\
20 - N: :’! ;
7 L
[
—_——2 "‘ll /
—_———3 | H
]

1.5 -5

>}

1.0~
‘ i
,'
(4-dim. box )~ ,l/.
N /
'.

¢ ~(harm. osc.)

05 | e

0.00

Figure 1. Sketch of the potential VN

N=1,2,...,.

- 224 -




Annales de la Fondation Louis de Broglie - Vol, 5, n® 3, 198¢C

ON"THE VALIDITY OF THE BOHR CORRESPONDENCE PRINCIPLE

par Richard L. LIBOFF"

Laboratoire de Physique des Plasmas
Université'de Paris-Sud
Centre d'Orsay
91405 ORSAY CEDEX

(manuscrit regu le 21 Mai 1979)

Abstract : The notions of form and frequency correspondence
for pertodic systems are examined from the framework of quantiza-
tion of action-angle variables. Systems with energy spectra which
vary ‘as n-, where o s a finite number and n is quantum number,
yteld identical energy-frequency relations ("form correspondence™)
in both the quantum and classical domains in the limit of large
quantum number, for all a. However, frequency spectra coalesce
("frequency correspondence™) in the two domains, in the high quan-
tum number limit if and only if o« < 1 (together with a = 1 for
the harmonic oscillator). Thus, energy spectra which vary as say,
n2, fail to yield frequency correspondence, whereas for such
systems the less phystcally relevant form correspondence 1is
obeyed. For these cases the limits h + 0 and n + » are not equi-
valent. '

Résumé : Les notions de forme et de correspondance en fré-
quence pour les systémes périodiques sont examindes dans le for-
malisme de la quantification des variables angulaires d'action.

*perminant address : Cornell University, ITHACA, N.Y. 14853
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Les systémes avec un spectre d'énergie en na, ol a est un nombre
fint et n le nombre quantique, produisent des relations énergie~—
fréquence identiques ("correspondance de forme') dans les domaines
quantique et classique considérés dans la limite n -+ =, pour tout
a. Cependant, les spectres se confondent ('"correspondance en fré-
quence”) lorsque n + = si et seulement si a < 1 (et ausst o = 1
pour L'osctillateur harmonique). Ainsti, le spectre en n2, ne donne
plus la correspondance en fréquence, alors que la correspondance
de forme (moins signifiante physiquement) est encore vérifide.
Dans ces situations, les limites h + 0 et n - = ne sont plus
équivalentes. '

I. Introduction

1 .
In a previous work( ), it was established that two configu-
rations fail to satisfy the high quantum number frequency corres-

2 )
pondence principle due to Bohr( ). This principle asserts that the
emitted frequencies of a periodic system pass to the classical

u
spectrum in the limit of large quantum numbers(a’ ). Hereafter we
shall refer to this rule simply as the frequency correspondence
principle. The two counter examples are : 1) A particle in a box
with rigid walls and, 2) A rigid rotator. For both systems the
quantum frequency spectrum is a discrete sequence separated by a
constant interval. The separation frequency h/I, where h is
Planck's constant, is independent of quantum number n. The moment
of inertia constant I is dependent only on the mass and geometry
of the system. Thus as n -+ «, these spectra fail to collapse to
‘the classical continuum. Whereas the first example is somewhat
idealized, the uniformity of rotational spectra of many diatomic
moleculessig the rigid rotator phase is well established experi-
mentally( ? ).

In either of the two cases cited, the classical spectrum is

7
obtained in Planck's limit, h -+ 0( ). In summary then, passing to
the limit of large quantum numbers is not the same as passing to
the limit of small h.

One also encounters the concept of form correspondence(l).
This correspondence is obeyed when the form of frequency dependen—
ce on energy, v = v(H), is the same in the quantum and classical
prescriptions. Whereas frequency correspondénce fails for the
cases cited, form correspondence is satisfied in the limit of
high quantum numbers. Form correspondence is often mistaken in
the literature for frequency correspondence. Only the latter

- 216 ~

guararantees the same frequency spectrum in the classical and quan-—
tum domains.

The purpose of this paper is to distinguish further between
form and frequency correspondence. Specifically, criteria for the
domains of validity of these components of the correspondence prin-
ciple are developed from the formalism of action-angle theory and
the Bohr-Sommerfeld quantization rules. Energy spectra asymptotic
to n~ are examined, where a is a finite constant and n is an inte-
ger. Whereas form correspondénce is obeyed for all a«, frequency
correspondence is satisfied only for a < I. Thus, the previously
found counter examples of the'box and rotator fall outside of the
domain of validity for frequency correspondence, since for both
these cases o = 2. However, both examples satisfy form corres—
pondence. ’

Also briefly reviewed in this paper is the notion of the
classical continuum. It is found .that a particle oscillating in

the potential xZN has frequency which depends on energy H, as

H(N—l)/ZN. It follows that frequencies other than that of the
harmonic oscillator (N=1) depend continuously on energy and there-~
fore have a continuous spectrum. :

2. Analysis .

The frequency of a classical periodic system with one degree
of freedom is readily obtained from Hamilton's equation of motion
for the angle Svdt,

BHC(J) ‘
1) ' ——— =V
3J ’
. (8,9 .
in action-angle variable representation' ’ °. Here HC is the clas~

sical Hamiltonian and J is the action variable

2) J = ¢ pdq.

The coordinate q is conjugate to the momentum p and the integral

is over a cycle of the periodic motion. The integral (2) represents

an area in phase space. In classical physics this area may be con~
tinuously varied by varying the initial conditions.

2.1. Form Correspondence

In quantum mechanics the phase area (2) is restricted to
multiples of h as stipulated by the Bohr-Sommerfeld quantization

- 217 ~



(1%

rule
3) J = nh
where n is an integer. The analogoug formula to (1) in the quantum
domain is given by Bohr's equation( ),
AHQ(J)
) T

where HQ is written for the quantum mechanical Hamiltonian. It is
apparent that for values,qf n for which AHQ/AJ approximates the
derivative dHQ/dJ, Bohr's®equation (4) will coincide with Hamilton's
equation (1). When this coincidence of frequency dependence on

energy occurs, form correspondence is satisfied.

To uncover the domain where one may expect this component
of correspondence to be found, we examine energy spectra of the
form

o

5) ‘HQ = n

where n is an integer and a is a finite constant.
With the Bohr-Sommerfeld quantization rule (3) together with
the preceding form (5) we may infer the classical Hamiltonian

a
6) HC = J.
Here we are setting all constants equal to unity. The question
now to be answered is as follows. For what values of n and a will
the differencé ration AH/An approximate a derivate ?

First we note that .

AH a a
s AR AN}
éxpanding the bracketed term in the domain of large n gives
AHQ a-1
—n = on

or equivalently,

8) g E;% = aJa_l.

With (6) we see that this is identical to the classical derivative
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d‘r-
9) i —&j: C(J

appropriate to Hamilton's equation (1),
dH 1
irrespective of the value of o,
So we may conclude that for periodic systems with energy
spectra n, the quantum frequency dependence on energy reduces o

the classical expression, for large n, irrespective of «.

For example, for the case of a particle of mass m in a box
of width d, the frequency-energy relation is given by

10.1) : v = VE/2md?
whereas for a rigid rotator with moment of interia I,
VE7T.

As is easily verified, these classical relations also emerge in
quantum mechanics in the domain of high quantum number,

10.2) v o=

3 [

2.2. Frequency Correspondence

The Classical Continuum

Except for the harmonic oscillator, the frequency of a perio-
dic system may be continuously varied by varying initial condi-
tions. Let us establish the validity of this conjecture for symme-
tric potential wells. It suffices to consider potentials of the
form (see Figure 1).
2N

[

N
VVN(X) %— X

With the substitution |

xvk = (ZH)2N sin 8
. . (1112
one readily obtains the result ’
N~-1
_dH _ -1//? 2N
Y VR T8y /Rl
where gN’is the pure number
N+l .
gy =2 G $ a6 cos 8/1-sin?N 6 |
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We may conclude from (11) that v is energy dependent for all cases'
except that of the harmonic oscillator, N=1. For this case
g1 = 2w and (ll) yields the well known frequency

2mv = Vk/m

which is independent of energy. Furthermore from the property that
VN(k-I/z) = % for all N, it is evident that VN(x)kapproaches a
square well with increasing N, and (l11) yields, v . vH, in agree~-
ment with the forms (10).

For N# 1, a charggd particle oscillating in the potential
Vs radiates at the fundamental frequency (11) and subsequent

harmonics., This is readily concluded from the observation that the

orbit x(t) is symmetric about x = 0 and has period v-¥. Thus,
Fourier expansion of x(t) contains the fundamental frequency v
given by (l1) together with subsequent harmonics of v. These fre-
quencies are dependent on initial conditions and yield a continuous
spectrum. So in classical physics, periodic systems allow a conti-
nuum of frequencies. On the other hand, in quantum mechanics, fre-
quencies are determined by the parameters of the system and not

by initial conditions.

The Quantum Continuum

For a quantum frequency spectrum to collapse to the classi-
ical spectrum, frequencies must grow infinitesimally close and in-
clude the low frequency limiting value v = 0. Again examining the
energy spectra (5), with the Bohr postulate for frequency emission
we obtain, in the high quantum number domain

12) v = aH . an® L.

For frequencies to grow close, the incremental change in v,

13) ‘ Av . a(a*])na—z,

must approach zero. Apart from the case of the harmonic oscillator,
o =1, the variation (13) implies that the classical continuum
emerges in the high quantum number limit, for a« < 2. However for

1 <a < 2 one finds that this continuum is bounded away from v=0,
in which case one cannot classify the frequency spectrum as being
classical.

To establish this point consider the energy spectrum

= 220 -

H=n ; 0 < e <1,

Then frequencies due to decay between successive energy levels are

14) v o= (n+])l+€ - nl+E.

Let us suppose that n is continuous. Then
Sdv €. € .
5 = (+e) (@D} "= a%) >-0.

1f dv/dn is positive, then v as given by (14) is an increasing
function of n. It follows that the minimum value of v cerresponds
to the decay (for n > 0)

Therefore, we may conclude that for the energy spectra (5)
to yield a continuous frequency spectrum which includes the v=0
value, one must have o < I. For 0 < a < 1, energies grow 1e§s ra-
pidly with increasing n thereby securing the classical continuum
in the limit of large n, whereas for a < 0, this agreement in
spectra is evident. ‘

Harmonic Oscillator

The value a=1 corresponds to the harmonic oscillaror. For
this configuration, frequency is not set by initial conditions,
but rather as indicated previously, by the gprlng constant k and

(89

mass m. The Hamiltonian for this fmotion is

15) HC = vJ.

The quantum mechanical Hamiltonian has the same form as (15) with
J = h(n + 1/2). This observation together with the selection rule
An = %1, indicates that the classical and quantum frequency spec-
trum agree for all n.

Criterion

Thus we may generalize the above finding to conclude that
for the energy spectrum HQ = % to yield the classical continuum

of frequencies including v=0, in the limit of high quantum numbers
it is necessary and sufficient that

16) a < 1.
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In the aforementioned counter examples we find that for the
infinite square well

H, = n?
Q

whereas for the rigid dumbbell
H. = n(n+l) . n2.
Q n(n+l)

These energy spectra clearly do not obey the criterion (16) and as
stated previously, do not yield the classical continuum in the 1i-
mit of high quantum numbers. Furthermore, the ideal rigidity of
these counter examples is uot a sufficient property to break the
frequency correspondence principle. It may be shown that the ideal
rigid walled spherical cavity does, in spite of its ideally inpe-
netrable walls, satisfy all components of the high quantum number

o)

correspondence principle

3. Conclusions

Within the framework of action-angle theory and the Bohr-
Sommerfeld quantization rules we have examined the domain of vali-
dity of form and frequency correspondence for periodic systems.
For energy spectra which vary as n, form correspondence is obeyed
in the limit of large mn, for all a. This result is established by
examining conditions under which Bobhr's equation reduces to
Hamilton's equation. Both relations serve to relate frequency to
energy. Classical and quantum frequency spectra agree in the limit
of high quantum numbers if and only if o < 1. For other values of
o the limits h + 0 and n -+ = are not equivalent.

The fact that the quantum frequency-energy relation v=v(E)
reduces to the classical form in the limit of high quantum numbers
merely guarantees that quantum frequencies fall on this curve.
Form correspondence does not imply that quantum frequencies den~
sely populate the curve, as do the clasgsical frequencies.
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