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NDLR : L'article qui va suivre a suscité chez les lec-
teurs du comité de rédaction quelques réserves ou criti-~
ques. Conformément 3 notre ligne de conduite nous le
publions néanmoins volontiers ; dans un prochain numéro

nous publierons les remarques relatives 3 cet article,

dbstract : It is showm that Heisenberg's principle
for posttion and momentum of a photon admits an interpre—
tation in terms of an interaction law which has the same
form as a Newtonian potential. The application of the
interaction law to a collection of photons leads to the
well-knowm Kirchhoff's formula governing the geometrical
distribution of light on a wave pattern. Moreover, since
the interaction law prescribes an exchange of momentum
(and energy) between interacting photons, it is shown
‘that such exchange is a function of photon number density
or light intensity.
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Résumé : On montre que le principe d'Heisenberg,
appliqué a La position et 4 L'impulsion d'un photon, ad-
met une interprétation & l'aide d'une loi d'interaction
qut a la méme forme qu'un potentiel newtonien. L'appli—
cation de cette loi d'interaction ¢ un ensemble de pho-
tons conduit d la formule bien connue de Kirchhoff gou-
vernant la distribution géométrique de la lumiére dans-
une propagation d'ondes. En outre putsque la lot d'in—
teraction implique wn échange d'impulsion (et d'énergie)
entre les photons qui interagissent, on montre qu'un tel
échange est fonetion de la.densité du nombre de photons,
ou de L'intensité lumineuse. . :

1. Introduction

In a recent paper by Allen (!) the uncertainty
principle for position and momentum of a photon has
been used to derive a lower bound for the energy of pho-—
. toms in a focussed light beam. It has-been shown that
the energy of focussed photons cannot be less than a
certain minimum value and that some photons, if sharply
. focussed, are bound to experienée an upward energy shift,
-This result confirms the hypothesis of energy enhancement
for focussed Ehotons previously advanced "ad hoc" by
Panarella (%-") in order to explain non-linear photoio=
nization events as single-photon processes.

Allen's analysis shows also that the photon energy
shift depends only on the geometrical parameters charac—
terizing the focussing. The intensity, or the coherence,
or any other physical property of the light does not seem
to affect the energy variation. Since the photon energy
enhancement presumably originates from one of the follo—~

wing possibilities : a) annihilation in the focal region

of a few photons; whose energy is transferred to the
surrounding photons, b) inelastic photon-photon scatte-
ring, some photons gaining energy in the scattering pro-
cess at the expense of energy loss from surrounding pho-
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tons ; and these are clearly non-linear processes in the

- electromagnetic field equations, observable only at high

light intensity (and not just at any intensity), it seems

- clear that Allen's analysis leads to contradiction. This .

contradiction emerges also from the fact that those same
photoionization experiments in the field of laser-induced
gas ionization which prompted Allen's analysis had alrea-
dy provide% %vidence that the intensity and the coherence
of }ight ("= ){ and not just the focussing geometry, play
an important role in the iomization process,

In the following, we shall show that a study of the
u?certainty principle suggests. Allen's analysis to be a
first order approximation of a state of affairs in which
the principle, when derived from real experiments, is due
to the existence of a particle-particle (or photon-photon)

1nteractionl. Since the effect of the interaction becomes
more perceptible as the light intensity increases, the
energy enhancement of some photons in a focussed beam is
s@own to depend on light intensity or photon number den-
S§1ity, 1n agreement now with the experimental results.
Mereovey, when the interaction law is deduced from Heisen—
berg principle and applied to a collection of photons

the wgll*known Kirchhoff theorem governing the geomet;im
cal distribution of light is obtained. This result shéws
that photons, as particles, arrange themselves on a wave
pattern, with maxima and minima, only because they are
constantly under the influence of a law of interaétidn
and not because they are guided by waves.

2. Anaiysis‘

The analysis will begin with a study of Heisenberg's

T .' LI .
By 'interaction' we mean any mechanism whereby particles
can exchange momentum and energy.
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prlnClple and the way it was derived. One of the deriva-
tions, and indeed the most famous one, was given by
Heisenberg himself (°). He considers an electron moving
along anaxis x. In order to observe the electron and to
determine its position, a microscope is used. Any photon
used to observe the electron transmits a momentum to the
electron which is uncertain by

. h ‘ :
Apx *x sin® ‘ | (l)
where 0 is the micrqscope angular aperture. On the other
hand, since the resolving power of the microscope is
\ :

A = e 2
Y @

one gets
Ap.bx = h y - (3)

It is clear therefore that Heisenberg's principle can be

- experimentally formulated only because, in this case, a
photon interacts with an electron. If the two particles
ignored one another, the photon would have proceeded un—
disturbed by the electron and the indeterminacy principle
could not have been established. That an observer, in
turn, picks up the information carried by the scattered
photon and makes what is called a "measurement’ does not
change the physical reality that the photon interacted
and transferred momentum to.the electron. The question of
observability vs. physical reality is therefore irrelevant
here.

O0f course, photons and electrons are known to interact,
~and so do electrons and electrons, and protoms and protons,
and electrons and protons etc. But, when it comes to photons
and photons, these are not conceived and permitted to inte—
ract in normal circumstances. Unless omne considers an ex=
periment whereby electrons, for instance, are used to de-
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tect the position of a photon, the Heisenberg uncertain-
ty relation cannot be experimentally proven to apply to
photons. The use of electrons (as well as any other par-
ticle) is, however, ruled out because the uncertainty
principle can be formulated only from a generalization
of the outcome of real experiments, such as Compton's,
The use of electrons for the detection of the position
of a photon would imply the existence of an inverse-
Compton effect, involving the transfer of energy from
free electrons to photons. This effect has never been
found. Therefore, one should look for other ways to
prove experimentally 'that photons. obey the uncertalnty
principle. Otherwise Allen's analysis, based as it is

on the uncertainty principle for photons, loses much

of its meaning.

We would like to offer here the following experi-
mental proof. Comsider Fig. 1 which represents the clas-—
sical experiment of a beam of photons crossing a narrow
slit. After crossing the slit, the x-momentum of each
and every photon is changed from zero to anywhere bet-
ween 4px and *Py- For reasons that will become clear

momentarily, we will here disregard the mathematical

.model of the photon as a wave~packet and the interpre-

tation of the experiment as a diffraction effect, Dis-
regarding, then, the wave-particle interpretation of

the phenomenon, this change of photon momentum can occur
only if the photons interact, some of their momentum
being transferred to the surrounding photons. The un-
certainty of the x~component of the momentum is '

Apx = péine =-% sinf. The uncertainty of therx—coordi—

nate of the photon»is Ax = (both of these are ex-

sing

 perimental results and X is a characteristic lemgth

which does not 'involve the undulatory concept of light
but is determined solely from the intensity distribu-—

tion of light in the diffraction pattern). Multiplying
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Ax’ by Apx one gets the same expression for the uncertain-

ties of position and momentum as previously found:. This
interpretation of interacting photons, therefore, provides
the required experimental proof that photons obey the un-—
certainty principle.

In order now to justify our disregarding of the
wave-packet interpretation of the photon we should in-
~quire : 1) whether this®interpretation really provides a
valid alternative explanation and proof of the uncertain-
ty principle and 2) whether or mot the wave—packet model
is necessary in order to explain the pattern obtained
when photons cross the slit one at a time. In this case,
of course, the interaction between photons is absent and
the formulation of the uncertainty principle in terms of

interacting photons is therefore impossible.

~ To answer the first question, one should recall
that, according to standard quantum theory, a photon is
defined as a localized wave-packet formed from the super—
position of plane waves of many different frequencies all
grouped around some central frequency. It carries the

hoton's energy-momentum at the group velocity and is com—
P gy g

letely specified by an amplitude function p(x,t) where
ﬁw(x,t)]z is interpreted as the probability of finding
the photon at coordinate (x,t). If the momentum of the

photon is p =4%2,kthe group velocity of the wave?packet
is ¢, and the central wavelength is A =‘% (de Broglie

wavelength). This definition of a photon as a wave-packet
postulates the existence of a spread of wavelength or
momentum. In other words, the spread of momentum of a
photon is assumed 'ab initio', or built in the definitiom,
and not derived. Analogously, the definition of the pho-
ton as a 'localized' wave-packet implies that the photon
must be within an interval Ax. The associated waves the—
refore must interfere destructively outside this interval,
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Recall that the spread of momentum is giveﬁ by

h 11 |
Ap = —_—= i = i .
P43 h{xl Az) (@)
wherg A1 and X, are the shortest and the longest of all
possible wavelengths that make up the wave-packet, res-—

pectively.

Multiplying both sides of (4) by Ax :

oo lAx o Ax ' ,
L h[h 72'1 * ' %)

At the extremes of Ax all the waves must interfere des—
tructively in order to cancel the probability of finding
the photon outside the interval Ax. Therefore the inter-
val Ax must contain at least one wavelength more of the
wave A1} than of Xjp. Hence ' '

from which
Ap.Ax 2 h ‘ ‘ (6)

This shows that the mathematically defined photon
as a localized wave—packet contains all the ingredients
that make it consistent with the uncertainty principle,
but certainly does not prove it. The proof can only come
from real experiments (7).

As to the second subject of inquiry, whether or not
the wave-packet model of the photon is necessary in order
to.explain the pattern obtained when photons cross the
slit one at a time, one should turn one's attention to
the fact that no experiment has ever proven that photons
are emitted as isolated particles from any source. Quite
to the contrary, one always deals with a source of light
whose individual atoms cannot radiate independently of
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each other, because they are constantly interacting with
a common radiation field (8). This implies-that photoms
are not emitted at random but have certain characteristic

bunching propertie32 (?). The bunching properties are
also essential for the detection process.

Let ‘us consider,.in fact, one of the most conven-
 tional methods of photon detection, the photographic
process. 1t is known that the photographic grains, when -
~exposed to light, do not become developable unless they
absorb at least three or four photons within a time which
can be assumed to be of the order of the coherence time .

. of the light3 (12). This means that the photographic

. grain acts as an R-fold coincidence counter, where R is

- of the order of 3, 4 or more (1%). The coherence time AT,
which is the inverse of the light bandwidth, in the typi-
cal case of thermal light of peak wavelength Ay = 5000 A

<]
and bandwidth Av = 1012 sec-——1 (corresponding to AA = 10 A)
is of the order of 1 psec. Photons, therefore, in order
‘to be detected, have to be confined within a distance of
the order of the coherence length cAt = 3 x 10 2 cm from
the target grain. This shows that, in the experlments
performed with extremely low llght lnten31ty (16 ),
the assumption that photons were crossing the detection
apparatus one at a time was incorrect. If the probability
was high that the photons were widely separated, the de—

2The first‘éxperiment aimed at determining the Bose-
Einstein "clumping" effect of photons was successfully
performed by Hanbury-Brown and Twiss (10=11),

31n general, more than this number will be required since

not all the photoelectrons which are produced make a con-
tribution to the latent image formationm (13-1%),
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tection probablllty then became extremely small. An assump-
tion more in line with reality would be that, no matter
what the light intensity, the photons are detected omnly
because they are bunched and hit the target detector as

a "clump'. We are then dealing in reality with packets

of photons and not with packets of waves or wave-packets
and the interaction between contiguous photons is not

ruled out even at very low light intensities,

Although we centered our argument around the photo=
graphic process of optical photon detection, we see no
reason for ruling it out in the case of any other type
of fast detection, photoelectric, for instance (18-19),
Actually, the fact that no photoelectric detector in the
optical range has 100 7 quantum efficiency shows that a
minimum number of photons, larger than ome,; is required
for the release of an electron from a photoemmlslve sur-
face.

At any rate, were one able to generate a beam of
light whose individual photons were statistically inde=-
pendent, the photons would not be able to interact and
any diffraction or interference pattern would then disap-
pear. An experiment along this line has been done. The
intensity of a thermal light source was greatly reduced
by reducing the number of atoms excited at the source and
the photons emitted were then statistically 1ndependent.
Indeed, the interference pattern disappeared (20).

The uncertainty principle refers, therefore, to in-
teracting particles. The principle has never been contra-

~dicted. It has the status of a physical law experimentally

found. The interpretation, however, of the terms Ap and Ax
has always been given in terms of uncertainties of the out-
come of the measurement or observation. But, once it is
recognized that the observation is not necessary and it is
admitted that Heisenberg's relation is a consequence of the
interaction between particles, the interpretation of the
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principle changes. Let us refer again to Fig. 1. Assume
that the intensity of light is such that only two photons,
at a particular instant of time, cross the slit. Immedia—
tely after the slit, because of the mutual interaction

and the absence of other photons in the immediate surroun-—
ding, the two photons position themselves at a distance
equal to the slit width Ax. On the other hand, the origi~
nal momentum p of each photon changes, soon after the slit,
by an amount Ap = psin®. We have to assume the maximum

amount of momentum change in order not to violate the un—
certalnty principle ApAx = h. In other words, each photon
receives an amount of momentum Apx from the other and the
‘product of Ax = 5%53 and Apx =‘% sin® (these equglitles,
recall, are experimental results) brings back to the known
formula Ax.Ap = h. Based on the new interpretation of its
constituent terms, this formula can be written in a more
appropriate and concise way :

X.p, * h
or
. h
Px "% 7

where Py is now the change of momentum of a photon in the’

x~direction caused by the presence of another photon loca-
ted at a distance x from the first.

To summarize, if the Heisenberg principle is intrin-
sic in any system (in an atom, for instance, or in a collec-
tion of photons), and the principle is a consequence of the
interaction between particles, expression (7) represents
the law of interaction. This 1aw bears some 51m11ar1ty of
form with Newtonlan potentials ( ) because of the inverse
function of the distance character.
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3. Derivation of Klrchhoff s formula from the interaction
law

The formulation of the interaction law leads to in-
quire whether eq. (7) is capable of explaining known ex-
perimental results, the most obvious of which is the
arrangement of photons on a wave pattern on a screen, To
this end, one has to consider a collection of photons
where any two of them can be assumed to be the couple
to which Heisenberg's principle applies. Formula (7) has
now general validity because it represents a law of mo-

mentum transfer due to the Heisenberg's principle4 bet—
ween any two particles separated by a distance equal to
x. In other words, each particle is subjected to the
field (7) of momentum transfer and this field is genera-
ted by each and all surrounding particles. The maximum
momentum transfer betweén any two particles (assuming
that they are not affected by the presence of other par-—
ticles) occurs when they approach one another by a dis—
tance equal to A, the momentum exchanged in this case
being their own original momentum p = %. In all other
situations, only a fraction of the original momentum is
transferred from one particle to the other, depending on
the distance x, and this fraction approaches the limit
zero when x + . In the light of this interpretation we
see that the familiar parameter ) assumes the simple phy-
sical meaning of minimum distance of approach between
particles, no distance smaller than A being conceivable.
Likewise, since we are dealing with particles endowed
with velocity v (or ¢ in the case of photons), the fre—

quency Vv = %¥assumes the simple physical meaning of re-

by v 0. Y . . .
This is in addition to any other particle-particle in-
teraction which may also lead to momentum-energy transfer

and may in fact be predominant.
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ciprocal of the time it takes for the two'partiéles to

travel a distance equal fb X(T =-% =-%).

If the particle motion is perturbed by the presence
of all surrounding particles, let us determine the amount
of the perturbation. To this end, let us first write eq.
(7) in a more general way :

p(r) = (8)

i

In the optical case, to which we will adhere without
loss of generality from now on, the optical disturbance to
which a photon is subjected can be calculated by standard
means of potential theory (%2) by applying Green's theorem
to a region R containing the position P(x,v,z) of the pho-
ton (test photon) -

J (U7%V - y720)dv = } (o Ny —?—U-st (9
R | » S( Jn on

In this identity we take for V the function (8). Sin-
ce p(r).has a singularity for r = 0, the identity (9) cannot
bg applied to the whole region R. Therefore, we surround P
w1th.a small sphere o with P as a centre, and remove from R
‘the interior of the sphere. For the resulting regionm R' we
have, since p(r) is harmonic in R' :

—

-1 L y2p4y = gl _lau L8 1 1 50)
JR'r JS [ e A JG T 'E_a'ﬁjds S

d e aa.
where 5 signifies a partial derivative in the outward nor—

mal direc?ion at each point on 5. Hence, the last integral
may be written : 4

' 21 1 3U o
U — + — = 2 - BU
JQ{ 2 - r} redt = U.4m + JQ T 5;‘d9 (1)

where U is a value of U at some point of o, and the inte-
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to 2.

gration is with respect to the solid angle subtended at P
by the element of 0. As the radius of ‘¢ approaches zero,
the limit of the integral over ¢ in (10) is &4nU(P) and
the volume integral on the left converges to the integral
over R. We thus arrive at : o

__ 1 v2y 1 Ul .. 1 [ 53 1
u@) = ij{——;—dv«t-ﬂjsa—n—?ds Mfsuamds (12)

This 1s the ekpfeSSion to be satisfiédey the second func- -
tion U in Green's theorem if the first function V is equal

. T

- We would like now to find the form to be taken by
the function U in order to satisfy our physical conditions
and equation (12). Since we are dealing with a stream of
photons moving with velocity ¢, whose position is changing
with time t, the function U representing the optical dis-
turbance .at the fixed point P has to depend on time t al-
§0

U = U(P,t)" (13

Moreover, since simultaneity of cause and effect {action
at a distance) is excluded here, any signal emitted by
the moving photons will be transmitted with finite velo=
city ¢ and will be received by the point P -after a time

r . . .
= Hence, the integration in (12) must be performed not

) . , ] r
at time t, but at the retarded time t - —. In other words,

the function U to be inserted in (12) is

U=UGxy,z,t -0 = [0 (14)

where the square brackets indicate the retarded value of
the function.
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. The optical‘disturbance produced at the point P is
given by U(x,y,z,t). If one considers only one photon,
travelling with velocity ¢, the field of momentum trans=~

fer of such a mov1ng source 1s expressed, in polar coor-
dinates, as (23

- h '
p(r,t), = —=3 , (15)
where o ’r - ctol = c(t-tg) and ty represents a time

such that a signal emltted by the photon at tg will arri-

ve at’ r at time t.

- In a cartesian coordinate system, 1n ‘which the x-
axis coincides with the velocity vector c, expression
{15) becomes : ,
’ : h ~h
(x,7,2,t) = ' ' =
P(6,7,2,0) e=TI) (16)

c(t~tg) - ct-x

Therefore, the field of momentum transfer of the

- photon is a function that satisfies the wave equation :

2 _ 1 32 i
vip = =P (17)
The field of a collection of photons, because of

the linearity of wave equation (17), is given by the sum

of the fields of each photon. Hence, the function U also
satisfies the wave equation.

In summary, it has been verified that the appll—

-cation of Green's theorem to a region R containing the

position of the test photon leads to eq. (12), when the
function V has been chosen to be the one expressed by
(8), the interaction law. For the physical conditions
given by a stream of photons moving with velocity c, the
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second function to be inserted into Green's formula is
U(x,y,2,t), which represents the momentum transferred
from all the streaming photons to the fixed test photon,

. . T
gnd which must be calculated at the retarded time t - Z

in the integration of (12). It was also proven that the
field of momentum transfer (16) for a moving photon sa-
tisfies the wave equation (17). Therefore, the function
U(x,y,z,t), which represents the field of momentum trans-—
fer at point P at time t, is the sum of .the fields of
each photon, thus satisfying the wave equatlon

g2y = L 220 (9

2 at? : .

This and the previous-analysis are suff1c1ent to lead,
by straightforward but tedious calculations (2%y, to :

o] al_lau_l 3T
U(xsy"z’t) = Z-TF JS {[U] ﬁ r [antl[ cr 31:1[31’1]} (19)

This is the well-known general form of Klrchhoff s
theorem, as found in any textbook on optics (23y.
expresses the field of momentum transfer produced by a
collection of photons, randomly distributed in space
and time, at a point (P,t). Given the appropriate boun-
dary conditions, the momentum transferred to the test
photon (Py,t) can then be deduced. The formula does not
depend on such physical properties of the photons as '
energy and momentum, and therefore it is valid for any
photon. However, when a particular class of photons is
considered, for instance, a monoenergetic group of pho-
tons, then a characteristic parameter or length A ap~—

' pears



and this parameter, previously defined as the minimum se- -

‘paration between two isolated photons, affects the photon
space and time distribution and specifies the wave func—
tion U of Eq. (18). The problem of determining such dig-
tribution and finding U(P,t) in this case will not be
dealt with here. -

) In conclusion, the important result has been achie=
ved that the application of law (8) to a collection of
streaming photons leads to Eq. (19), i.e. to Rirchhoff's
‘theorem, of fundamental importance in optics as a basis
for understanding all diffraction’ phenomena of light.

4. Discussion
s

The main result presented in this paper is an in-

_ teraction law for particles derived from the Heisenberg
uncertainty principle. The law is universal, in that it
applies to all particles, irrespective of their size,
mass, density, initial momentum etc., as well as to non-

-identical particles. The law states that any  two parti-
cles exchange momentum, in the amount given by (8), a
function of the distance r only. This implies that each
and every particle is ‘always in contact with the rest
of the world, although the knowledge available of what
happens at distance points is negligible. The motion of
the particles is affected by the interaction law. In
particular, when a stream of photons is considered, it is
found that their path is governed by Kirchhoff's theorem,
which is the basis for explaining the diffraction pheno-

mena of light in various geometrical configurations of
-slits and screens. ~ '

Unlike the Heisenberg principle, which is a state-
ment of the limitation of the outcome of some measurement
the interaction law makes definite statements. What pre~.
viously was considered an uncertainty Ap, = p siné of the

b

extent of momentum change for a particle crossing a slit
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now becomes a definite statement as to‘th? momentum chan-
ge : p_ = p sinf. Likewise, what was considered an uncer-
T x

tainty Ax = Ae of the position of a particle now assu-
sin

mes the precise physical meaning of posi?ion;x.of a par-
ticle relative to another particle. The justification for
these definite statements rests on the grognd t@at ?he
experimental proof of the Heisenberg.prynCLPIe 1mp11esfan
interaction law which correctly predicts. the outcome o
the experiments. . :

As to the reason for not using the general f9rmula-
tion of the Heisenberg principle, in which the ;3Slg?
appears, this is because we considered in the paper ideal
experiments, where the = sign holds.

It should be mentioned that any exact solution of '
diffraction problems can be obtained.only~through Maxwell's
equations, which are vectorial equat19ns. Our tregtment
here has been confined to the derivation of the Klrcghoff
integrél theorem which applies'tozgach of the Cartesian
components of the field vectors ( ).

‘Finally, if the Heisenberg interagtion is always '
present, and the effect of the interactlog normal%y mani-—
fests as a momentum exchange betwe?n paytlc}es, W}t@ no
significant energy exchange, thg situation 1is modlf}ed
when the number demsity of particles becomes very hlg@,
‘In the case of focussed high intensity laser beams, si-
gnificant energy exchange can in fact take place betwegn
photons. Allen's formula for the lower bound of photon
energy tries to set a quantitative value for the upward
energy shift :

>:hcr

r

E

where T is a geometrical parameter characterizing th fo-
cuséing and r is the uncertainty of the photon position
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as.derived fr?m the conventional intefpretation of the
Heisenberg ?rlgciple. In light of the'interpretatiog of
the same p?;nc1ple offered here, r has now the meanin
of separation or distance between photons. Since T isg
~o§v1ou§ly a function of the photon number density or
light intensity I, the energy shift depends on IY in
agreement now with the experimental results, ’
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