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Abstract : An approach has been given to define both the
nonzgero minimum value of the space-uncertainty evaluation and of
the upper rest-mass bound of the involved pavticles. In this res—
pect there are analysed the space-wicertainties wich emerge both
from the regularised quantum field-theory and high—-energy behaviour,
In such conditions there are i{nvolved particles wich arve effecti~
vely nonpoint ones. It can be then concluded that the dualism
broglien between waves and nonpoint particles is actually involved,
now in more general teyms.

Résumé : On domne une méthode pour définir les valeurs mini-
ma non nulles de l'incertitude spatiale et de la limite supdrieure
des masses au repos des particules impliquées. Dans ce but les
incertitudes spatiales sont analysées dans la théorie quantique des
champs régularisés, ainsi que dans la physique des hautes énergies,
On parvient ensuite 4 établir que duns-ces cas les particules im-
pliquées sont effectivement nonponctuelles. On conclut que le
dualisme broglien onde-corpuscule-nonponctuel est confirmé d'une
maniére assez géndrale,

1. Introduction

The aim of this paper is to analyse the space—time structure
as it emerges from the high-enetgy field-theory. The research tool
which we intend to use is to perform the space-uncertainty evalua-
tions and more exactly the finite nonzero. lower bounds of these
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ones. The main reason to be interested in the evaluation of the
lower bounds of the space uncertainties is the emerging possibili-
ty to establish the upper rest-mass bounds involved by the theory,
Although the existence of space and/or time-uncertainties is ques—
tionable from the rigorous relativistic point of view, we shall
pass over such difficulty by restricting ourselves, at least for
the moment, to the center-of-mass system, There is also the possi-
bility to perform an invariant description of the space-uncertain-
ty within certain co-ordinate spaces (1), However, such approaches
involve '"new'" co-ordinates, thus also altering the direct validi-
ty of the correspondence principle. In this respect we shall then
maintain the usual co-ordinates. So, there is the probability
functional method, which permifts to define both the space-distri-
bution function of an interacting particle and the corresponding
space-uncertainty evaluation in terms of the Ki1len-Lehmann (K-L)
spectral function (%). Along this line we shall now use the ex-
tension of the standard nonrelativistic limits of the charge~dis~
tribution approach. Such an extrapolation is merely a suitable
starting research tool to analyse the existence of the space-un=
certainties within the high-energy field-theory. The use of the
above mentioned extrapolation shall be then subgequently justified
by the mutual agreement of the involved results. In this way there
emerges an effective field-theoretical approach to the evaluation
of the space-uncertainty. It turms out that the above mentioned
minimum of the space-uncertainty is determined essentially by the
existence of an upper rest-mass bound of the involved intermedia~
ry particle, or alternatively, by a large-value of the effective
mass. Throughout this paper we are thus interested rather in the
evaluation mechanism of the minimum space uncertainty than on the
concrete nature of the underlying interacting particles, thus also
considering the minimum space-uncertainty as a general physical
entity which should be rather independent from the starting in-
teraction.

We shall consider that the mathematical-methods which are
needed to manipulate the divergent evaluations of the field-theory
are able to be reinterpreted as physical-methods of the nonpoint
particle description. In this sense the nonpoint-particle des-
eription which is raised effectively by the Pauli-Villars regula~
rization shall be analysed for a massless scalar field in Section
2. In Section 3 a proof is given that the charge distribution
approach to the evaluation of the space-uncertainty is formally
equivalent to the one performed in Section 2. In this respect
there are considéred again massless scalar-particles. The calcu-
lations which are performed in Section 4 show that the above
results are in agreement with the scale-invariance behaviour. A
general functional minimization method is proposed in Section 5.
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The effective mass-emerging -within the zero rest-mass limit- from
the power-like behaviour of theé K-L function is established in
Section 6. Units will be chosen so that h = ¢ = e = 1, The conven-
tions of Bjorken and Drell shall be also used.

2. The Pauli-Villars regularization method

Let us analyse as an example the modification of the .particle-—

structure description which is raised effectively by the Pauli-
Villars regularization method. :This regularization replaces the
free.propagator '

1

Dp(p?) = —— L. 2.1)
(2my" p?
by the expression
reg Dy (p?) = ——1 o L | (2.2)
(2m)" p2 p2_M2
0

where My is the rest-mass parameter and p? the square of the four-
momentum. Performing for convenience the Wick-rotation pg > 1 py
there is

R R - 2.3
1 2 3 4

where p are the components of .the euclidean four-momentum. Using
u ,

the relations

i 1 L
‘““[ dg — My Ky (Mpr)exp(~ipE) = — , (2.4)
4u2 T D24M2

0

and

1 1 - 1
— | d& — exp(~ipd) = — , (2.5)
4TY2 r2 ’pz
one finds

) )
reg Dy(£) = ——[- 1+ Yo g )| | (2.6)
4n2. r2 T ”

where r2 = £2 is the square of the euclidean four-positiom vector
g and where K1 (M r) is' the Bessel function of imaginary argument.
Consequentcly

3

9, reg Dy(&) = p(8) = 0k (r) (2.7)
iy



whereas for the free-propagator there is

Ug Dy (&) = DE (* } = 5(8). (2.8)

4y2yp2

I?terpreting now the propagators Dy (&) and reg Dy (&) as classical
fields which are raised by certain source~distribhutions, we can
see thaF whereas the point source is associated to the free-propa-
gator, it is the extended source p (&) which corresponds to the
modified propagator. The short distance behavior of the source
function p(£) is givgn by '

limp(e) = —Ho Mz ¢ oy (2.9)
0 452r2  8q2

where (2) = 0.42 is the Euler-function of argument 2, Conse—
quently '

o )
. y

lim 2 p(g) = Mo (2,10)
-0 42

Vhich §hows that the rest-mass parameter My establishes the source
intensity at the origin. Computing now the Space-uncertainty in
terms of the so implied source fields, one can see that the zero—
value comes from the point source §(£), whereas the nonzero square«
uncertainty evaluation

[0 dr % Ky (Mpr)

Agz = <rdsy = LY _8__.
™ 2 s (2,11)
J dr r? K; (Myr) 0

0

&
establlshes'the extension of the source p(£). In these conditions
the uncertainty of a single ‘space-time co-ordinate is

o . V2
AE o= 5, <r> = EE . (2.12)

gsiu?ing now that the source-intensity at the origin cannot be
indefinitely large, we have to consider the i
eXlstence of an u -
bound of the rest-mass oper
(max)
My < My , (2.13)
which leads formally to the existence of a lower-bound of the

space-uncertainty evaluation
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AE > AE (min) = MQ._ . (2. 14)
(max)
H H Mg

The so obtained result shows that the Pauli-Villars regularization
method implies effectively the existence of the nonpoint particle-
description. Conversely, proofs have been given that the Pauli-
Villars regularization is a special consequence of the so-called
stochastic space-method(3). We have now to notice that the stochas—
tic space-method expresses in fact a special way to account for
the existence of the intrinsic space-time dispersions. In such
conditions we can interpret the existence of the nonzero minimum
value of the space-uncertainty as a consequence of the same dis-—
persions, too. Gemerally, these dispersions can be expressed quite
naturally by the imaginary part of the average-value of the non-
hermitean space~time operators(%). -

3. Extéasion of the charge distribution approach

The K-~L representation of the modified propagator

J a2 p(M2) (3.1)
0 p2-M2+ig

reg Do(pz) =
(2m*

results from the spectral function
PO = 8087 + o07) = 50) - (2-i2). ‘ (3.2)
Because |

Jw d M p?) <0 7, (3.3)
it is also the igdefinite metric which is actually implied(3).
For generality both the cases of §(M2) and S(Mz—ez), where ¢ -~ 0

have been considered. Using the well~known connnection between
the spectral function and the charge—distribution(s)

> - - 1 * ~ >
p(x) = f(») 6(x) + TR jods a(s)exp(~|x|vs) , (3.4)
one obtains
0(X) = (=) 6(D) ——mlf exp (-2Mg | X)), | (3.5

where £(t) is the form-factor of the electromagnetic current-opera-
tor. The square uncertainty of the position vector is now given by

A2 = <x2> = 3 , (3.6)
22 (1242 £ (w))
0 0

- 235 -



where the average has been performed with respect to the charge-
distribution p(¥).

Choosing f(~) > 0, it can be proved that the so obtained
space-uncertainty evaluation possesses -with respect to the rest-
mass parameter Mg- the finite nonzero minimum value only when
the metric is an indefinite one :

[ dXp( <0 , (3.7
which reads as 1 ] '
f<°°) A . (3v8)
. M2
In such conditions the required minimum takes the value
min<x2s = , (3.9)
(max),
M
where
M(max) - 1 i (3.10)
/£ ()

possesses by itself the meaning of the upper bound of the rest-
mass. The natural space-unit can be now defined as the minimum
value of the uncertainty of a single space~co-ordinate, thus
obtaining the result

2, .2

§ 8 2 min V<x?,> = Lo ,
i M(max)

(3.11)

which is in a formal agreement with the previously performed eva-
luation. This agreement is also able to support the validity of
the so used charge-~distribution approach, The relation (3.9)
shows also that the upper rest-mass bound of the virtual parti-
cles which couple to the (hypothetical charged) massless-parti-
cle is nonequivocally determined in terms of the asymptotic
limit.

If relation (3.8) is not fulfilled there are generally
implied complex values of the space-uncertainty evaluation.
Indeed, taking as an example

f(m) = _é_ s (3.12)
4Mg
one obtains
J d%p@E) = —— | (3.13)

so that
Fo. 6.
<Ke> = o e

M2
0

. ‘ (3.14)

In the present case the single space—~uncertainty takes the imagi-
nary value :

/‘2" .
FI; .
Such result shows that generally there is needed to describe the
space-time measurements by complex numbers ("), The imaginary
part of the so raised complex number can be then interpreted as
an expression of the intrinsic dispersion of space~-time measure—
ments, too.

/<§21>‘= i (3.15)

4. Agreement with the scale-invariance behavidur

We shall now prove that there is the possibility to perform
a scale-invariance approach to the definition of the natural .
space-unit. Thus, the canonical scale-invariance of the K-I, spec-
tral function is expressed by the relation

o(M2) = £omst (4.1)
MZ
which shall be now considered within the interval
; re r2
2 e 2 2 . 2
M {MO I~ M+ . (4,2)

For simplicity we shall assume that the spectral function takes
the zero value outside of this interval. We shall also consider
that the width of this interval is sufficiently small, so that
we shall restrict ourselves to the first approximation calcula-
tions with respect to I'2/M2. The normalization to unity of the
spectral function 2 0

2., 7
MO + A
f d M oM?) =1, (4.3)
2
2 . I7
M 7%
leads to M2 .
const =.2 =0 (4.4)
r2 ‘
where the approximation
in I+x =2x ), (4.5)

I - x

has been used. It can be now easily remarked that the correspon-
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ding charge-distribution function is
2
-5 4 0 >y Y,
p(R) = E(») §(0) + > (Ei("’xf bger?) - Ei("l;Zl WpmrB), (4.6)
szlxl

which takes approximately the form

P = £(») 5(F) + ;T%T-exp(-ZMolzl). (4.7)
As a consequence there is
x> = 3 s (4,8)

M2 2 fle
M1 M2 £ (=)

which is analogous to the relation (3.6). The finite nonzero mini-
mum of the above uncertainty square can be now obtained only when
f(») takes negative values :

(=) < 0. (4.9)

In such conditions one obtains
5
min/<x2, > = Y2 __ s (4.10)
i (max)
M

where

*7f;%jy— = i) <L (4.11)

M REx) 2 u2

and where the metric is a positive valued one. Limiting ourselves
to the very existence of the natural space-unit, we can conclude
that the above obtained evaluation is in a formal agreement with
the previously calculated expressions, too. In this sense all the
above used approaches are able to imply uniquely the formal exis—
tence of the same minimum space-uncertainty. Conversely, the phy-
sical uniqueness of the so defined space-uncertainty is able to
establish the formal consistency of the proposed methods.

5. The general nonzero minimum of the proper~time uncertainty

The computation of the space-uncertainty in terms of the
previously used source~functions can be easily extended. Indeed,
considering as an example the massive scalar field, there is

@, +w?) Aoy ) = —6(x) (5.1)
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and ©
@+ o)A (x) = -§(x) *~i dM2 (M2 -~ m2)o (M)A (x 5 M2) , (5.2)
X ¥ 4 2 F

where AF(x ; m2) and A%(x) are the propagators of the free field

and ‘of the interacting one respectively. Following the prescrip-
tions of Sec.2 one obtains that the x2-average is

<X2> = —l-_IJ*

e S (5.3)

where the average has been performed with respect to the source

function
(2]

p(x) = 5(x) + j dM2 (M2 - p2) bpx ; M2) . (5.4)
4m?

As a consequence there ig

I]. J’ dx X2 Q(X) N (5,5)

and
1+ 1, = f dx p(x) ‘ (5.6)
respectively, Minimalizing the square unéertainty with respect to

the spectral function o(M ) and imposing for this purpose the con-
dition

8 x> =0 (5.7)
§ o(M2) ’
one obtains
J;?x x2 AF(x ; M%) 2
Min<x?> = pin = min{- S~ s (5.8)
dx AF(x ; M2) { ﬁz]

where on the left there is the minimum of a functional, whereas on
the right the one of a function. On the other hand there is the
formal equality

2

.2
mlnﬁ—;—m N (59)

so that the minimum value of the so raised proper-time uncertainty
evaluation takes the modulus
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[minat| = |min/<x2s> = _%EZET , (5,10)
M <

and respectively the imaginary value

. . /7
minAT = i ——T— , (5.11)
(max)
M
which agrees with the previously performed evaluations. In such
conditions the formal existence of the minimum uncertainty evalua—
tions is assured, thus also proving again the physical meaning of
the above formulated approach.

6. The power-like behavior of the K-L spectral function

The results obtained in the previous Sections show that the-
re is of sense to seek for the existence of the minimum space-un-—
certainty. In this respect let us analyse the special peculiari-
ties of the space-uncertainty evaluation corresponding to an

inverse power-—behavior (s_d) of the K-L spectral function. For
convenience, the computation of the space-uncertainty shall be
performed with respect to the involved charge~distribution, To
perform the calculations, we shall not impose the normalization
condition of the spectral function, but rather the more general
normalization~condition of the implied charge-distribution Ffunc—
tion.

The g—space distribution function corresponding to the K-L
spectral function

const

o(s) = 3 s 6> 0 6,1)
]
is given by
) +126-3 N

p(X) = £(=) §(X) + const izégmm* r-28 ; 2mlx|)y . (6.2)

As a consequence there is

e R '

J 0D = pey v SORSE (6.3)
§(2m)2

which takes bounded values only when § > 0, For simplicity the
x-integration has been performed prior to the s-one. On the other
hand
bconst
539 >
(1+6)(2m)2 8
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J dx ¥2 p(¥) = (6.4)

so that the raised space-uncertainty is
<x2> = const S8 (f(m) 6(2m)26 + ccmst:)-“l , (6.5)
2m? §+1

which is now expressed in relative units. It can be now proved

that the nonzero minimum value of the above square space-uncertain<
ty evaluation can be mathematically defined only within the inter—
val

o2 € [0’ m(max)z} , (6.,6)
where 1
(max); _ 1{1 |const|}§ ‘
LA ‘z{g HO) J S -

when ‘also £(») < 0. For the moment it has been considered that
const > 0. The square space-uncertainty becomes infinity at the
extremities of the interval (6.6), so that the mathematical formu-
lation of the minimum problem inside the interval (6.6) is uni-
quely defined, in this way also, Moreover, outside of the inter-—
val (6.6) there is only the zero minimum which can be defined,
Consequently, the very mathematical description of the minimum
problem implies the existence of the finite upper—~value of the
particle rest-mass. This result is also supported by the one ob~
tained in Sec.5. In these conditions the minimum is obtained when

7% < g 51 +5) (6.8)
which ieads to ) i
1 . 1 s 3
2 =1 2y = = .
§2s(8) = 5 min <x2> Zm(max)z(”‘” 2(8 61+8))° ,  (6.9)
where
B = 8() - [ . (6.10)

It can be easily remarked that when const < 0, there is

&2 = |eonst] = L (-£(=) 6(2m)2% + |const|)”! (6.11)

2m? §+1

so that one reobtains the previous results as soon as f(=) > 0,
It can be thus concluded that within the interactions which are
described by the K~L spectral function (6.1), the existence of the
minimum space-uncertainty can be established in the above mentio-
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ned manner only when the Parameters f(=) and const take opposite
signs,

Using now the relation (6)

jd Xp() = £(0) (6.12)
and k
j dX¥ @) =6 £1(0) (6.13)
one obtains-
£(0) f (=) 1 % ¢
10y If,(m) =5 w2, (6.14)
so that ,
B(8) = (s(m)28)~1 , (6,15)
as soon as
%‘-‘2-%7%0 , (6.16)

where account hag been made of the relation (6.4), Consequently,
the existence of the upper rest-mass can be assured only when
£(0)/£'(0) > 0, thus also establishing the validity of the ine~
quality

Generally, the above relation shows the possibility of the
dynamical mass-production, Accounting for the results of the pre-
vious chapter ye have also to define the mags which raiged effec~
tively by the minimum 8pace-uncertainty (6.9) as
HOE 1—-62 s(8) = —2

u? MZ(G)

where u is the involved mass-unit, Consequently, the effective-
mass takes the form

§2

(6.18)

1
MO = ufs 51+ 6y) B (6.19)

whereas

lim M(8) = « . (6.20)
6+0
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This latter relation shows that the relevant range of the §-spac-
trum is essentially the one of the small-values, Let Us now esta-—
blish in some more details the relevant range of the §-values.
Indeed, analysing the relation (6.15) we can see that when

the f-function ig able to take'a constant value which ig included
in the interval |

In such conditions the relative Space uncertainty ds(§) takes the
zero=~value at the origine, increases then to the maximum value
85(8g), where 83 is the single root of the equation
28+ 1

in 8 (S(l 'HS) '-TS“TT 5 (6.23)
and subsequently decreases to . two af infinity, However, the con-—
dition (6.21) is satisfied ~irrespective of the used mass-unit—
only within the zerg rest-mass limit. Consequently, the relation
(6.22) becomes

BE (0, » , B (6.24)

which shows that the assumption about & constant value of the
B~function is quite meaningful, Ip such conditions the §-domain
of interest is

§€ (0, 59) (6.25)

because only in such a cage the emerging effective-mass ig able
to take the needed large-values

M) € (M(8g), =) . (6.26)

The so obtained result possesses similiarities with the dynamical
Mass-generation in field theory (7) : in both the cases the rai~
sed "dynamical” masg -which is able to take sufficiently large-
values- emerges from a massless field., In thig respect we have

to notice that it ig even by means of the zero mass-limit that
the relevant range of the d-spectrum can be determined explicitly
by means of the relations (6.25) and (6.23), In terms of a re-
normalization group formulation it can be also proved that the
effective mass bossesses, for § » 0, a fixed point ac infinity,
Indeed,
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4 In § _ 1, u -1 (6.27
(3 o M(sy (“‘ M(S)] ] ’ 0
which possesses the stable fixed point M(Q) = ©, as one would
expects. Some other informations concerning the non—zero lower
bounds of the §-spectrum should be established in terms of the
constraints raised by the high-energy experimental dacta.

7. Conclusions

Using several methods proofs have been given that there is
a theoretical prescription to define the winimum space uncertain-
ty. The physical background of such a result should be the exis—
tence of an upper rest-mass of the involved intermediary parti=-
¢les. In other terms, such a result shows the existence of an
upper value of the dynamically generated mass, too. Further data
concerning the lower bounds of the §-spectrum should be established
in terms of the high-energy experiments. In this sense the high~
energy behaviour is viewed to probe the existence of certain
effective masses, or alternatively, of certain relevant lengths,
We have also to mention that we would not have the occasion to
establish the mutual consistency of the obtained space~uncer-—
tainty evaluations if we would not had placed the imaginary space~
time dispersions (3.15) and (5.11) on the same footing with the
real ones. So, the complex structure of space~time appears to
be actually a consistency condition of the very space-time des-
eription of the high-energy physics (8),

Finally we have to notice that the actual physical existence
of the nonpoint particles is mutually connected with the theore—
tical validity of the broglien dualism between waves and nonpoint
particles. It is quite evident that the dualism wave-point~like-
particle is only an incomplete particular form of the above
one. Indeed, the above uncertainty-calculations show that the
point-particle of the "nonphysical’ nonregularised standard theory
iy replaced effectively -within the regularised theory— by a
nonpoint particle, thus also establishing the above mentioned
validity of the actual physical dualism. In this respect there is
of significance that the high~energy methods are able to probe the
validity of the same dualism, too.
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