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Abstract : The occurence, in the Schrddinger
equation type of description of electronic process, of
the apparently extra unclassical force additional to
that due to the given external potential s analysed
and explained using only classtcal electrodynamics
and thermodynamics.

Résumé : L'énergie potentielle non—classique,
supplémentaire d l'énergie potentielle extérieure,
qui se présente dans la mécanique ondulatoire de
Sehrédinger est analusée et expliquée en employant
seulement L'électrodynamique classique et la thermo-
dynamique. ’ '

1. Introduction (%)

In recent work (1,2,3,“), the present author
has shown that there are a variety of ways in which
the mathematical and physical structure of the one
dimensional Schrddinger equation can be deduced
from classical fluid and thermodynamical princi-
ples. It is thus possible to construct a classical
basis for quantum mechanics. Possibly, the most
direct route (%) into this area of analysis is by
analytic continuation of the configuration variable
x of the one dimensional Schrddinger equation into
the complex z = x + iy planme. This route is direct
but the various new roles of familiar mathematical
quantities all require physical identification,
interpretation and explanation. The less direct
route which was followed through in reference &)
involves starting from a two dimensional mixed fluid
basis and showing how assumed properties for the
fluid structure lead inevitably to the Schrodinger
equation for the fluid process taking place on t?e
real x coordinate axis. By this second route fluid
and thermodynamical identifications naturally attach

% Le soulignage d'une lettre signifie que celle-ci
représente un vecteur.
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themselves to the older quantum mechanical mathemati-

cal quantities in the course of the derivation. Having

seen the light, as it were, yet a third route into
this alternative theory becomes recognisable. An
appropriate classical variational principle can be
constructed and from it the new structure can be
derived (3). Thus it seems that much evidence can be
gathered to show that the orthodox Schrodinger des—
cription for the quantum process is a powerful stream-—
lined partial mathematical complex plane representa-
tion of a real two dimensional physical system. A
similar situation occurs in classical two dimensional
fluid dynamics where sometimes the complex plane
representation supplies a strong analytic tool for
handling the mathematics of some types of real two
dimensional problem (°). The word 'partial' is used
above in the sense that, in the orthodox Schrodinger
theory, although complex functions are employed the
full potential of the structure is not utilised in
that the formalism is kept, usually in theory and

in prdctice, firmly planted on the real x axis.

The Schrodinger wave function method confined:
to the real x axis has great computational facility
but there is in it an inherent loss of 'explanatory'
physical back up for the quantities used. It supplies
an outstanding successful techniques, but at the same
time involves a loss of deeper understanding of under-
lying physical processes and also carries a tendency
for paradox to seem to arise. On the other hand, it
seems that if we look at a real plane representation
for the analytically continued Schrddinger equation a
whole new world of explanatory classical physical
images emerges. Once one has identified the well known
mathematical quantities within the new two dimensional
context, physical pictures of possible underlying
fluid and thermal processes begin to appear in profu-



sion. Whereas before,cne came to a dead stop with
the philosophical interpretation of quantities
such as the wave function which according to many
theoreticians should not be analysed further but
rather regarded as a given basic unanalysable
concept ; in the alternative view to be presented
here, anmalysis is natural and the wave function,
for example, is the exponential of the complex
potential of classical fluid dynamics. With regard
to the wave function, of course, this view is
only new in the present theory in the sense that
we are here talking of the complex plane fluid
process whereas earlier authors (5,7,8) used such
an interpretation for the wave function in the
context of an actual two dimensional subspace of
the Euclidean three space of common experience.
The particular aspect of this new point of view
with its power to invoke and support classical
images to be studied in this paper is the electro-
magnetic thermal interaction taking place in the
~complex plane. Here we find that a real plane
representation for this aspect conforms to a reco-
gnisable classical Maxwell equation type of des-
cription and that in such terms we can give a
clear account of how the extra 'quantum potential'
(7), which appears in earlier theory without expla-
nation, arises in an electromagnetic thermal arena
away from the real x axis of the Schrodinger equa-
tion while being generated by the passage of the
primary 'particle'. Although we can detect many
‘classical configurations and structures within
this extended area of analysis, there is an impor-
tant sense in which the 'mater7al' involved in the
structure is not familiar in more usual classical
studies. It seems that the /~1y direction movement
should be interpreted as the movement of negative
mass. However, this 1s a matter of constitution

rather than one of a theoretical label of 'classi-
cal' or 'mon-classical'. In fact, this feature of
the theory is acceptable in the sense that in
regions between singularities it is a process of
mass polarisation which carries the distributed
quantum information and the familiar quantum den-
sity p (x, t) represents the degree of this polari-
sation on the real x axis. In work with the
Schrodinger theory, it is usually assumed that
there is no mass present between singularities
other than in a probabilistic sense. In the pre-
sent theory, there is still no mass present bet-
ween singularities. Instead, equal quantities of
positive and negative mass coexist in such regions
and make their presence felt by having different
states of average motion while keeping their total
energy of 'thermal' motion also zero. However, we
shall see that in studying the electromagnetics of
this problem in the extended planar region, the
negative mass aspect hardly surfaces. This is
because. the basic quantity associated with the
moving fluid particle 1s an electric current den-
sity,

J=¢&p (vl_i_-vzi), (1.1)

and the negative mass movement variables(-pmv,]j)
for the y direction become subsumed in the asso-
ciated current deﬂsity (-épvz]) for the y direc-—
tion. (-pmv l) is, of course, “the momentum densi-
ty assoc1ated with the negative mass density

mp, = - om for the second fluid. Thus from this
point of view, we see that it is the vector,

my = m(vli.— vzj), (1.2)

that plays the role of 'classZical' momentum and

it is 1n such a capacity that it appears in the




Newtonian like equation of motion for the system.
However, as with Newtonian dynamics, in differen-
tiating a moving system with respect to time we
shall follow the 'particle' movement which is
determined by the 'number' density velocity, #

vevis .
V=V, v,3 (1.3)
and consequently the substantive time derivative

operator will be denoted by d G'and by which

be meant differentiation fol?gwing the v velocity
field, and so, in the case of rate of change of
momentum following the particles, we have

d
dt

mv)|, =m (3 + y. VWV (1.4)
gL

This formula will be used a little later. We shall

now briefly outline how the various extended two

dimensional quantities of this alternative theory

are defined and indicate from what sort of physi-

cal argument their existence can be inferred.

The most important information containing
function occurring in the theory is the two dimen-
sional density function p (x, y, t) . p 1is a real
function and in terms of the wave function ¥
(x, t) it has the form,

* . .
p (%, v, t) =¥ 7 (x -1y, t) ¥ (x + iy, £)(1.5
The meaning of the star % symbol used in relation

(1.5) is that of complex conjugation of the func-
tional form 'only'.

That is if

¥ (Z2) v (x + 1y)

¥, (x, y) + /1 ¥ (%, ¥)

and ¥, and y, satisfy the Cauchy Riemann relationms,

¥y _ _9Y¥p
9X oy
(1.6)
¥y _ ¥,
dy X

and further we use the bar - symbol to donote the
usual complex conjugation operation then,
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A Real function. (1.7)

When y = o, we recover the usual quantum density
function

o (x, 0, £) = ¥¥(x, t) ¥ (x, t), (1.8)




though possibly with an unusually dimensioned nume-
rical factor. Expression (1.5) is not just an aa noc
definition for p (x, ¥y, t) in terms of the usual wave
function analytically continued. That p (x, y, t)
should have a form such as (1.5) is a consequence of
the fact deducible from thermodynamics that the total
thermal energy of the two fluids is zero or equiva-
lently that they have numerically equal but opposite
signs for their temperatures,

Tl + Tz = 0. ) (1.9)

Also from thermodynamics, we can infer that

T 1= mvzaanp
1 BXZ
(1.10)
and y mv2322np
Tyo= - .
where v = h/2m.
Therefore
v2emp = C (1.11)

and this last equation ensures that p (%, y, t) is of
the form (1.5). Defining the temperature T, of the
‘negative mass fluid by (1.10) so that it is of oppo-
site sign to that of the positive mass fluid enhances
the symmetrical form of the relationship between the
two fluids and the mathematical expressions used to’
describe them. The two temperatures T; and Ty can be
derived by the usual thermodynamical steps,

3 (1.12)

KT-=
b osenp |y

and

sz: aEZ ] (1.13)
94np IX

where ¢; and €, are internal energies of the two
fluids and k&np is an entropy associated with the
density p. Later in the paper, we shall use only T,
and then denote it by plain T. The internal energies
e1 and e, are given by

e = = =L avy? - BN CTS

and €y —%mvlz (1.15)

The subscript 'y' or 'x' in the formulas (1.12) and
(1.13) is meant to indicate that y is kept constant
while differentiating €; with respect to 2np or x is
kept constant while differentiating e€p. That the
internal energy of one fluid is the negative of kine-
tic energy for the other is an inevitable consequence
of the two fluid proverties that’ EE‘ , inspite of
ax /P
its appearence, is a one dimensional ‘gradient and
that the movement of the mixed positive and negative
mass fluids on the real plane is non-isotropic.




The product of the fundamental constant
v =k /2m with &np turns out to be the stream func-
tion for the 'momentwn' velocity field, vii - vpi.
That is to say, -

v 32&np (1.16)
vy=- — ,
Y-
and v 32np (1.17)
vy = - T
39X

Pressure is conveniently defined for both fluids by
the ideal gas law,

P 1.18
- = K e
which is itself a derivable consequence of the equi-
librium fluid thermodynamical structure. With this
definition for p, we have

P mvzazlnp _ mv3 Vo (1.19)

P 3X2 9%

by (1.17). The expressions (1.16) and (1.17) for v,
and V, are also derivable consequences of the struc—
ture and can be obtained in a number of ways by invo-
king classical images (!,3,%). Whatever route is taken
in obtaining these various relations and definitions,
we eventually arrive at the two equations,

V1 - -2 (& /m), (1.20)

ot 3xX
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W2 - 2 (my/m), (1.21)
ot oy

where E; is given by the Bernouli equation,
Ep =2 (v2-v2) +— 47y (1.22)
2 1 1 £
with P satisfying (1.18),

9
at

E, = Re. (ih en v) ' (1.23)

and ¥ (Z) an analytically continued solution of
Schrddinger's one dimensional equation in x -
with also the relation,

3 Y (2) (1.24)
>z

m (Vl + iVZ) ¥ (Z) = -~ ih

arising from the formalism. ¥ (Z) is also found to
be of the form,

¥ (Z) = exp (- ik o (2)), (1.25)
m

where w (Z) is the complex potential of classical
fluid dynamics for the vii - vyj velocity field.
There are a number of different ways in which the
equations (1.20), (1.21), and (1.22) can be expres-—
sed which are worth recording. In terms of the vor-
ticity g3k = V,v of the two dimensional v velocity
field, we have

2

a
vy = - 2 (B X Ty (1.26)
ot ox mp 2 m

- 11 -



2
_9vo vigy = - 9 ( P L A A Y (1.27)
ot 3y m(-p) 2 m
where v = ]v}.

Another familiar Eulerian form into which these equa-
tions may be shaped is as fallows,

2
vy .3 (W )__.1_.._3.1’_-_.1_.92_1_._ (1.28)
3t ax 2 mp 93X m 39X

2 1 1
dvp  _ _ 3 ( V2 ) o+ L S V1 (1.29)
3t 3y 2 mp 3y m 3y

A vector equation of motion on the real 1, j plane can
be obtained by using (1.18) (1.16) and (1.17) to con-
vert (1.26) and (1.27) into,

cm (YL v vadvp y 8 (KT g 50
ot X ox 9x

—m vy _ vidvi o, V23V2 y. - 3 (kT+Vq), (1.31)
ot ey y oy

and then using the Cauchy Riemann equations for v;
.and v, these last two equations then become

m ( dvy  , Vi3Vl , V23V y = - 3 (kT+Vy) (1.32)
at X oy ax
m ( vy, v13vy , V23Vg y = 3 (kT+Vy) . (1.33)
at X oy 3y
- 12 -

Combining these together in terms of the components
of the real vector v = viji - vpj we get,

|

- ¥ (KT) - V¥, | (1.34)

as the vector equation of motion for the system. Equa-
tion (1.34) is an equation between real quantities
described on a real two dimensional surface. It is
also of the classical Newtonian form. However, besi-
des the 'given' external potential,

Vi(x, v) = Re. {V(z)} = &) *V(2),

there occurs in it an extra potential kT, somehow
generated 'internally' within the system. It is worth
noting another expression for the energy E; which is
easily derived from the equations (1.22), (1.1%8),
(1.17) and (1.18), :
. 2 2 2

{El (X,‘ Vs, t) "Vl (X, y)}p.—:\) (—B—ﬂ—-a—-——p—)

ooyt ax? (1.35)

= 1-p (V12 + kTp) + 15 (V22 + kTy),
2 F T 2 o

where p, =P =" p_

This expression shows how the erergy E; is a combina-
tion of kinetic and thermal energies in the usual
classical pattern. Finally, we note that in the real
plane representation the fluid mass current density,
mp (vyi + vpj) satisfies an equation of continuity of
the form,

- 13 -



2 A v . (ew + T, (1.36)
3t 2

where T is a source function. This reduces to the
usual quantum equation of continuity,

_dp 3 (pvy) : (1.37)
ot 8xi

on the x axis, where I' = 0, and generally off the x
axis (1.36) can be used to convert it into

30 = \)320 + 1—-’ (1.38)
ot x93y
oV
where T = muz s

with V, the imaginary part of the analytically con-
tinued given external potential, V(x).

Equation (1.38) looks a little like the equa-
tion of diffusion. In fact it can be derived from
what might be called 'centrifugal diffusion'. That
is a 'banking up' of the demsity p locally with a
tendency to level out by random decay, becomes
balanced by centrifugal forces arising from the
local rotation of the fluid (*). This paper will now
be devoted to showing how the extra potential kT
arises from the two dimensional fluid, thermodynamic
and electromagnetic interactions taking place off
the real axis. To carry through the next steps we
shall make quite general classical assumptions
about the form one would expect would be taken by
a two dimensional equation of motion for a system

- 14 -

such as we are studying. We shall then show that the
general form reduces to (1.34) when various intermnal

equilibrium conditions are satisfied and we shall
find, as might be expected, that magnetism arising
from various currents plays an important role. The
density function p (%, y, t) arises from the wave
function by (1.5) and so with the usual probabilis-
tic density interpretation it would, for the one
dimensional wave function ¢ (x, t), have the dimen-
sion of L-1. However, we shall use a density func~-
tion p (%, y, t) with the dimensions of L-3 in the
following work -in order to keep our electromagnetic
equations directly comparable with the usual three
dimensional Maxwell forms. The connection between
the p to be used here and the usual quantum p for
the one dimensional case is simply that the former
is obtained form the latter by the formula (1.5)
followed by multiplication by a constant of dimen-
sion L-2 or that the analytically continued wave
function is modified by multiplication by a cons-
tant of dimension L-!. However, although we shall
employ a z direction given by a unit vector k in
order to be able to use the vector form for vector
products and to give vector expression to vorticity
and other quantities on the i,.j plane, our problem
is basically two dimensional, so that for all func-
tion f to be used in this paper 3f/3z = O.

The - V(kT) term in (1.34) is the term which
renders the version of quantum mechanics given by
(1.1) apparently non classical. It is not quite the
same term as the extra force used by Bohm and Vigiler
(7,8) in discussing the deviations of quantum mecha-
nics from classical forms. The term they used and
which is sometimes called the Bohm potential has the
form p~192p/5x2. An extensive and comprehensive
account of attempts to reformulate and explain quan-
tum mechanics together with many references can be




found in the book by Max Jammer (°). Discussions of
fluid and electromagnetic aspects of quantum mechanics
can also be found in the works of Janossy, Ziegler-
Naray (10,1112 13y and Takabayasi (1%,19).

Working with analytically continued functions
has the consequence”that frequently the Cauchy Riemann
equations are applicable to various quantities. In
particular, in the case of the velocity field
v = vii + v,j, we have,

vy . 2 (1.39)
X oy

and
:‘.V]_ - _ 3V2 (1.40)
3y 0%

and those two equations play a very important part in
the following work. The reason for the applicability
of these equations to the components of the velocity
field v is that ¥ simultaneously satisfies the two

conditions, VeV =_V ¥ = 0. The reader will recognise

that in terms of ¥ these are the same conditions that -

are also used in superfluid theory for the momentum
P . For example see page 73 of London's book (1©).
However, when applied to the three dimensional case,
unlike here where Vv is two dimensional, they do not
have equations (1.39) and (1.40) as a consequence.
Physically the fluid structure to be studied here is
thus related to superfluid theory except that here
only planar movement occurs.

e -

However, it should be emphasised that all the
following analysis is done, not in the complex plane,
but rather in a real i, j plane where often vector
components are fortuitously also the real and imagi-
nary parts of a complex_ function of a complex varia-
ble. Thus the notation V = vji - v,j will be used to
distinguish v from v = vii + vpj as it parallels the
notation v = vy = /;1 v, used to represent the com—
plex conjugate of the function v = vy + v- Vo

- 17 =




2. The Physical Connections

The system to be studied here is essentially
an electronic fluid and so it will have those physi-
cal properties normally possessed by either an elec-
tron or possibly a positron but it will be regarded
as being distributed over some space region and under
the influence of an external potential. We are con-
cerned with the 1nterna1 electromagnetic thermal
structure of this system thought of as having two
parts. The two parts being, the particle proper, and
the rest of the total system which exists in the
sense that it is a background or support against
which the particle's behaviour can be analysed. The
- background becomes a physical frame of reference
but intimately connected with the particle. In the
terminology of elementary particle physics, the par-
ticle here is the 'bare' particle and the induced
background which coexists with it, is that assembly
of interactions which gives the Dartlcle substance.

- It will be assumed that the very existence of
the partlcle and its state of motion represented by
such parameters and functions as mass m, charge e’
magnetic moment B, density p and velocity field v
causes the induction of various internal forces and
reactions within 'the whole system' which can be
regarded as the particle and its immediate local
" environment. Mostly these forces and reactions,
being internal, mutually cancel. However, it appears
that in quantum theory, somehow, some remnant of the
possible internal interactions survives and conse-
quently influences the changes of motion of the par-
ticle along with the influence of the external field.
This residual force is the -~ V(kT) term in equation
(1.34). It will be shown, in this paper, how such an
unbalanced internal force can arise from electroma-
gnetic and thermal considerations in a classical con-

- 18 -

text in a real two dimgnsional fluid system. The
physical sequence of interactions arising out of
the existence and state of motion of the particle
will now be described and afterwards all the mathe-—
matical connections will be derived and discussed.

Firstly, the existence of the particle as
part of an electromagnetic fluid, causes an inter-—
nal electric field E which acts on the particle
and its surroundings. It can be anticipated that
this total internal electric field will have its
origin in charges and currents present in the
medium. That part of E which originates directly
from the primary 'particle' whose motion through
the medium we are studying will be denoted by

E(r)

and this part in its direct action will

exert forces on any induced charges which have

appeared in the medium as a result of the dis-
turbance due to the primary particle and its mo-
tion. Charges induced in the medium will them-
selves contribute to the total electric field
and this part of the electric field we shall

denote by E(t) (t) then will directly act
back on the primary particle. It will be assu-
med that the electronic fluid has a conducti-
vity o.

Consequently, given the 1nduced field E
together with induced charges created by a
local + charge polarisation of the background,
a conduction current J = oE will flow. We can
divide the conduction current J into two parts

3P ang 5O




The part J<r) being the component of J in the direc-

tion of E(r) with J(t) representing the rest of the
induced conduction current. The induced current J
will be regarded as being essentially that part of
the total system which is not the particle, but
rather as being a feature of the medium in w@ich the
particle moves. We shall attribute a total d1p01?
moment Bk to the particle and so if p (%, v, t) 1is
the density of particle distribution (either.a-proba-
bility distribution or a mass distribution divided by

total mass m) over the i, j plane, then the particle

will carry a distributed magnetic field M = pBE.and

a related magnetic induction field B = u M . It fol-
t)

lows that the induced currents J( * and gﬂr) expe-—

rience Lorentz forces per unit volume,

(t) _ (0
L, =J R Eo and Lo = J ~ §o’

which have their origin in the magnetic induction.ﬁ

of the particle. Il follows that the primary partlcie
which carries the B field and which, in fact, is dis-
tributed over the T? j plane will experience locally
the reactions - Ef_ada ~ L, from these forces by

. f(r) .
Newtons third law. Suppose that ¥ is the ?orce per
unit volume acting on the induced charges which have
arisen locally from the inducing primary charged par-

. . . r
ticle. We shall then 'define' the electric field gf )

arising from rhe primary particle by

A A
where p is given by (1.5) and is the density fun§tion
for the primary particle and & is the change on 1t.

The advantage of 'defining' E‘r) in this way is that,

- 20 -

. t
with such a definition, EFr) and E( ) are then on
the same footing in relation to the primary density

function p. Thus with this definition for E(r),
- & pE(r) is the Newtonian third law reaction force

per unit volume experienced by the primary partical

(1)

can be regarded as the local

. . . - t
electric field reaction. & pg( ), on the other hand,

is the force per unit volume exerted on the primary
particle by charges induced in the background. Given
internal stability of the system, the tendency is

for these forces to ‘cancel in pairs. That is to say,

locally, while - E

one might expect that & = - pe'g(r) - L; >0 and

t
that & = peﬂg( ) _ L, + 0. However, we shall reser-
ve judgement on these two possible equilibria until
we have considered another chain of interactions. The

. . . t) . .
complicating feature is that i( ) is that part of the
induced current which occurs naturally in the form

‘of thg curl of a vector. Thus J(t) can sustain a

magnetic induction field B, say, which is entirely
additional to the magnetic induction field B of the

particle via the Maxwell equation u J(t) =v . B
Thus E.can disturb the simple equilgb;ia &1 = 0 and
32 = 0 suggested earlier by causing further interac-
tions. Given the the possible existence of B we can
then expect that a more complicated equilibrium si-
tuation is involved in which B interacts with M .

At this point we shall define a magnetic field_ﬁ by

tbe relation B = -y H and anothermrelated magnetisa-
tion field M by M ="~ H. Thus if B is the external
magnetic induction vector, we have B = y (H + M).

This B is identically zero so that we can regard ¥
as being an internal magnetic induction field in a
medium which is perfecdtly diamagnetic. This is again

a condition which is thought to hold in a supercon-

- 21 -




ductor under some conditions. See page 14 of London's
book (16). Equilibria involving magnetic fields, ma-
gnetisation, density and which insolve the tempera-
ture T also are well-known classically and the connec-
tion between these various physical quantities is
then under some conditions described by Curie's law,
equation (3.31). If such a law holds in this context,
temperature naturally becomes involved in the overall
situation and then thermal effects must be taken into
account in addition to the electromagnetic effects.
The existence of B also reacts back on to the parti-
cle in a more difgct way than jgst through a rela-
tionship such as (3.31). Given B, the particle will
experience a direct force per unit volume in virtue
of its own charge and motion. We shall denote this

—_y
third Lorentz force by L_ where Eo = e'vaE' The

essential physical content of a relationship such as
Curie's law is that an increase of thermal disorder
caused by a temperature rise causes a decrease in
magnetisation for a fixed H. However, for the situa-
tion that go becomes fixed, the conseduence is that
the magnetic field H which is an internal field in
this work becomes proportional to T.

Thus the collection of interactions analysed
so far in a classical way leads to the considera-
tion of the possible involvement of a thermal field
T (x, y, t) and so implies that further forces will
have to be taken into account which have so far mnot
been brought into the scheme. As we have density
gradients and we are now considering the involve-
ment of temperature it is clear that we must bring
in the force that Einstein (17) called the osmotic

force per unit volume £F0)= -kTVp and also a thermal

- 22 -

th .

force EA( ), say, which would be responsible for
the existence of a thermal current, g&th)= -yT,
where y is the thermal conductivity of the fluid. It
turns out that the osmotic force when intruduced na-
turally balances the additional Lorentz force L
mentioned earlier so producing a third equiliﬁ;gum,
& = 0, while the thermal force per unit volume

(th) .
f = _7(kT) on the particle actually only cancels
th? electric force - e'E‘r) whigh we provisionally
paired with Ly by & = 0. Thus F; = 0 does not in
fact hold upon the more comprehensive analysis and
consequently &; = 0 has to be replaced by

T
T, = - pe'E( ) _ pV(kT) = 0 and - L, is left free and

uncancelled and acting on the particle F; = 0 is
not affected by the more detailed analysis and so
can still be assumed to hold. This completes the
physical description of how influences originating
at the particle are spread and reflected back on to
the particle in the form of the remnant Lorentz
force - L; which then assumes the equilibrium value
- Li = - pV(kT) and so accounts for the form of
equation (1.34).

- 23 =



3. Equations of motion and equilibria

The function mV = m(vii - vpj) represents the
local momentum field assciated with the particle.
mv = mv(x, y, t) is a function of space and time and
so the operator d/dt needed to calculate the rate of
changé of momentum will need to be rate of change
following the velocity field V = vii + vpj. Thus

on{ v
t

d .
—_— + v/ (3.1)
dt v .

We shall assume that the equation of motion of the
particle is 'classical' and by that term is meant
that only forces understandable in terms of c}a531—
cal thermodynamics and Maxwell's electrodynamical
equations will be involved in our analysis. Thus e
take the equation of motion expressed in terms of
forces per unit volume to be,

o = oot @D + V) - 7R+ R - oWy (3.2)

v
V1 is the external field. E(t) and B are i?ternal
fields induced in the vicinity of the particle by
its existence and state of motion. P is the pressure
contribution and R is a reaction term given by

R-- ™ -13 , (3.3)

where J is the induced current related to the indu-

ced E by

J = cE. (3.4
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o is the conductivity of the fluid assembly and B

is the magnetic induction field associated with the
particle's magnetic dipole moment Bk, say. e' = - e,
where e > 0 is the magnitude of the charge of ome
electron. Thus

B, = W pBk, (3.5)

and the reaction force R is just the Lorentz forces
due to motion experienced by the induced conduction
current J, per unit volume, from the magnetic induc-
tion field B of the particle, together with the

—0 .
electric field E ) impressed on the charges induced
in the medium by the particle.

We shall make the further assumption that the
electric fluid satisfies the simple gas law,

o
—— = kT, (3.6)
Q N

connecting number density, pressure and temperature.
Evidence for (3.6) can be found in references (1,2).
In (3.6), P, p and T are all functions of x, y and
t. The induction field B carried by the particle
. —Q, = .

arises from the current e'p¥. This can be seen by
considering the curl of B in order to find the cur-
rent responsible for EO._%hus by (3.5)

_ denp . _ aenp .
Vi By = Bup (1 -—1. (3.7)
Ay X

however, vinp is the stream function (1H for the
vii - vpj flow field and so
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k¥ = - vwinp, (3.8)

or

vy = - 34np , (3.9)

and

vy NGEL:E (3.10)
9%

Using (3.9) and (3.10) in (3.7), we have,

= 'ow 1
VB, = e’V s (3.11)

and this establishes that the current e'pv is the
source of B . Using (3.6) we can expand the pres-
sure term, — VP, into the two contributions,’

- gp = - pV(KT) - kTYp . (3.12)

Returning to the induced electric field E, we
shall assume that this can be decomposed into two

(r)

parts. The first part we shall denote by E and
also assume that this part is expressible in the

form E(r> = - V¢ and that it represents the elec-

tric field experienced by the medium but arising
from the particle. The second part we shall denote

by E(t) and consider that this represents the field
arising from induced charges in the medium and that
its acts on the particle directly. We shall further
assume that both of these fields can drive conduc-
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tion currents which we shall denote by,
(r
35 = P, (3.13)

and

18 - 5, S (3a18)

J is the total induced current,
i': qg(r) + ogﬁt) ' (3.15)’
(t) '

H

- V(o¢) + oE (3.16)
by the assumed form for E‘r); Thus (3.16) would repre-
sent a natural decomposition of J by the Helmots's

. t t . .
theorem 1if i( ) = qE( ) were expressible as the curl
of some quantity. In other words, given the assumed

form for_E(r) it is natural to assume that J(t) can
support- a magnetic field E, say. As J can be decompo-
sed into two parts by (3.4), (3.13) and (3.14), the
reaction term R in (3.3) can be put into the form,

where

1, = 3

L1 =2 A B (3.18)
and

(r)

Lz =J

o < A Eo . (3.19)
Lj, Ly and e’ E T) are forces per unit volume impres-

sed on the induced currents and charges by the parti-
cles magnetic induction field B, and its electric
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cie1a B9, Using (3.12),(3.17) and (3.19), the equa-

°

tion of motion (3.2) can be expressed in the form,

mp%% =G+ Gy +Fy - L+ oW, (3.20)
where
' F1= o' - pTCD), (3.21)
3‘2 =‘;pe|E(t) — Lp, (3.22)
and
F3 = pe'V,B - kIVp. (3.23)

The terms have now been paired in antici?atlon of.the
various equilibria discussed in the previous sect;on.
The problem now reduces to showing that the set of
equations,

31=3'2=3'3 =0, ) (3.24)

represent an internally consistent set.under the laws
of classical physics and at the same time that they
have a solution consistent with supporting a thermal
field of the form (1.10) which we.know to be a necei—
sary condition if equation (3.2) 1s to reduce exactly
to (1.34).

" Let us start this analysis to prove cons?stency
by considering the term L which occurs in & given by
(3.22). By (3.5) and (3.19)

- k (3.25)
L, = i(r) 2Bo = g—(r)AuopB_

- 28 -

Thus, if

3.26
RGO | (3.26)
a condition to be discussed further in a moment, then
- _ ()
Lo =-J 7upB
= - o5y g8, (3.27)

by (3.4), and if we take the dipole moment B to be
such that ‘

oBu = - e’ . (3.28)

then the equation,

% =0, (3.29)

will certainly hold as can be see ‘from (3.22). (3.26)
still remains to be explained. The induced electric

(r) (r)

currents J and J will involve no local charge
occuring provided that for every negative charge
induced one positive charge is also induced into

the conduction current streams. Thus if two equal

and opposite charges always emerge from their crea-
tive polarisation of a local state of zero charge
into perpendicular directions on the i, j plane a
condition such as (3.26) is bound to hold. In fact,
the mathematical reason for condition (3.26) is rela-

ted to the fact that the components of J(t) and J(r)
are solutions of Laplace's equation in two dimensions
which in turn is a consequence of the Cauchy Riemann
equations (1.39) and (1.40) but this is not obvious

at this stage of the analysis. We shall now take
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(3.28) to be the actual physical relationship between
the parameters o, 8, U and e' because it is a neces-—
sary condition if (3.29) is to hold. Let us now look

b
be the source of the magnetic induction field B through

the Maxwell equation,

MR 3 (3.30)

more closely at J(t) the part of the current that can

We can relate g_to é field of magnetisation M say by
the relation

joe

= uM, (3.31)
o—

and if M is related to a magnetic field H as in a per-

fect diamagnetic substance we have,

= - H, (3.32)

=

= - y H. (3.33)

| e

As all the equation B, M and H are internally induced
quantities the quesffoﬁ—as to which of them is primary
is somewhat obscure unlike in the more usual situation
when the symbol H is used for the external driving
magnetic field and then H is clearly the primary quan-—
tity in that it causes the magnetic induction B. We
now wish to bring thermal processes into the magneti-
sation relationships. Curie's law, which we shall
express in the form,

2
M W08 (3.34)

H AkT
where A is a constant to be determined, is a well-

known connecting formula between magnetic and thermal
effects. We shall assume that {3.34) holds in our
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magneF1§ab1e electronic fluid context and relates the
qyantltles shown in (3.34) which have been defined ear-
1%er. By (3.5) we have that the magnetisation M_ car-
ried by the particle is given by, - i

LS (3.35)
If we use the maenitud :
relation, gnitude of M in (3.34), we get the
_ AT
t= We ’ (3.36)

However, if our electromagnetic scheme is to converge
onto quantum mechanics it is necessary that the temge—
rature which has emerged through relation (3.34) ’
sh?uld have the same functional form as the temperatur
Whl?h occurs in equation (1.12) and is more precisel :
g;flned by equat?on (1.10). We have seen that vinp iz
re?aiFream function for the vii - v,j flow field in the
1ons‘(3.9) and (3.10). We can use this fact t
express the temperature of equation (1,10) in the gorm
' 9

KT = mY2 (3.37)

3K

a?d using the Cauchy-Riemann equations (1.39) and
(1.40), we can put équation (3.37) into the form
b

KTk = X v v . (3.38)

Thus a quantum mechanically compatible form for the

magnetic inducti : .
(3.36) on field B is from (3.31), (3.32) and
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[
oo
i
=
it
>4
=

Amv (3.39)
2B

i

As it is essential that our electromagnetic
structure in compatible with the form (3.39), we
shall now feed that form into the structure together
with the values we know that v and B must have in
the case of an electron. These values are from (1.10)
v =h/2m and one Bohr magneton for . That is

g = - he'/2m. (3.40)

Thus we shall now work with

m gy, (3.41)
20’ A

|

. . . N,
If we substitute this functional form for B 1into

(3.30), we obtain for g‘t),
(t) _ _Jm
wJ —;TVA(VAV). (3.42)

Using the Cauchy Riemann equations (1.39) and (1.40),

(3.42) can be written in the fcrm,

t m 92 . . 3.43
.uoi( ) - 2m 9 (vii - Vgl) s ( )
e' 3x?

and so by using (3.26), we obtain £$r) in the form,

_..32_

(©) _  omaZ .,
= == (v1j + v2i). (3.44)

|

b

e' 3x2

By (3.4) and the Cauchy—Riemann equatiohs,

evE(r) _ _ m v (avz)
LAY 9xX
_ A
TeAY VD _ (3.45)°
[o)

having used (3.37).

Thus the equilibrium condition,

F1=0, C(3.46)
will hold if,
oV ‘
R (3.47)

However, from (3.28) and (3.40)

Hov = 1. (3.48)

(3.47) and (3.48 o
comstant A,( ) together give for the value of the

A=1, (3.49)
The reader will recognise that this value for A gives

wgatais regarded as the quantum form for Curie's law
(3.34). If we now substitute the expression (3.41)
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for g into the final équilibrium condition from
(3.23),

F, = 0, (3.50)
3

we get, using (3.385,

_ ., mkTk
oY - kTvp = O
A v
or
k,V = - vWanp (3.51)

A

where we have used (3.49). Thus we recover the condi-
tion (3.8) that vinp is the stream function for the
? flow. We have now established that the quantum form
for the temperature distribution is a possible solu-
tion of the electrodynamic set ot equilibrium equa-
tions Fq = & = &3 = 0 and, indeed, that these equa-
tions are mutually consistent with the set of
parameters involved having values related by (3.40),
(3.48) and (3.49). The equation of motion (3.2) or
(3.20) reduces to,

dv _

om 3V - _:I(t)

Bo_ovV, . (3.52)
dt A

where by (3.5), (3.26) and (3.40) we have

Ly =39 B =D (3.53)

By rearranging the expression for L; and using (3.30)
and (3.35) it can be put into the form,

n
vV,B =

= M - M .
Moaal = 7 Hoa Al o (3.54)

L

using (3.32) and (3.33). Thus the equation of motion
can be expressed“in the yet more transparent form,
pm z; = uogoAvAM - pVVq . ‘ (3.55)
and in this form we can see clearly that the extra
"quantum' force is just the force exerted by the in-
duced magnetic field M in virtue of its inhomogeneity
on the dipole magnetisation M_ of the particle. A .
point of interest which ariseS from this work is the
relation (3.48), op v = 1, connecting v = h/2m to the
conductivity of the®electronic fluid. From this we
see that uy v in the resistivity of the fluid medium
and this identification of p. v is rather similar to
the identification of v with a viscosity coefficient

which can be found in the work of Nelson (18) and
others.
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Conclusions

This analysis removes the mystery from the
extra term which occurs as a force in representations
of Schrodinger quantum mechanics in the form of a
Newton like equation of motion. The occurence of
this special quantum force is the feature of
Schrddinger quantum theory which has been regarded
as essentially distinguishing the Schrodinger type
of theory from the classical type of theory. However,
as has been shown here that this extra term can be ex-—
plained on a classical basis and this suggests that
quantum mechanics is not so philosophically distinct
from what is often called classical physics. It seems
that analysis of the local properties of the analyti-
cally continued configuration variables of Schrddinger
quantum theory in terms of their representations in a
real two dimensional space leads to some surprising
results. In particular, it seems that the internal
structure of the electronic fluid is in essence an
example of perfect plasma containment.
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