with the mathematical re-
presentation for the closed system, and then taks the asymptotic
1imit wheres a component of the closed system appears as rhough it
were a separated eutity, rathar than starting at the outset with
the separated “test body" and the field it responds to. Resides
this conceptual difference -which implies that in the general form
of the theory, the principle of equivalence is not one of the
underlying axioms of general relativity- there is a mathematical
difference. For it is important that the asymptotic solutions of
nonlinear equations of motion do mot generally match the features
of linear equations of motion that might describe a free test
body ia a background field. In the description of the closed sys-
tem, according to the general structure of this theory, the affine

' , . . .\ ~ T
éconnection, TL,, in the geodesic equation (19) or (20}, entails
2

all of the matter of the system, including the component that one
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must identify with a "test body" for practical applications of the
theory.

The point I make here is that the geodesic path determined
with the general formof the affine connection field ~that entails
all of the matter of the system, including the "test body'~ would
Tot match the geodesic path that would be determined from the
affine connection field that does not entail the matter of the
"test body”. This is because the dependence of the affine connec-
tion on the matter fields of the system is not additive, because
of the basic nonlinearity of the field theory. Nevertheless, it is
most likely a good mathematical approximation, in many cases, to
assume such additivity of the test matter to the matter of the
rest of the system. But if this is only a mathematical approxima-
tion, I do not believe that the equivalence principle should be
asserted as an axiom of the theory of general relativity -since,
in principle, there is no actual (separable) "test body" in the
theory. I believe it would .be more accurate to replace the state-
ment of the primciple of equivalence as an axiom of general rela-
tivity with the statement of the principle of correspondence, as

a fundamental assertion 16).

4, Inertia from general relativitcy

The next step in wy research program, based on Einstein's
suggestions, was Lo see if the metrical field might relate in an
intimate and precise way to the inmertidl manifestations of matter.

I have analyzed this problem in the following way 17y, The inmertia
of matter appears most primitively in the field equations that
describe microscopic physics. In special relativity, the most
eneral (irreducible) form of these equations is the set of simul-
taneous,. two-component spinor .equations of Dirac (with # =c = 1) :

i

oMoy +Jy = —my
. (21)

o D = -

where’) is the "interaction field" that couples to the spinor "
fields, and ¢ and x are the reflections of each other, with ¥ = e¢ .

The insertion of the mass parameter m into eq. (21) presup-
poses the existence of a discrete particle, in the usual quantum

mechanical formalism, with this amount of imertial mass. But accor~
ding to Einstein's conclusions, one must replace the singular, dis-
crete variable with continuous and analytic (regular), though
peaked, fields. The first step in deriving the inertia of matter
from the field theory would then be to remove this parameter from
eq. (21). The remainder of the equation must then be mapped in a
curved (Riemannian) space—time, rather than the Euclidean space=-
time of special relativity.

With the global extension (17) of the derivative in a flat
space-time to the covariant derivative in a curved space-time,
and the global extension discussed previously,

R I N ' (22)

the spinor field equation (21), without the mass teym, becomes

e+ ey = -Ry (23)
H M
What 1 found next was that when one further imposes gauge inva-
riance (of the first and second kinds) on the matter field

équations (23), they may be re-expressed in' the form 17y .
@39+ ax = -0y ' (24a)

where 12

A= [-2’-]['|dec1\+1 + |deta_|] (25)

is the modulus of a complex function, and therefore it is a
positive~definite function of the space—time coordinates, and

where "h.,c¢'" is the "hermitian conjugate’ funcrion.

The quateraion conjugate of eq. (24a) -corresponding to
its (spatial or temporal) reflection~ is

g+ ap = =Ty (24b)
Comparing eqs. (24a,b) with Dirac’s equation (21), it is seen

that the positive-definite function A plays the role of the
inertial mass associated with the spinor matter field {¥,%).

1
¥y
s
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Three important features of this definition of inertial mass
then emerge : First, since A is a positive-definite fumction, it
follows that in the Newtonian limit of general relativity, gravi-
tational forces can have only one sign -they are either always
attractive or always repulsive in this limit. Since it is cbserved
in one case, e.g. the force that creates "weight', to be attracti-
ve, the prediction then follows that in the Newtonian limit of
Caneral Relativity, gravitatiomal forces can only be attractive.
This result, which was never derived from first principles from
the standard forms of general relacivity theory, is in agreement
with all of the empirical facts. It was revealed here because of
the factorization from a reducible form of the theory (which masks
some of its physical predictions) to the irreducible form.

In regard to this force, it should be pointed out that in
the general form of the theory, gravitational forces are not ne-
cessarily attractive under all conditions (of matter density,
energy-momentum transfer, etc.). This is because the "force"
exerted by matter om a "test body" is defined in this theory in

. . Yy (UM
terms of the affins connection terms, rt dx idx , of the geode-
vAids j{ds

sic equation (19) (or (20)). The idea is that the latter tem in
the geodesic equation -which plays the role of the external force/
mass of the "test body"- is, gemerally, a non-positive-definite
function. But in the linear (Newtonian) limit of general relati-
vity, where the relative separations and speeds of interacting
matter are sufficiently small, this equatiomn of motion does asymp-
L . c GMm
totically approach the classical form, F = ma, where ¥ = —— , and
2
r
the macroscopic masses, m and M are the sums of positive-definite
numbers, LA P and thus must have only one polarization -in this

limit of the theory. An examination of the implications of the
repulsive components in the gravitationmal force, in general rela-
tivity, in the problem of stellar collapse, was recently publi-

shed 18y,

It should also be noted that in the domain of elementary
particle physics, where the mass density and the momentum transfer
between interacting matter is sufficiently high, the terms that
play the role of mutual forces in the equations of motion still
have a repulsive term, as well as the attractive component, even
though the mass terms ) are positive-definite. But in this domain
the Newtonian form for the gravitational force is not wvalid, and
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there is no inconsistency. A well know empirical example of mutual
interaction that has repulsive as well as attractive components is

the nuclear force field 1%,

Secondly, if all of the matter of a:physical system, other
than the matter represented by the spinor field (¢,x), should be
depleted, then the spin-affine comnection Qﬁ and -the hermitian and

anti-hermitian fields A_ would correspondingly become null fields.

According to the relation in eq. (25), the inertial mass would
(in this limit) be zero. This result is due to the feature of this
theory that it automatically incorperates the Mach!principle -the
assertion that the inertia of matter is a measure of its coupling
to other matter that it interacts with. That is, if the other
matter would disappear, the coupling must vanish and therefore
the inertial mass of the observed matter would correspondingly go
to zero. :

This relativistic interpretation of inertia that was proposed
by Mach, strongly influenced Einstein in his ipitial thinking in
general relativity theory. In his "Autobiographical Notes" Einstein

made the following comment 20y
"™Mach conjectures’ that in a truly rational theory inertia
would have to depend upon the interactions of masses, ..., a
conception which for a long time I considered as in principle
the correct one."

Einstein then went on to say, however, that he gave up the idea of

the Mach principle later on, commenting further that 20y .
"It presupposes implicitly, however, that the basic theory
should be of the general type of Newton's mechanits : masses
and their interaction as a general concept. The attempt at
such a solution does not fit info a consistent field thecry."

However, it is not true that the Mach principle does necessarily
presuppose a Newtonian particle theory ; for example, this is not
the nodel followed when interpreting inertial mass in the way in
which it appears in the most primitive formal expression for the
laws of microscopic physics ~a generally covariant form of wave
mechanics. In this way, the Mach principle can indeed be incorpo-
rated into a consistent field thsory, as I bave outlined above.

Thirdly, in the asymptotic limit, as the description of mi-
croscopic matter in a2 curved space-time approaches Ltg mathematiesl
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description in the flat space-time corresponding to spinor field

equations in a Hilbert space, the continuous spectrum of A approa-

ches a discrete set of values ~a mass spectrum, This is a feature
that ewerges from the correspondence of this nonlinear field
theory of matter in general relativity with the quantum mechanical
formalism, in the nonrelativistic limit.

Finally, it was found in my researches thaft the gauge inva-
tiance imposed on this theory, that was nacessary in order to
yield the spinor field structure (24), also yields the analyti-
cal result that the electromagnetic forces between interacting
watter can be attractive or repulsive, depending on the nature of
the geometrical fields, A,, and their derivatives, under diffa~
rent sets of physical conditions 7). This prediction, which is
also in agreement with the experimental facts, has not been deri-
ved from first principles from other field theories or particle
theories of matter.

Correspondence with Quantum Mechanics and "Particles'

For an actual material system, represeanted theoretically in

accord with the Mach principle, the functional? on the right-
-hand side of eq. (24) plays the role of the coupling of "other
matter" to the "observed” wmatter. Along with this principle we
also invoke the "principle of correspondence", asserting that,

asymptotically, the solutions {w(l)} approach the distinguisha-
ble "free fields" that are associated with the composite parti-
cles of a waterial system, according to the formalism of quantum’
mechanics. With this "correspondence” imposed on the gemerally
relarivistic, nonlinear formalism, in the appropriate limit, the
general form of the matter field equations (24) must be expressi-
ble as a set of n coupled spinor field equations, for an n-com—
ponent system (i.e. a system that in the limit appears as n free
bodies, weakly coupled in some perturbation approximation) :

quautp(i)(x) s = -qu;(i)(x) Go=1,2,..,0) (24c)

3 see

where ] i7 ﬂi{w(‘)’ ¢(2) s W(i_l), w(i+‘), ces s w(n)]for

an n-ccmponent material system —~corregponding in the asymptotic
limit where there appear to be "Free bodies" to the n-body forma-
lism of quantum mechanics. In the coupled spinor field equations
(24c), the independent variables, x, stand for the four parameters
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of a single space-time, common to all of the. field components
w(l)(x), and5 i is the interaction functional that couples the

spinor matter fields other than w(l) ~corresponding to all of the
matter of the closed system, except for the ith compounent- to the
latter field, in accordance with the Mach principle.

In accordance with the axiomatic basis of this theory, and
its definition of relation (coupling) as an essential ingredient
of its conmceptual structure, it is salient that there is no
"free field" limit for the.solutions of the field equations (24c).
It is also significant within this theory that there is no re- '
presentation for a field to "act on itself" -i.e. the concept of
"self-energy" of the particle theories (whether classical or
quantum mechanical) is automatically excluded in this approach.
Finally, it should be noted that the spinor field equations (24c)
are intrinsically nonlinear, by virtue of the appearance of the
coupling functionalzsi, that in principle cannot be "turned off"

~in accordance with the axiomatic structure of the theory.

The coupled field equations (24c), which I have referred to
as the "matter field equations", and the metrical field equatiomns
(i5a), in terms of the generalized quaternion field solution,
then form a self-consistent set of relations that entail the
gravitational, electromagnetic and inertial manifestations of
elementary matter. Such a field unification is indeed in accord
with Einstein’s anticipation for a unified field theory -resulting
from fully exploiting the basis of general relativity.

Alsco in accordance with another fundamental principle under-
lying this theory ~-a principle that has indeed played an important
role throughout the history of science,; and expressed explicitly
in contemporary physics by N. Bohr~ is the principle of corres-
pondence. With the application of this principle, the part of
the formalism (24c) that directly entails the inertial manifes-
tation of matter reduces, in the linear limit of the theory
-corresponding to nourelativistic momentum-energy transfer
between interacting components of a system— to the standard
ligear eigenfunction form of guantum mechanics. In accordance
with Einstein's expectations, then, the generally covariant,
nonlinear field theory of matrer that evelves here, from fully
exploiring the algebraic as well as the geometrical logic of
space~time, in general relativity, does successfully incorporate
all of the successful results of nonrslativistic quantum wmecha=-
nics ~though as a mathematical approximation to a theory that is




based on entirely different principles than those of the Copenha=-
gen school 21y,

" I have found in.my research program that in the asymptotic
limit of the theory, as the spinor solutions of (24) approach

the elements of a Hilbert space, the expectation values of the
inertial mass field, <A(x)> correspondingly approach a discrete

of

=1

33C. . . y 2 .
set of values 2173, Thus, in agreement with the predictio

Einstein and Rosen 22), this theory predicts the existence of a
nonsingular mass spectrum for elementary matter. It is important
to take note, nevertheless, that the actual limit of linearity
does mot exist in this theory -so that the limit of actually
discrete values for the masses also does not exist- though for
sufficiently rarefied matter, one can approach discreteness as
closely as one pleases. That is to say, all measured values must
have an irreducible "line width'", because of the irreducible
nonlinearity in structure of the field equations, representing
the irreducible coupling that camnot "turn off". But the latter
prediction is not in disagreement with any experimental fact,
though the quantum theory interprets the irreducible line width
in terms of the action of the Heisemberg uncertainty principle,
rather than predetermined field coupling.

A further prediction of the mass field, as represented in
this theory in terms of A(x), is that, because the latter is a
two~dimensional matrix field, there are two mass eigenvalues
associated with any given gpinor field solution, Y. Thus, the
theory predicts that for every matter component of a system,
described with a spinor field solution, there must be a twin
matter field that is physically identical, except for mass (and
lifetime). Indeed, it was found that a close fit could be found
with the well known mass doublet of this type -the electrou-
muon doublet. The theoretical mass ratio, for the electron to
muon, ‘was predicted and found to be in close agreement with the
data. Then, taking account of the physical vacuum of real pairs,
that "creates” the space-time curvature that accounts for the
mass of an elementary particle, the absolute mass value was de-
termined from the theory, in terms of a particular demsity of

pairs 23). The physical mechanism that explains these results
are as follows. As the "observed" electron moves through the sea
of electron-positron pairs, it can occasionally excite a pair in
its environment, The spin-affine counnection field is then altered
and, in turn, the electron becomes more inmertial ~by a factor
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that is the order of 3/2a ~ 206, where a is the fine structure
constant. When the pairs in the neighborhood of the more inertial
electron eventually de~excite, by transferring this excitation
energy and momentum to the other pairs of the "physical vacuum",
the inertial mass of the "observed" electron then returns to its
normal (minimum) value. The transferred energy—momeﬁtum is identi~
fied in this theory with a two-component spinor field associated
with the neutrino in the particle theories, when interpreting the
decay of the muon. Then using the method of time-dependent pertur-
bation theory, the decay time of the more inertial electron (the
muon) was calculated and found to be within the order of magnitu-

~

de. of the measured lifetime of the muon 2“).

It is also noted that the prediction follows here that any
spinor field should have an associated mass doublat. Thus the
"proton" must also have a mass twin that would be the order of
200 times more inertial -corresponding to the observation of a
particle with m v 200 Gev. Such.an elementary particle has not
yet been observed in high energy physics experimentation.

Other recent results of this research program in general
relativity that relate to elementary particle physics are :
1) a derivation of the mass of a pion, as a composite of spinor
field particles, and a calculation of the mass ratio,

0
Eﬁﬂzly in close numerical agreement with the ddta 23), and
m(7™) :

2) the quantization of electrical charge of elementary matter
from an asywptotic form of the representations of the Einstein

group 26),

5. Concluding remarks

As Pauli has pointed out 27y, if fhis were a true gquantiza-
tion of electrical charge there would indeed be an incowpatibili-
ty with a continuum field theory, such as that of general relati-
vity, and the unified field theory discussed in this article.
However, my investigation of this problem reveals that with the
global generalization of the irreducible representations of the
Poincaré group of special relativity to the irreducible represen~
tations of the Einstein group of general relativiey,

A (1 v, () w, v
S(auv) = exp({§]ouo euv] - S[euv(x)} = exp{{igqL(x)qJ(X)SMV{X)}w~W
(25)
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the prediction of the empirical "quantization' of charge follows
from the agymptotic form of the latter representatious, as the
non-Euclidean (nonlinear) space-time approaches the Euclidean

(linéar) space~time.-What was found 26) was that the asymptotic
form of the metrical £ield solutions of eq. (15) in eq. (25) lead,

in order e?, to the "quantization" of e? ; that is, to the possi-

ble values : o2, 2e%, 3e?, ... ne?, where n is any integer 2 1.

This spectrum of constants charact;rize the electromagnetic cou-
ping between interacting matter. Thus, this fiéld theory implies
an asymptotic quantization of the electromagnetic coupling rather
than the quantization of the charge, e, itself : e, 2e, e, ...,
ne. But both types of quantization are indistinguishable as far
as experimental wmeasurements are concerned -since all measure-
ments that reveal the electrical charge must couple it to another

¢hargé, giving the measurement in terms of e?. It is only.that
the unified field theory does not extrapolate from this to the
theoretical value, e, Further, as in our previous discussion of
the "wass quantization”.in the linear limit of this field theory,

the measurements that reveal the spectrum e?, 2e?, ... must also
entail an irreducible line width, due to the irreducibility of
the nonlinearity in the theory, even though it can become arbi-
trarily small.

In regard to the gravitational manifestations of matter,
recent attempts to quantize gravity proceed by postulating a li-
nearization of Einstein's field equations in terms of a massless,
spin-2 field operator in a Hilbert space, that would be compati-
ble with:the tensor structure of eqs. (1). An excellent account
of this type of program is given in the text by Tonmelat, who

also includes an extensive bibliography 28).

It is my view that the quantization of general relativity is
logically necessary if the underlying axioms of the quantum theo-
ty of measurement are to be maintained. For the same logical
reasons, the maintainance of the axiomatic basis of Einstein's
unified field theory of matter, in terms of a truly continuum,
deterministic field theory, would require that in the final ana-
lysis quantization cannot play a fundamental role.

The wathematical difficulties that have been encountered in
all of the attempts thus far to quantize general relativity are
essentially due to the fact that when the nonlinear features of
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Einstein's field equations (1) are removed (later to be treated
as a perturbation, as it is done in quantum electrodynamics),
there is nothing left ! The nonlinearity here, in contrast with
quantum electrodynamics, is mot a small perturbation, later to

be treated in expanding a "free, quantized gravitatiomal field"
in a Hilbert space, in a perturbation series. The nonlinearity is
here the entire essential field. It is interesting to note that
the nonlinearity of the field in Einstein's theory, that is irre-
ducible, is because of the elementarity of relation contained in
his approach, in.contrast with the elementarity of particle
(though without a predetermlnatlon of its trajectory) of the
Copenhagen view.

But even if the formalism of quantum field theory had been
in a satisfactory state (including the incorporation of a mass-—
less, spin-2 field operator to relate to gravitatiom) ome should
not rule out the possibility that Einstein's unified field
approach could represent the facts of nature in a more complete
way -unless this theory had been pursued further and demonstrated
to be scientifically false., But the lattar has not been done, and
indeed quantum field theory, even when it is applied to quantum
electrodynamics, has never been expressed in a form that is de-
monstrably mathematically consistent, ! Thus, there is no reasom
yet to believe that 'the Copenhagen approach has established it-
self as & truth of natuye, and that thus Einstein's unified
field approach must be excluded from a scientific point of view.

In contrast, my research of the unified field approach to
the problem of matter, based on initial studies that make use
of Einstein's suggestions toward a unified field theory, has
given me a great deal of confidence in the idea that Finstein’s
approach may be, after all, the correct one toward a resolution
of the mysteries of elementary particle physics, as well as as—
trophysics and cosmology, in a single unified scheme.

It is significant, then, that the full exploitation of the
basic axioms of one of the revolutionary developments of 20ch
century physics - the theory of relativity- can only be accom—
plished by abandoning the underlying axioms of the second rTevo-
lutionary development of this period ~the quantum theoty.
Einstein fully anticipated that this would indeed become neces-
sary since (along with de Broglie and Schridinger) he continually
emphasizad the logically dichotomous nature of a theory that
would combine the reslativity and quantum theories under one
umbrella.
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Of course, one must recognize that, in science, what we sece
in one light during ove period might be viewed in an entirely
different light 'in a later period, when further progress in expe-
rimental and theoretigcal science had been achieved. Thus one
should never say that oné explanation in science is definitely
true and another is definitely false. But one cam say that if
one theory sheuld definitely be true then a second (logically
dichotomous) theory must definitely be false. The possibility
also must always be left open that in the loag run, based on fu-
ture experimentation and theoreticdl analyses, both theories
would have to be rejected as scientifically false ! Still, I do
have an intuitive feeling that a great deal of the conceptual
basis of the theory of relativity will remain in future scienti-
fic theories. For this achievment, science wmust always recognize
its indebtedness to Albert Einstein.
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