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Abstract : The development of quantum physics is far less
direct than as 1t is deseribed in popular recomstructions. It is
not generally known, for instance, thot in 1913 Einstein and Stern
had derived Planck's law from. the hypothesis of a gero~point ener-—
gy, without the need of a specific quantization postulate. We give
here a commented translation of an article by FEinstein and Hopf,
which is the logical premise of the Einstein—Stern paper ; the.
translation of the latter is postpored to a forthecoming paper. We
think that putting these texts at the disposal of a wider reading
public might be particularly intervesting on the occasion of the :
centenary of Einstetn's birth, and for promoting investigations |
into a side aspect of his research work. Furthermore, these early
studies may be considered as the first stages of the development. »
of stochastic electrodynamics, a theory which has been recently i
put forward as a possible alternative to .quantum mechanics and has :
recetved considerable attention in this jourmal.

Résumé : Le développement de la physique quantique est beau-

coup moins Lindaire qu'on le représente commundment. On ne connatt
généralement pas, par exemple, qu'en 1913 Einstein et Stern avaient
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dérivé. la loi de Planck en partant de l'hypothése de 1'énergie au
aéro absolu, sans ndcessité d'introdutre un postulat indépendant
de quantification. Nous donmons ici une traduction commentée, en
anglats, d'un article par Einstein et Hopf, qui constitue la pré-
migse logique 4 l'ouvrage de Einstein et Stern, tout en renvoyant
celle de cette dernidre & un article & pavaltre. Il nous semble
que rendre possible la lecture de ces ouvrages & un public plus
8tendu pourralt &tre particuliérement Intéressant d l'occasion du
sentenaire de la naissance d'Einstein et stimuler, dans cette cir-
constance, l'"investigation d'un aspect collatéral de son activité
de recherche. Comme autre motif d'intérét, nous soulignons que ces
études peuvent Etre considérées comme une préhistoire de l'élec—
trodynamique stochastique, tne théorie qui a été proposde comme
une alternative pogsible d la méecanique quantique et qui a requis
L'attention de cette revue auparavant.

1. Introduction

It is a widespread conviction that the advent of quantum
~physics was determined by the utter failure which classical phy~
sics met in trying to account for the results concerning the
black-body spectrum, the specific heats of solids and the corpus-
cular aspects of radiation. Planck’s law, in particular, appears
thus as an absolute necessity imposed by experimental facts. From
a historical point of view the rise of quantum mechanics has been
extensively analysed and shown to be far less direct? than as
accounted for in popular reconstructions. The above conviction
has, however, to be modified also from a logical point of view,
Oun the one hand, the failure of classical physics concerning, for
instance, the specific heat problem, is closely linked to the use
of the equipartition theorem 3 but this theorem, as has been wide—
1y discussed?, was never rigorously justified for the cases in
question. On the other hand, it has been shown that Planck's law
may be derived from the assumption of a zero-point energy with no
need for an independent quantum hypothesis®. As Boyer himself
acknowledges", this latter result had already been obtained by
Einstein and Stern in 19135, It seems relevant tc recall this fact
for two orders of reasone. In the first place, to stress once more
the complex nature of the growth of scientific knowledge, in which
ideas and results are sometimes put aside for no apparent, strictly
logical, motivation, often in the presence of the advent of a posi-
tive practice determined by the success of different formulationsS.
In the second place, to trace the historical origins of what has
now become a field of research, with its own methodology and tra-
ditions, that is, stochastic electrodynamics, which came to life
in the early papers by Welton’2, Braffort and Tzara’b and
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Marshall’C and was recently developed by several authors®. We may
recall that stochastic electrodynamics is a classical electron
theory implemented with the hypothesis of a random classical zero-
point radiation. Lorentz—invariance fixes the energy per degree of
freedom proportional to the frequency ; Planck's constant enters
into the theory as the proportiomality comstant.

It therefore seemed appropriate tc us to document-these facts
by providing an accurate translation of ‘the papers by Einstein and
co-workers om this topic. We say papers since the above-mentioned
article by Einstein and Stern does in fact have its formal and lo-
gical premises in a preceding work by Einstein and Hopf®. This pha-
se of Einstein’'s activity hasinot received particular attention
by the scholars (see, however, referemce 1), Our contribution aims
also at promoting investigations into a side aspect of Einstein's
research work. This may acquire further relevance in the occurrence
of the centenary of his birth, which is an invitation to an exten—
ded reflection on his scientific persomality as a whole.

Einstein and Hopf's paper derives its motivation from the
following consideration : that the current derivations of the
Rayleigh~Jeans law, in which classical physics meets with failure,
are faulty, owing to an acritical use of the equipartition theorem.
Einstein and Hopf aim at freeing the derivation of this flare. They
are actually able to re-derive the Rayleigh-Jeans formula through
a procedure which, to their eyes, no longer lays itself open to
criticism : hence classical physics does indeed lead to the result
which is the touchstone of its failure. One may say that, at this
stage, Einstein's (and Hopf's) attitude is that of clinching the
necessity of the quantum hypotheésis. At a later stage, taking note
of Planck's so-called second theoryll and taking over his hypothe-
sis of the zero-point energy, Einstein and Stern, in a paper of
wider scope, repeat the calculation obtaining, instead of Rayleigh's.
Planck's law, which thus appears, in a certain sense, to be "classi-
cally” based. Should one.then conclude that Einstein had in the
meanwhile changed his attitude towards the quantum hypothesis 7 This
conclusion does not seem documentable on the basis of the published
papers. It should be added that, spavrt from a paper by Nernscll? of
1916 (which we intend to discuse in a subsequent paper), Einstein
and Stern's arguments were dropped by thé anthors themselves and
did not undergo further developments until the recent revival we
mentioned above.

In this first part we provide an English version of Einstein

and Hopf's paper, postponing that of Einstein and Stern's work to
a forthcoming paper. While perusing these articles it soon became
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apparent that for a real understanding it was necessary to re-do
all the calculations. There are. two reasons for this : in the first
place, throughout the authors give only the results of calculations
wich are often cumbersome, though not difficult : in the second
place, the notation is often irksome when it does not appear to be
altogether incorrect for today's standards. We may recall that
Boyer, in his paper where Einstein and Stern's results are re-deri-
ved3, writes explicitly : "Notations involving Lorentz transforma-
tions have changed so much in the half-century since Einstein and
Hopf's work that the present author found their manipulaticns on
the surface incomprehensible. Repeating the full caleulations, the
author arrived at values identical with their results". Throughout
this process of reconstruction we found several mistakes in the
formulae ; in the majority of cases it was a matter of misprints,
which, since there is no record of the intermediate steps, none-
theless make reading difficult ; there are also, however, some minor
formal errors which have no bearing on the final results, and which
we have pointed out in the comments. We thought reading would be
.made easier by the insertion of some further comments on the essen-
tial steps of the calculations, updated in the notation. Words or
phrases in square brackets are either additions required in the
English version or original German wecrds recalled to stress the
impossibility of am adequate English rendering.

The translation itself is the work of one of the present
authors (5.B.). The English rendering was improved with the heip of
Dr. 6. Venturi and Mrs. G. Beale, to whom we express our sincere
thanks, and further checked against the German text to preserve the
flavour of the original language as much as possible.

Statistical investigation of the motion of a resonator in a radia-
tion field, by A. Einstein and L. Hopf -

1. Line of thought It has already been shown in several
ways and is today genevally accepted that our present views on the
distribution and emission of electromagnetic emergy on the onme hand,
{and] on the statistical distribution of energy om the other hand,
cannot, through correct use in the radiation theory, lead to any-
thing else but the so-called Rayleigh (Jeans) radiation law. Since
this stands in total contradiction with the experiment, it is ne-
cessary to carry out anm alteration in the foundations of the theo-~
ries applied to the derivation and people have repeatedly presumedl?
that the application of the law of the statistical distribution of
energy to radiation or to rapidly oscillating motions (resonators)
may not be devoid of objections. The following investigation shall

~now show that there is no need for a dubious use of this sort and
that it is sufficient to use the principle for the tranmslatory
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motion of molecules and oscillators to arrive at Rayleigh's radia-
tion law. The applicability of the principle to the translatory
motion is sufficiently proved through the achievements of the ki-
netic theory of gases ; we shall therefore be able to conclude
that only a more fundamental and deep-reaching change in the cur-
rent views can lead to a radiation law which corresponds better to
the experiment.

We. treat an electromagnetic oscillator!? in motion which on-
the one hand undergoes the actions [ Wirkungen] of a radiation field,
and on the other hand is loaded { behaftet] with a mass m and enters
in interaction with the molecules existing in the space [occupied
byl the radiation. If only this latter interaction existed, the
mean square value of the momentum of the translatory motion of the
oscillator would be completely determined through statistical me-
chanics. In our case there also exists the interaction of the os-
¢illator with the radiation field. In order that statistical equi~
librium be possible this latter interaction caunnot alter that mean
value. In other words : the mean square value of the momentum of
the translatory motiom, which the oscillatof assumes under the in-
fluence of the radiation alone, must be the same as that which it
would assume, on the basis of statistical mechanics, under the
mechanical influence of the molecules alonel™, The problem is thus
reduced to that of ascertaining the mean square value (m)Z of the
momentum that the oscillator assumes under the influence of the
radiation field alone.

This mean value must be the same at the time t = 0 as at the
time t =.7T, so that one has :

2

(mv)¥eo

- 2
= ()

For the following it is convenient to distinguish { between] actions
of two sorts!d through which the radiation field influences the
oscillator, namely

1.) The reaction K that the radiation pressure opposes to a recti-
linear motion of the oscillator. This, if terms of the order of
%' are neglected; is proportional to the velocity v ; we may thus

write K = -Pv. If we further assume that during the time t the ve-
locity v cannot change observably then the impulse deriving from
this force becomes = ~P v T.

2.) The oscillations A of the electromagnetic impulse which inter-
vene as a consequence of the motion of electric masses in the
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disordered radiation field. These may be positive as well as nega-
tive and are, in first approximation, independent of the circums-
tance that the oscillator is in motion.

These impulses superpose themselves during the time T on the impul-
se (mv)t=0 and our equation becomes :

) (mv)? = (mv ; A =P v 1)2

t=0 t=0

By increasing the mass m we can generally achieve [ the result]

that the term multiplied by t? which appears in the right~hand side
of Equation (1) may be neglected. Furthermore the term multiplied
by vA vanishes, as v and Aican, in complete mutual independence,
become positive as well as negative. If we further replace mv
through the temperature © by means of the equation known from the
theory .of gases :

2 . R
mv N (¢}

(R = absolute gas constant, N = Loschmidt's number), then Equation
(1) takes on the form :
@) a2 =22p0n,
N A———n
'We have thus only to ascertain AZ and P (i.e. K) through electro-
magnetic considerations ; then Equatiom (2) yields the radiation
law. . ‘

2. Coﬁputation of the force K16 In order to compute the
force which the radiation opposes to an oscillator in motion, let
us £irst compute the force on an oscillator at rest and then trans-
form this, with the aid of the formulae which follow from the theo-
ry of relativity.

Let the oscillator of proper frequency vg freely oscillate
in the z-diregtion gf an orthogonal reference system x, y, z. Fur-
thermore, if E and H respectively denote the electric and -magnetic
forces [Kraft] of the external field, then the [electric dipolel

moment £ of the gscillator obeys, according to Planck, the diffe-
rential equation!’ '
3) sew‘*v;f+4w2vof—20f=3cc3}zz

In addition, here o is a constant characteristic for the damping
of an oscillator through radiation.

Now let a plane wave falll® onto the oscillator ; let the
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ray form an angle i with the x—axis. If we split this wave into
two-waves polarized at right angles to each othexr, such that the
electric force of the former lies in the plane of the oscillator
and the ray, [ and] that of the latter at right angles to it, then
it is clear that only the first imparts a certain momentum to the
oscillator. If we write the electric force of this first wave as
a Fourier seriesi?

2

(4) E =73 A cos
n

mnf _ax+8y+yz |
T | '

c } - enJ’

whereby T means a very large time, then the direction cosines a,
8, y, of the ray are expressed through ¢ and w in the following
way :

g = sing cosw, B = sing simw, Yy = cosd

and the components of the electric and magnetic forces coming
into tonsideration for our later computation are?0 :

E

"

E cos¢ cosw,

X
(5) E =-E sing,
H =E cosy.
y 0w

The ponderomotive force which is exerted on the oscillator is21

' SR of  1ldt 3
I A W
. X f 3z c[dt
In order that this equation, as well as Equation (3), be exact,
it must be assumed that the dimensionms of the oscillator are al-
ways small with respect to the wave-length of the radiation coming
into consideration. The x~component Kx of the ponderomotive force
is .
E
#

1
(6) Rx = 527 f - E'H

df
y dt

By solving (3)22, we obtain?3, by taking (4) and (5) into account :

3 siny
f=- ég——-Ta sinp I A 2 cosft_ - Y.t
1673 n Y a n n
. .3 siny o .
= 35; T2 sing I An 2 sin(rn - yn}-
8w n n
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whereby, for abbreviation,
= £ _
T = 27 n T en

is set and Y, is given throu§h the equation

Ll Vo(Vo‘nz/Tz)

t = -
cote v, o n3/T3
Since; furthermore?®

9E
2n .

-fﬁ = cosz¢ cosw E A nsint 25
cT . n n .

9z : n

Rx appears as the double sum :

» 302 ) iy siny
Rx = = = T2 cos2¢sinpcosw & X An - Am mcos(rn—y )sint_ -
82 . nm n3 " n
3c? . siny .
- = T2 gindcosw X Z A A gin(T_-v )cost
8n? nm n " non n

In the formation of the mean value, owing to the wmutual indepen-
dence of the phase angles, only the terms with n = m come into

consideration?® and

R . 2.2
—_— 22 sin“y
RX =3¢ 12 sin3¢ cosw Z A? LU
1672 n O n?
@
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g : 3 27
T = sin cCOSsw
1672 voT = 2vyp ¢

is obtained?®. This is the mean value of the x~component of the

force which a wave incident in direction $, w exerts onm the oscil-
lator at rest. :

If the oscillator is moving in the x-direction with a velo-
city v, then we replace the angles ¢, ©, ag [ they are] more con-
venient, through the angle ¢y between the ray and the x—axis and
the angle w; between the projection of the ray on the yz plane and
y~axis. Then the [ following] velations hold :

K

cosdy = sind cosw

#

singy cosw; = sind sinw
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sing; sinwj = cos¢

For [ computing] the value of the force R v which operates on the
moving oscillator, we carry out the transformation formulae?® of

the theory of relativity3?

A = ALl ~ % cosdyi,
T' = 1|1 +{—cosq>1 ,
v
v' o= yl1 >y cosdii,
cosdy - %
cos¢] = - s wi = wy.
I - = cosdy
[ Then]
2 :
R, =2 a2 1 =% (1 - sin2$] sin?e])cosd]
x ¥ 2 VT 2v ,
167 0 0

is obtained. Wow, when terms in (v/c)? are neglected, it is :

12 = 72 -9y
A véT' AvoT [l 2 c C°S¢1J

or, since we have to refer everything to the proper frequency V{ f

of the moving oscillator3!

12 o a2 . -9 ¥ =
Ang' B Avé{l + % cos¢1}T (1 2 c COS@I]

2l )
- a2 Y. dA -2 X
) {Av".r *V e LOS%{H%T}{} g COS%]
0

Further on we express the quantity A®T through the mean radiation
density p. The mean energy of a plane wave, which comes from a de~
finite direction, we set equal to the energy density in a cone of :
solid angle dQ. If, in addition, we take heed of the eguality of
the electric and magretic forces and of both pelarization planes,

thén we“ar:ive at the Eglationgz : ;
an 1 A’T
o] ZF = 55- 3 2.2 .

Our expression for the force becomes :
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2
8) B = 3c

9 A4 (0] ) 4
x 1672 2vé {pvé+vogcos¢1(dv}vé}{c°s¢1 c]

202

1 - *—Elﬂ—glvsinzml e
v )
l—Z-Ecosd)l

1f we finally integrate over all solid angles33, then we obtain
the total force sought

= _ _ _3co vy [do
9y K = ~ oo V{pv! 3 {Es}vf}‘
' i} 0 i 0

3. Computation of the jmpulse-gscillations A2 The compu-
tation of the impulse~oscillations may be considerably simplified
with respect to the computation of the force since a transforma~
tion according to the theory of relativity is umnecessary3¥. It
is sufficient to develop the electric and magnetic. forces in the
origin, as if [ they werel solely dependent on time, in a Fourier
series, when it is only possible to carry cut the proof that the
single components of the force which intervene in this expression
are mutually independent.

The impulse that the oscillator experiences in the time T
in the x~direction is :

T T{0E .
J = I K dt = [ e ly dE L
: o X 0 9z c 'y dt

Partial integration produces :
T daf . TIH
JH E—t—dt=(va]-j-5—t—det
o7 LY 0 ‘0
The first integrand vanishes, when t is suitably chosen, i.e.

when T is sufficiently large3®. If, in addition, one sets —-accor-
ding to Maxwell's equation-
oH SEZ BEX

L = -
c

3t ox 3z

then one arrives at the simple expression

T3E
10) 3=f—-———z-fdt

Oax
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Now only the component Ez and its derivative BEZ/SX enter into

our expression. Their independence camnot, however, be easily pro-
ved. Since we treat only two wave~trains travelling in opposite
directions (of equal solid angle), then we can write !

y ax+By+yz
g = ) {a .i an{t _ ox+B +Yz]+ anOaZWH(t _ ax+By*y ]
n

z T c T | c

21 axtByiyz
+ a'singzg[t + SEiSZiXE]+ bécoa (t + b }
n

T T c
and
3E z - ; 27
Z 2mnog 27n + b si it D)
il {“TZ“[ a cos=m— (...) ST (

21n Coptes 2T ) ]}
+ a;?OSﬁf— [ bn51n—T—- R

a ,, ... are mutually independent
n n

and of the same character as those denoted by S in the preceding
essay36 ; there, for such [ quantities], it is proved that the
probability law of a combinatiom is represegt?d as-a pr?duct of
Causs's error functions of the single gquantities. ?r?m the afore-
said it is easily concluded that between the Co?ff1c1ents of the
developments E_ and 3E2/9x no probability relation whatsoever can

hold.

5 k3 a + a a -
The quantities a, v AL

We now express E_ and BEZIEX as 4 Fourier series !
z

E_ = Z B cos[Zﬂv‘E-w 6 1

4 T n
n
3 1
L. .
-é-;- = X Cm CQS[Z"HX T gm}
m
Then
siny
e’ o3 0 o fomn o -
£ T E B cog 2T T 0 Yn
16m3 o o3 (
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and

3 « siny _
3 =3 I dt E E n-%(cos{Zﬂ(n+m}E -E =8 -~y }+
1673 0 “ ad ‘ T m n n

+ cos{Zw(n~m)%-+ £, - en - Yn}}

are obtained. In the 1ntegrat10n over t two integrands with the
factors 1/(n # m) and 1/{n - m) are obtained ; as n and m are
very large numbers, the former is very small and can theréfore be
neglected. On thus arrives at the expression®’ :

o 3¢ 3 siny
(1) J ==5— F ) c, B, L. cosﬁ Sinﬂ(n—m}£
32w“ mn pd T
with the abbreviation
§ = m(n - m) L E =08 -¥
mn T m n n’

2 §
appears then as a multipie sum over n, m and two more variables

n' and m'! If we construct the mean value J2, then we have to pay
attention [ to the fact] that the angles 6mn and Sm. ; are .comple~
n

tely independent of one ancther ; therefore, in constructlng the
mean value only the terms For which this independence is nullified
come lnto consideration. Visibly this is only the case when

' and np=an'

we arrive at the mean value sought :

Jo— 3 4y 2 sinY )
2 3e¥ T iy i 2 I :
Pl T g B sin?ra - w0
2w m 1 o’ (n-m) T
since o
, r 1 . 2
31nzﬂ(n°m)T‘= T‘J "”J*”"SlHZ{XV*U)WT}du = T
m (n-m) 0(v~u)2 - T
and 5 o
sin Yn 1 sin®y 1 o
Z s BT e d\’=-—'~—--—--—-,
a . n 73 Jo e 5 gvS

- 3:)2
12) 32 = Fﬁi?j -3§<330T S
327w 4y
‘ 0

is obtained. Now it is

= (T + D)2 =72 + 238 + A

and since the mean values J and A vanish, expression (12} gives
the value of the impulse-oscillations A? themselves. The mean va-

P 2 2 .
e ; to be expressed
lues of the quantities ngT and CvoT remain to be exp

through the radiation density pVO'

To this end we must again treat the radiation coming from
different directions and, as above, set the amplitude of the ra-
diation coming from a definite direction in relation to the ener-
gy through the equation :

2 =
A\)()T p\)o da

The amplitude
= Z Ang sind

{must be integrated}l over all the angles of incidence3® s thus

, 2 - a2 s 2, 8
13) B 0 T = A5 o T ) sin? =z w0
Similarly3®
2 64 73v2
_ {2mv 2 . n 2, = 08 i}
14) Cv T T = { = J voT T X gin ¢ cos“w. 75 = DVO

is obtained. So, by imserting (13) and (14) in (12}, we finally
obtain :

— e .

15) a2 = 5.2 T 3

4Oﬂ2vg 0

4. The:.radiation law Now, in addition, we only have to
insert values (9} and (I53) found in our equation (2) ; so we ar-—
rive at_.the differential equation containing the radiation law :

e 2, o vde
PT3E
24ROV
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which, integrated, gives :

87ROV
p = ;
e3N .

(16)

This is the well-known Rayleigh's radiation law, which stands in
striking contrast with the experience. In the foundations of our
derivation must thus hide an assertion which doés not find itself
in harmony with the real phenomena concerning temperature radia-
tion, ’

Let us therefore deal more closely and critically with the—
se foundations :

People have wanted to find grounds for the fact -that all
the exact statistical treatments in the field of the radiation
doctrine [ Lehre]l lead to Rayleigh's law in the very application
of these procedures to radiatiom. Planckqo, with good reason,
opposes this argument to Jean's derivation. In the above deriva-~
ticn, however, it was certainly not the case of a somewhat arbi-
trary transposition of statistical considerations to radiation ;
the principle of equipartition of the energy was omly applied to
the translatory motion of the oscillator. The achievements of
the kinetical theory of gases show, however, that for the trans—
latory motion this principle can be considered as thoroughly de-
monstrated.

The basic ‘theoretical argument used in our derivation, which
must contain an unfounded assumption, is thus nothing else but
that based on the light dispersion theory for completely transpa-
rent bodies. The real phenomena are distinguished from the resuits
to be inferred from this basic argument in that in the former im-
pulse-oscillations of another sort are also made perceptible,
which for short-wave radiation of low density vastly prevail over
those yielded by the theory*!,
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alike favoured" and stressing that "for some reason not yet
explained the docttine fails in general", conjectures that

"it may apply to the graver modes". The problem came into

 focus after the appearance of the first edition of Jeans's

book on The dynamical theory of gases, where, according to
Rayleigh, "he attacks the celebrated difficulty of reconciling
the "law of equipartition of energy with what is known respec-~
ting the specific heat of gases" and "shows that in an appro~-
ximately steady state the energy of vibrational modes may bear
a negligible ratio to that of the translational and rotational
modes" [ Lord Rayleigh, Nature, vol. LXXI, 559 (1905)]. The
difficulty seems to revive for Rayleigh (ibidem) "when we con-
sider a gas, not radiating into empty space, but bounded by a
perfectly reflecting enclosure”. Jeans's answer [ J.M. Jeans,

Nature, vol. LXXI, 607 (1905)] is resumed in a subsequent pa-

per of Rayleigh's [Lord Rayleigh, Nature, vol. LXXII, 54
(1905)]1 as follows : "The various modes of molecular motion
are divided into two sharply separated groups. Within one
group, including the translatory modes, equipartition -of ener-—
gy is supposed to establish itself within a small fraction of
a second ; but between the modes of this group, equipartition
may require, Mr. Jeans thinks, millions of years". After re-
examining the whole matter and discussing Planck's law,
Rayleigh concludes by expressing his "dissatisfaction with
the way in which great potential energy is dealt with in the
general theory leading to:the law of equipartition". The dis-
cussion on the applicability of the equipartition theorem
remained alive for the whole period preceding the appearance
of Einstein and Hopf's paper [ see, in particular, the classi-

- 310 -

13}

lk)

15)

16)

17)

18}

cal papers by Jeans in : Phil. Mag., 6th series, vol. 10, 91
(1905) and : Phil. Mag., 6th series, vol. 17, 229 (1909)] and
went on even after, im particular at the first Solvay Conference,
where it was discussed in detail by Lorentz and Jeans [ see :

H.A. Lorentz, Sur l'applicotion au vayonnement du théoreéme de 1'é-
quipartition de 1'énergie ; J.M. Jeans, La théorie etnétique de la
chaleur spécifique d'aprés Maawell et Boltamann ; in : La théorie
du rayormement et les quanta ; publiss par MM, P. Langevin et M.
de Broglie, Gauthier-Villars, Paris (1912)].

For the sake of simplicity we shall assume that the oscilla-
tor swings only in the z~direction and moves only in the x-
direction (Note of the authors). :

We can further persuade ourselves of the correctness of the
authors' conclusion on the basis of the following consideration :
we can imagine an enclosure divided by an ideal partition into
two zones, the former containing thermal radiation, the latter

a gas of particles, both at a temperature T and separately at
equilibrium with an oscillator like the one described in the
paper. It is evident that removing the partition does not

alter the equilibrium.

For a discussion on these points, see, for instance, R. Becker,
Theorie der Elektrjzitat, Band II, Verlag und Dguck Von B.G.
Teubner, Leipzig und Rerlin (1933), p. 388 ff,

See also M. Abraham, Ann. d. Phys. 14, p. 273 £f. (1904). (Note
of the authors).

See, for instance : W.K.H. Panofsky and M. Phillips, Classical
Electrieity and Magnetism, Addison-Wesley Publishing Company,
Cambridge (19553}, p. 322 £f., in particular formula 21~16, with
the identification ¢

éﬁvgéz

G == CPR. S

3m ¢”

¢ ig directly related to the parameter T, of stochastic elec~

N [
trodynamics @

a3

e

T . S iy
st. Im 3

Actually the wave must be "outgoing', if «, B, Y are to be its
direction cosines. It is by this choice that ﬁy has a positive

sign and the terms in sind in SExiaz are cancelled out (see
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below). -

As the authors will specify below, the phases Gn are "at ran-

dom”, i.e. they are, as we would say, random variables. The
field E is therefore a stochastic process. This is an essen-—
tial physical hypothesis that is introduced in the discussion.
It is rooted in the agsumption typical of the first phase of
the Planckian studies, of "natural radiation™, necessary in

his discussion of the achievement of equilibrium in the enclo-
sure filled with thermal radiation, just as the
"Stosszahlansatz" wag ttecessary to Boltzmann for the derivation

“.of the H-theorem. Egs. (3) and (4) appear nowadays as the basic

equations of stochastic electrodynamics, which, in some enuncia~
tions, starts from a Fourier analysis of the stochastic process.
It should be noted that the amplitudes A are fixed, that is,

they are not themselves random variables. We recall that the
assumption that E is a stochastic process results in the pres-
cription that any physical result should follow from taking an
ensemble average ; in this case this then implies averaging
over the ensembles of the Sn only. This is one of the possible

altéfnatives ; the other one, which is equivalent in the limit
of infinite degrees of freedom, is in terms of random amplitu-
des (see, for instance : 8.0, Rice, in : Selected Papers on
notse and stochastic processes, edited by Nelsom Wax, Dover,
New York (1954)).

The third of Eqs. (5) is wrong in the original text, where,
however, in the following use is made of the correct version
reported here.

We have introduced a notation for vectors since the original
used in the text is unregdgble. The first term arises from ap-

plying ‘the expression V{(f.E} for the force due to the electric
field ; clearly

3 3 2 Yol 3F
VEE = EME £, o2 = £ 42

The second term arises from the Lorentz force.
M. Planck, l.c. p. 114 (Note of the authors).

The field is computed in the origin of the coordinates, where
one can always choose to localize the dipole. The discussion
in terms of Fourier transforms of Eq. (3) gives us as the
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7 | " 2mnt
Fv{Ez] = ~ging g An//; e S(v - *T—} +

24)

25)

26)

27§

28)

response spectrum F(V)

F(v) = 3gcd
2iov3 - 4n2ygu? + lﬁﬂ“vg

where

i6 o
ol 2

The results follow by integrating term by term.

After correcting two obvious misprints in the formulae for
OE. /8z and K_,
x X
Actually this expression: for BEX/SZ as well ag the one for Hy

should be completed through the components of the wave which is
polarized at right angles to the one which excites the oscilla-
tor ; however, it is clear that these expressiomns, because of
the independence of their phases from those of the oscillator,
do not contribute to the mean value (Note of the authors)..

This independence follows from the final result of the prece-

ding essay (Note of the authors). For a comment, see note
(36). .

M. Planck, l.c. p. 122 (Note of the authors).

An expression like that given for Kx has a definite value for
a given assignment of the random phases en. A physically mea-
ningfil value is obtained by carrying out an ensemble average,

over the en, that isvié, This impliies taking the expressions

cos{(t _~Y_)sinT and sin{T_~Y_)cosT that is, in turn
( n Yn) o ( a Yn) o’ 9 5

cosT_ sint , sinT_ sinT , cosT_ cosT . By integrating between
n m n m m B

~T and T over Gn and Bm, the only terms that survive are

! 2127 _ 5 I4s ““}M,m in212™ g g6 =1
“COS T n) o 2T j*W51n T nj a2

T
2y

i

o]

kil

T?sin

We observe that the factor can be put in the more

n?
- 3i3 ~



29)

30)

31)

32)

familiar form
2432
T7sin Ty (Zn)zyzm“

n? (wg - wz)2 + y2y®

where we have introduced
- 2e2

st.

_ 21

T b

_ 2w -
w0=2ﬂ\)0—--T—-,'Y:T

3me3

The above expression i% the typical Lorentzian for the case of
a damping proportiomal ‘to’f. The final expression in Eq. (7)
arises from taking T very large, so that one may substitute

<< T is comsis~

T o o »
i? 2 =+ jdw 3 the integration is formal once Ts
n

tently assumed. The characteristic damping is thus assumed to
be very small with respect to the coherence time of the wave
packet. While this is not explicitly the typical quantum-mecha-
nical limit of stochastic electrodynamics, in a certain sense
it prefigures it. The amplitudes are assumed to vary much more
slowly than the Lorentzian and are taken-at their mean value,

‘correspending to m = vyT.

A. Einstein, Ann. d. Phys. 17, 914 (1905) (Note of the authors).

The formulae that follow hold actually at the first order in
vie.

A slight misprint has been corrected.

As it is written, the formula is incorrect, inasmuch as it sets
an infinitesimal quantity equal to a finite quantity. We arrive
at —

1 1 A% T

p Er—:“g‘;—r 2.2

on:the basis of the following considerations : the energy den~
sity carried by a packet of plane waves propagated within a
solid angle AQ in the direction w, ¢ in the frequency interval
Av stays in the ratioc A0/4w to the total density p. Such a
density may be written as
2 2
J 2.2.A2 T 2.242°7T

78T Tan AL

A0
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33)'

31})

,35)

36)

(11

['2]

where An = TAv has been exploited and it is assumed that, to a
good approximation, 42 does not depend on the direction within
AQ (the factor 1/2 is implied by the averaging operation). It
is also evident that the subsequent expression of the pondero-
motive force is formally incorrect for the same reason : it
actually measures the ponderomotice action of the wave packet
discussed above, :

The result follows straighforwardly by separating the various
terms if the limit v/c << 1 is taken. ’

Namely, the impulses of alternating signs arising from the
irregularities of the radiation process may be determined for a
resonator at rest (Note of the authors).

In praetice v > T so0 as to make the field components vanish.

The authors refer to a previous paper of theirs : A. Einstein,
L. Hopf, Ann. d. Phys. 33, 1096 (1910). The expression given
above for Ez is the obvious development of a superposition of a

progressive and a regressive wave along a definite direction.
' BEZ '
In the origin the expression of E_ and S becomes

Ez = g [(an + a;)sin Z%B t o+ (bn + bA)QOS 2%3 t]

IE

-—z~ E Z m — t an - - ] . 2’rn }
- T {(an an)cos -t (bn bn)sm——,i,—c

They fall therefore into the class of general expressions

. 27n 2mn |
§ [An sin - £+ Bn.cos 5 t}

examined by Einstein and Hopf in the above-mentioned paper.
There the authors face the problem of whether it may correc-—
tly be assumed that, in the case where the An and Bn are random

variables, their distributions are actually independent, as,
they say, is normally assumed. The authors imagine a plane
subdivided into several elements, each one radiating indepen-—
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dent, as, they say, is normally assumed. The authors imagine a
plane subdivided into several elemeuts, each one radiating in-
dependently of the others at a time ts ; the plane lies at a

very large distarce from the point of observation, so that all
the single waves emitted travel approximately in the same direc-
tion. The wave emitted by the s—element is represented by a de-
velopment of the type ¢

t -t

. S
Z a_ sinZmn

n AR T
n

the wave of Eq.[2] is thus given by
t

. t S . £t s,
{3} z g a_ sin2mn T-cosZﬂn L cos27n T sin2mn 5 ;

By comparing {3] with [2], one has the identification

t
- =5

An =a, Z cos2mn T
[ 4] .
Bn =a Z sinZmn Tﬁ

The .stochastic character of the wave given by [3] is determi-

- ned by the various terms tg which are characteristic of every

37)

38)

elemént of the plane and completely uncorrelated with one ano-
ther. From the independence of the various terms of the sums
over s in Eqs.[ 4], follows the statistical independence of the
coefficients A and B . This shows that, in Eq.[1], the coeffi-

cients (an+an,), (bn+bn') and respectively (an—an,), (bn-bn,)
are independent of each other. As (an+an,), (an—an,) and
(bn+bn,),‘(bn—bn,) are, for obvious reasons, mutuali& indepen-
dent, the mutual independence of all the coefficients appearing
in the developments follows. :

Two misprints corrected.

T sin¢ that must be squared,

averaged over the ensemble and then integrated over all the
angles of incidence. One then obtains the quantity
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Actually it is the quantityvAVO

voT voT
over all
angles
or
g2 = a2 ' .
vgT T AVOT T Z sin¢ =
over all
angles
Ie ) 27 1 8-
= 1 QN = Inld = =
Dvo J sin“¢$ d pvo jodw j_?cos¢ sin“¢ 3 ki p\,G
39) From
- 2mnf, _ox + By + yz| )
E ) A cos[—f—{t < } Bn)31n¢
n ,
) oE
one derives, for the coefficients Cn of the development of 3;5 :
2T o,
Cn =g 7 si b A

with
o = gind cosw

For the term vg = {(n=1) we thus obtain

3o

27V

c2
sin“¢ cosw AVQT (

This is the quantity that must be squared, averaged over the
ensemble and then integrated over all the angles of incidence.
One then obtains the quantity

Tg2 = (mor z in" 2
vt = T AvoT T Oger o sin'¢ cos‘w =
_ [2mvg)? ( ) jﬂglesz {2ﬁva\? a 2 s . h
= ( Z ] pvQ J.QQ sin'¢ cos‘w = i - J QVO Jadw cos“w 1 dcos$sin ¢
. m3y2 B
= 15 CZG pvo
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“0) M. Planck, 1.c. p. 178 (Note of the .authors),

ql) See A. Einstein, Phys. Zeitschr, 10, p. 185 £f, What is essen-—
tially new in the work in question lies in the fact that the

impulse oscillations were for the first time computed exactly
(Note of the authors).
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