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Abstract: When sources of electric or magnetic
fields are present, ‘it is very convenient and useful to
follow a convention that involves a partial-force
concept; i.e., the word *force®” and the symbol ®F" refer
to only the "electromagnetic® part of the force on a
source element; the "mechanical® force that holds the
source element in place is ignored. A result of this
convention 1is that °F" is generally not zero on a fixed
charged body or source element. Of course this result is
contrary to Newton's second law of motion F = dp/dt. But
this contradiction ordinarily causes no problem because
an observer at rest with respect to sources realizes that
in one instance F is a partial force, whereas in the
other, F is the total force. He therefore automatically
and perhaps subconsciously corrects for this discrepancy.
However, this contradiction has on occasion caused
serious problems in the interpretation of electromagnetic
energy flow and storage as described below. The electro-
magnetic energy continuity equation (Poynting's theorem)
for a frame S' in which all sources are at rest is the
fourth component of the electromagnetic ®momentum-energy
‘continuity equation®
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DivyTly = £, (i)

where Tﬁ\) is the ®"electromagnetic stress-momentum-energy
four-tensor® and where f}l is the Pelectromagnetic force-
density four-vector.® Thus Poynting'’s theorem appears to
be manifestly covariant. However, when (i) 1is trans-
formed to a general frame S, the first and fourth com-
ponents of f! intermix in the usual way. But if sources
are present, - fl' may regresent a partial force (or a
nonzero fictitious rate of change of momentum) whereas f,:

may represent real power. Therefore the usual algebraic
simplifications (that ordinarily cause the mathematical
form of the fourth-component eguation in S to be the same
as in S') cannot be carried to completion. Instead, the
mathematical form of the electromagnetic energy conti-
nuity equation cannot be simplified beyond

div(y?s + y*v.T) + (3/3t) (y?w - y?B.s/c)
= -[Y*(3 - ov).BE - Y?B. (JxH)] , (ii)

where B = wv/c, Y = (1-32)_;5, S is the Poynting vector, ¥
the Maxwell stress three-tensor, W the Poynting energy
density, J the current density, B the electric field, and
H the magnetic field in Heaviside-Lorentz units in free
space. Therefore we see that the sometimes useful
partial-~force convention contains a built-in trap; i.e.,
the intermixing of the first and fourth components of (i)
to obtain (ii) renders the general observer incapable of
intuitively correcting for the contradiction built into
the partial-force concept. A large number of serious
problems have arisen from this situation. The oldest and
most famous such problem arose when Heaviside set the
electromagnetic momentum of a charged sphere (whose elec-
tromagnetic energy at rest was U,) equal to the mechani-
cal momentum of a body to find that the electromagnetic
mass of such a body is (4/3)U0/c2. Less well known is
that if Heaviside had set the total electromagnetic
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energy of such a moving body minus its electrostatic
energy equal to the kinetic energy of the body, he would
have found the electromagnetic mass to be (5/3)U°/cz. If
instead of selecting a uniformly charged spherical shell
for his calculation, he had chosen a charged parallel-
blate capacitor, then he would have found the electromag-
netic mass of the capacitor to be 3, 2, /3, 0, -1, or /‘(—Ll-
(all in units of Uo/c ), depending on (a) the orientation
of the capacitor with respect to the velocity vector and
(b) the choice of mechanical analog equation used to
define electromagnetic mass. Another well known problem
is that an observer at rest with respect to a charged
sphere concludes that no energy flows in the field; but
if this observer acquires a uniform velocity with respect
to this sphere, and if he applies the Poynting vector,
then he concludes that the concomitant field energy flow
has a component perpendicular to the relative velocity.
Several ingenious schemes have been invented to account
for or explain away such paradoxes; e.g., Poincarée
stresses and von Laue energy currents. But these
ingenious schemes serve only to compound a basic error.
All of these paradoxes disappear if one takes into
account the existence of the partial-force concept and
accepts the concomitant mathematical form of Poynting‘s
theorem (ii) as transformed to a general frame. The
interpretation of the three basic terms in (ii) is the
same as the interpretation of the corresponding terms in
Poynting's theorem.

Resume : 'Quand les ‘sources des champf élec-
triques ou magnetiques sont -presentes, il est tres pra-
tique et trés utile de suivre une convention qui intro-
duit un concept de force partielle; c'est-a-dire que le
mot ®"force® et le symbole *F*" se rapportent seulement a
la partie "électromagnétique® de la force sur un élément
de la source. Cette convention entralne que "F* n'est en
général pas nul pour un corps chargé fixe ou un élément
de source. Bien entendu ce résultat est contraire a la
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seconde loi du mouvement de Newton: F = dp/dt. Mais
cette contradiction ne pose en général pas de probléme
barce gqu'un observateur au repos bar rapport aux sources
se rend compte gque dans un cas F est une force partielle,
alors que dans l'autre F est la force totale. Il corrige
d?nc automatiquement, et peut-etre inconsciemment, ce
desagcord. Toutefois cette contradiction a parfois causé
de sérieux problémes dans 1'interpretation du flux et de
lf densité. d'énergie “électromagnétigue, comme on Ie
defrira ci-dessous, ;L'éguation de conservation de
l'energie électromagnétigue (théoréme de Poynting) dans
un référentiel S' dans lequel toutes les sources sont au
repos est la gquatriéme composante de *]'dquation de
conservation de l'impulsion-énergié électromagnétigue"

: ] ] -

DleThv = fﬁ (i)

/oa T'v est le tenseur "contrainte-impulsion-énergie élec-
tromagnétique® et £' le ®guadrivecteur de densité de

force &lectromagnétique.® Donc le théoréme de Poynting

apparalt comme manifestement covariant. Cependant, quand

(i) est transformée dans un référentiel guelconque §, les

premidres. et gquatriéme composantes de f' se combinent de
la fagon habituelle, Mais s'il Yy a des sources, f! peut

rgprésenter une force partielle (ou un taux de variation

fictif d'impulsion non nul) alors que f' peut représenter

une puissance réelle. C(C'est pourquoi l;s simplifications

algébrigques habituelles (qui d'habitude font que la forme
mathématique de la quatriéme composante de 1'équation
dans ‘S est la‘méme que dans S') ne marchent pas Jjusqu’au
bout. La forme mathématigue de l'équation de conserva-

t%on de“l'énergie électromagnétique ne peut alors étre
simplifiée au-deld de

div(y?s + y2v.T) + (3/3t) (y2W - y?B.S/c)
= -[Y*(3 - ov).E - y?8. (IXH)]  (ii)

- 170 -

ou B = wv/c, Y = (1—82)—%, S est le vecteur de Poynting,
T le tenseur des contraintes de Maxwell a 3 dimensions,
W la densité d'énergie de Poynting, J la densité de
courant, E le champ électrigue, et H le champ magnétique
en unités de Heaviside-Lorentz dans le vide. Nous voyons
donc que la convention de force partielle, quelquefois
utile, comporte un pidge; en effet le mélange des prem-
iéres et quatriéme composantes de (i) pour obtenir (ii)
rend 1'observateur dans un référentiel quelconque
incapable de «corriger intuitivement la contradiction
inhérente au concept de force partielle. Un grand nombre
de sérieux problémes proviennent de cette situation. Le
plus ancien et le plus fameux d'entre eux s'est 'posé
quand Heaviside posa que 1'impulsion électromagnétigque
d'une sphére chargée (dont 1'énergie électromagnétique au
repose était U,) était egale & 1'impulsion mécanique d'un
corps, et en deduisit gue la masse électromagnétique d‘'un
tel corps est (4/3)U0/cz. Il est moins connu que, sSi
Heaviside avait posé que c'était 1'énergie é&lectromagné-
tique totale d'un tel corps en mouvement moins son éner-
gie &lectrostatique gqui était égale & 1'énergie cinétique
du corps, il aurait trouvé que la masse &lectromagnétigue
était (5/3)U0/c2. Si, au lieu de choisir une surface
sphérigue uniformément chargée pour son calcul, il avait
choisi un condensateur plan, il aurait alors trouvé pour
la masse électromagnétique du condensateur 3, 2, V3, 0,
-1, ou V-1 (tous en unités Uo/cz) suivant (a) l'orienta-
tion du condensateur par rapport a sa vitesse et (b) le
choix de 1'équation mécanique analogue utilisés pour
définir la masse &lectromagnétique. Un autre probléme
bien connu est qu'un observateur au repos par rapport a
une sphére chargée conclut qu'aucune énergie ne s'écoule
dans le champ; mais si cet observateur acquiert une
vitesse uniforme par rapport a cette sphére, et s'il se
sert du vecteur de Poynting, alors il conclut que le flux
d'énergie concomitant posséde une composante perpendicu-
laire & la vitesse relative. Plusieurs modéles ingénieux
ont @té inventés pour rendre compte ou expligquer ces
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paradoxes; par exemple les tensions de Poincaré, et les

courants d'énergie de Von Laue. Mais ces schémas
ingénieux servent seulement 3 augmenter une erreur fonda-
mentale. Tous ces paradoxes disparaissent si on tient

compte de 1'existence du concept de force partielle et si
on accepte la forme mathématique correspondante du
théoréme de Poynting (ii) telle gqu'elle devient dans un
réferentiel quelconque. L'interprétation des trois
termes de base dans (ii) est la méme que 1'interprédtation
des termes'correspondants dans le théoréme de Poynting.

1. INTRODUCTION

The concept of the electromagnetic field as
the seat of electromagnetic energy was proposed in quali-
tative and intuitive terms by Faraday(l). The concept
was put into quantitative terms in successive steps by W.
Thomson(z) and Maxwell(a), who also proposed that the
electromagnetic field of radiation possesses momentum .
The flow of energy in the electromagnetic field of
sources at rest (e.g., during the discharge of a capaci-
tor) and in the field of radiation was described quanti-
tatively by Poynting(“), who derived an electromagnetic
energy continuity theorem from Maxwell's field equations.
Although Poynting's theorem preceded the " theory ' of
relativity by some 20 years, the mathematical covariance
of the theorem was assured when Minkowski(®) constructed
a stress-momentum-energy four-tensor TUV from Maxwell's
stress three-~tensor, Poynting's energy-current-density
vector, and the Maxwell-Poynting energy-storage-~density
scalar and showed that Poynting's theorem is the fourth
component of the manifestly covariant equation

aT
. (1)
va U

where £ is the electromagnetic force-density four-
vector.
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However, in spite of the obvious mathematical
covariance of (1), Poynting's theorem as traditionally
interpreted and applied has long been known(s) to lead to
inconsistencies and anomalies. For example, Panofsky and
Phillips(7) state "Paradoxical results may be obtained if
one tries to identify the Poynting vector with the energy
flow per unit area at any particular point."™ And subse-
quently(e) they state "The second difficulty arises from
the fact that the expression

¢t = [riigy, : (21-62)

is basically not covariant unless the field is 'free' in
the sense of Sec. 21-4" (i.e., unless the field is not
attached to sources). k

Most authors appear to be in general agree-
ment that the difficulties associated with Poynting's
theorem are in some way related to the instability of the
model of a charged body, i.e., the fact that the space
components of £, are not zero even, for example, at a
point within the charge of an electrostatic system. As a
specific example, they identify the problem of the
anomalous 4/3 factor in the -electromagnetic mass of the
classical electron with the instability of the model(g).
This relationship was first recognized by Poincaré(lo),
as related by Pauli(!!). "It will, in any case, be
necessary to introduce forces which hold the Coulomb
repulsive forces of the electron charge on itself in
equilibrium, and such forces are not derivable from
Maxwell-Lorentz electrodynamics. Poincaré already recog-
nized the need for this and purely formally introduced a
scalar cohesive pressure p, on whose nature he could not

make any statement.” Pauli continued, "Generally
speaking, the problem of the electron has to be formula-
ted as follows: The energy-momentum tensor Sik of

Maxwell-Lorentz electrodynamics has to have terms added
to it in such a way that the conservation laws
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for the total energy-momentum tensor become compatible
with the existence of charges."

‘Becker and Sauter(lz) show in detail how one
can accomplish this goal by constructing a tensor "of
mechanical or other origin" which when added to the
tensor T, provides for stability. They then showed that
the combined tensor and the associated combined force-
density four-vector removed some of the anomalies
associated with Poynting's theorem.

A different approach has been suggested by
Rohrlich(!37'%), who pointed out that when performing the
integration to obtain the momentum-energy of the
classical electron it is necessary to select an integra-
tion hypersurface that is related to the motion of the
electron in a relativistically invariant manner. He then
showed that the appropriate choice is a hypersurface
orthogonal to the four-velocity at the intersection of
the world line with the surface. Since the charge is
assumed to be concentrated at a point, the surface may be
chosen arbitrarily outside the region of intersection.
Hence the hypersurface may be assumed to be plane. The
hyperplane thus selected is equivalent to an integration
for all observers at constant time t° (i.e., constant
time as measured in a rest frame) regardless of the
motion of the observer concerned. Rohrlich thereby
obtained a four-vector for the momentum-energy of the
classical electron, while staying strictly within relati-
vistic electromagnetic theory.

In following Rohrlich, Panofsky and
Phillips(e) wrote "It is thus appropriate to question
whether we can substitute a fully covariant expression
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for Eq. (21-62) which will give the correct relativistic
transformation properties for the mechanical aspects of
the electromagnetic field by itself.” And Jackson(ls)
wrote "The discussion of the previous section has one
puzzling aspect . . .. A noncovariant electromagnetic
contribution to the self-energy or momentum of a charged
particle is balanced by a noncovariant contribution from
the Poincare stresses, so the result is properly covari-
ant . . .. Nevertheless it is legitimate to ask whether
the purely electromagnetic contributions of self-energy
and momentum can be defined to have the proper Lorentz
transformation properties.”

Yet another different (but equivalent)
approach 1is that of Cavalleri and Salgarelli(ls), who
describe an "asynchronous" formulation of mechanics. In
the asynchronous formulation, a general observer would
measure lengths and perform integrations over an extended
body at one instant of time as measured in a frame at
rest with respect to the body. (This approach presumes
that any relative motion of various parts of the body
with respect to each other is small enough that the
criterion for simultaneity does not vary significantly
among the frames in which various parts of the body are
at rest.) Gr¢n(17) has discussed in some detail the
asynchronous formulation, including its application to
thermodynamics.

One may summarize the foregoing approaches as
follows. Poincare, Pauli, and Becker and Sauter sought
to construct a new tensor providing for stability even if
they had to include nonelectromagnetic forces (and non-
electromagnetic momentum and energy): in their formula-
tion, neither the electromagnetic nor the nonelectromag-
netic momentum and energy constitute four-vectors; only
the sum is covariant. Rohrlich, Jackson, and Panofsky
and Phillips sought to stay within pure electromagnetic
theory, thereby separating the covariance considerations
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from the stability gquestion; in effect, they retained the
conventional electromagnetic tensor Tuv but substituted a

four-vector representation of the volume element for dv
in (21-62). The asynchronous approach appears to be
equivalent.

The present treatment is a basic reexamina-
tion of the problem. It arose independently of all the
aforementioned approaches and differs from them in the
following ways. The problem addressed by the papers
cited above is essentially the noncovariance of the
momentum-energy of static sources referred to a frame
that is moving with respect to them. The general problem
addressed herein is in the area of electrodynamics in the
‘sense that work is being done in macroscopic systems that
are moving with respect to the laboratory frame; the role
of the coupling of the electric and magnetic fields is
examined; and the principal problem addressed is the non-
covariance of Poynting's theorem itself-—an idea that has
the ring of heresy. So the philosophic approach herein
is to find the basic reason for this noncovariance, to
modify the equation to make it covariant, and then to
interpret and apply the modified equation in the same way
that Poynting's theorem has been traditionally interpre-
ted and applied. Because the present approach involves
the entirety of Poynting's theorem, the power density
term 1is also modified; and it appears convenient to
define some new field terms with unusual transformation
properties. Specifically, the present approach starts
with a detailed examination of the philosophic basis of
each subcomponent term in (1). The conclusions from this
examination are then applied to the transformation
process. The final result is a consistent or covariant
set of definitions {(momentum, energy, and power
densities), a new stress-momentum-energy four-tensor
IA;H a new mathematical form for Poynting's theorem, a
new mathematical form for the corresponding momentum con-
tinuity theorem, and a new power-density four-vector PX.
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A corollary result (that was actually built into the
approach) is that the criterion of simultaneity may be
applied with equal validity with respect to any frame.
Another result of the present approach is that when the
proposed new tensor 33x is substituted for ?u , the
conservation laws discussed by Pauli are satisfied, and
equation (21-62) of ©Panofsky and Phillips becomes
covariant even in the presence of sources.

Two of the results from the present paper
(substitute expressions for S and w for electrostatic and
magnetostatic systems) have already  been derived by
Rohrlich(*3 '*), and they also follow from the asynchro-
nous formulation of mechanics proposed by Cavalleri and
Salgarelli(*®).

Since Poynting's theorem is the fourth com-
ponent of (1), it is by definition covariant. How then
can it be noncovariant? The answer is that Poynting's
theorem is indeed mathematically covariant, but (as dis-
cussed in detail in Sect. 3) the physical interpretation
of the terms is not consistent with the rest of physics.
For example, the term that is interpreted as energy
density contains a component that is not real energy
density; and similarly for the term for density of energy
flow and power transfer.

2. CONVENTIONS AND DEFINITIONS

For reference purposes we list here some
conventions and definitions on which subsequent sections
are based. :

We use Heaviside-Lorentz units in vacuo. All
mechanical supports and structures are assumed to be non-
conducting and nonpolarizable; all charge is Maxwellian;
and all fields occupying the same space are assumed to be
coupled by Maxwell's curl equations. A source 1is
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considered to be a macroscopic structure that produces a
field. The source is considered to be at rest if the
basic structure is at rest. For example, a convection
current whose configuration is stationary is considered
to be a source at rest.

Throughout the present paper the term rest
observer (frame) is -understood to refer to a Lorentz
observer (frame) with respect to whom (which) all sources
are at rest (except in a few discussions in which we
permit sources to move slowly). All observers and frames
are assumed to be Lorentz. All coordinate systems are
assumed to have the same orientation in three-space, and
the three-space origins of all coordinate systems are
assumed to coincide at t = t’= (0. Frame S’ is assumed to
move with speed v = Bc along the x axis of frame S.

We use the Poincaré Euclidean metric and do
not distinguish between covariant and contravariant
indices. Roman indices represent ordinary space direc-
tions and run from 1 to 3; Greek indices run from 1 to 4.
We use the Einstein summation convention.

The electromagnetic stress-momentum-energy

four-tensor ThV is defined to be
T -i8/c
T = . (2)
Y, .
H -i8/c W

The Poynting energy density w is defined to be
W= %(E> + H?), (3)
The Poynting vector § is defined to be
S = cEXH. (4)
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The symbol T may be considered to be either the Maxwell

stress three~tensor Tjk or the corresponding dyadic

T =Z Egg + BE ~ WI. ‘ (5)

The symbol I represents the identity dyadic or idem-
factor. And the electromagnetic force-~density four-

vector f‘1 is defined to be

fu = (pB + JXH/c, iJ.E/c). (6)

Substituting (2)-(6) into the fourth compo-
nent of (1) we obtain the wusual three-space form of
Poynting's theorem: :

divs + JW/9t = -J.E. (7)

Consider now the equation

BT'V
e (8)
for an observer O’ at rest in a particular frame S’ with
respect to which all sources are at rest and in which the
fields are coupled by Maxwell's curl equations. No
anomalies are encountered with the use of Poynting's
theorem by observer 0°,

We next ask the question: If observer O

uses the equation

aT!
4V _ g (9)
axv [
or
div's' + 9W'/9t' = -J'.B' (10)

to describe electromagnetic energy continuity, what equa-
tion should observer O use, to be consistent with 0°?
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For reasons that will become apparent in the next
section, we make a detailed answer to this question. We
start by making a Lorentz transformation of (9) in the
usual way, obtaining

9T 9T
by . 1y .
- iy —— = Yf, - iyBf , (11)
Y ox Y % YL, YeL,

\Y MY/
which by the use of (2)—k6) may be rewritten in the form
div(ys + yv.T ) + (3/3¢t) (YW - yB.S/c)

= -yJ.E + YPV.E + YB. (JXH) , (12)

, where y = (1 - Bz)_k.

To simplify (12) we write the transformed
first component of (8) and then treat the transformed
first and fourth components as two simultaneous equa-
tions, obtaining

. (13)

Then remembering that (13) is term-for-term equal to
(10), and remembering also that the two frames differ by
a rotation in the (x,ict) plane through an angle whose
cosine is Y, we multiply each term in (13} by Y to get
the corresponding quantity for observer 0, thus obtaining
the same mathematical form as (10).

This procedure is a detailed, somewhat un-
usual but nevertheless conventional, way of demonstrating
the mathematical covariance of Poynting's theorem. Where
then does the basic difficulty with Poynting's theorem in
the presence of sources arise?
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3. THE NATURE OF THE PROBLEM

The basic problem is one of conventions,
definitions, and interpretations. A four-vector is an
ensemble of four gquantities that transform (under a
rotation of the coordinate system) in the same manner as
the coordinates of a fixed point in four-space.  The
object fu is defined mathematically to transform as a
four-vector; in other words, to be a four-vector.
However, the mere fact that an object possesses the
requisite mathematical properties of a  four-vector does
not necessarily mean that this object also has the proper
physical definition and interpretation to be applied to
the real world. Does f, satisfy the physical require-
ments of a four-vector?

A mathematical four-vector represents a real
physical quantity only if the components of that quantity
actually intermix 1in nature (under a rotation of the
coordinate system) in the appropriate way; in other
words, only if the components relate to each other in
nature in the same way as the coordinates of a point in
four-space relate to each other. The momentum and energy
of a particle constitute a four-vector that does apply to
the real world because momentum and energy do intermix in
the appropriate way. The rate of transfer of momentum
per unit volume and the rate of transfer of energy per
unit volume for an extended body likewise constitute a
four-vector that applies to the real world. The entity
£y is defined to be the rate of transfer of energy per
unit volume from the electromagnetic field to a source
element at rest at the point of interest P; however, f!
is defined in such a way that it is not in general theé
rate of transfer of momentum per unit volume from the
field to the source element at p, Therefore, when fé and
t? intermix wupon transformation of the frame of
reference, real energy and fictitious momentum (or
fictitious energy) intermix, leading to a composite
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quantity that does not have any ordinary physicél
interpretation.

Consider the following example: a parallel-
disk capacitor at rest being charged by a uniform string
of positive charge of density P' in a manner analogous to
that of a Van de Graaff generator. Let the string of
charge have a small uniform velocity u' along the axis of
the capacitor. In keeping with the conventions stated in
Sect. 2, we consider the source of the electric field
petween the plates and the source of the magnetic field
to be stationary. The mechanical force along the string
is doing work on the charge, which in turn is doing work
on the field, at the rate -p‘u'.B' = ~J . B, This is
real work; the concomitant potential energy is directly
observable in terms of f%E'de'; and this stored energy
can be retrieved. However, the mechanical force along
the string is not transferring momentum to the charge;
the charge is not transferring momentum to the field; no
momentum is being stored; and no momentum can be
retrieved. Nevertheless, according to the conventional
partial-force concept in electromagnetism, the space
components of fﬁ are

£ = P'R' + J'XE'/c,

which are not zero in the string of charge. Thus we have
in this example an anomaly: at a point P in the string of
charge, £,/ represents real work or energy transfer
between field and source, but I} does not represent real
momentum transfer between field and source. Therefore fj
fails the physical test for a legitimate companion to £
in the ensemble fﬁ. We thus conclude that fﬁ as conven-
tionally defined does not satisfy the physical compati-
bility requirements of a four-vector ensemble because
real energy and nonmomentum do not relate to each other
in nature in the same way as the coordinates of a point
in four-space.
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Consider for this example the inverse of the
transformation from (9) to (11) for the point P:
£, = y (£ + iBf;) =y({'u'.E'/c + ip'B.E'). (14)
Since f; is not associated with the time rate of transfer
of real momentum per unit volume at P in 5’ (because f{
is balanced by the equal and opposite mechanical force of
the string) the quantity Bf{ in (14) cannot be associated
with the time rate of transfer of real energy per unit
volume at P in S. Therefore £, consists of a mixture of
energy (f;) and nonenergy (Bf;). ‘

This inconsistency between the definitions
and interpretations of the time and space components of
fﬁ (that f; is the density of the rate of transfer of
real energy and that fé is the density of the rate of

transfer of nonreal or fictitious momentum) causes no
significant difficulties for a rest observer; he intui-
tively takes into  account the fact that £y is only a
partial electric force, balanced by an equal and opposite
partial mechanical force, hence does not lead to a finite
rate of transfer of momentum. However, for the nonrest
observer, serious difficulties do arise because he is not
able to handle intuitively the mixture of energy and
nonenergy contained in f“ in (14) because both energy and
nonenergy are represented by the single term fu or J.E/c.
Therefore the nonrest observer implicitly interprets both
parts of f“ in (14) as real enérgy.

: Even for purely electrostatic systems, the
nonrest observer is likely to interpret p'g.E' (or
pv.B/k) as real power transfer density. An example is
the explanation of Laue(*®) for the null result of the
Prouton-Noble (!?) experiment, in which a charged capaci-
tor was suspended by a torsion fiber so that it was free
to rotate under the influence of the apparent torque
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couple exerted on the plates by their mutual electromag-
netic force. (The motion of the earth through the ether
provided the magnetic part of the force.) Laue's explan-
ation of the null result of Trouton and Noble was that
the torque exerted by the magnetic force was absorbed by
the "increasing angular momentum®” of the "elastic energy
current” associated with pv.E. Laue's explanation has
been described by PauliRZQ) and by Becker and Sauter(ZI).

4. PROPOSED SOLUTION

The essence of the problem is this: if
.sources are -present, then fé is conventionally defined to
represent something other than the rate of transfer of
momentum; but when f! is transformed from S’ to S and the
usual intermixing of the first and fourth components
occurs, then f, is conventionally interpreted to repre-
sent the rate of transfer of real energy even though part
of f, is Bf! and even though Br! cannot represent the
rate of transfer of real energy in S because fy does not
represent the rate of transfer of real momentum in S°.

This contradiction in the conventional defin-
ition and interpretation of the components of £,, and all
the conse?uences of that contradiction are what led Pauli
to write( 1) "we therefore see that the Maxwell-Lorentz
electrodynamics is quite incompatible with the existence
of charges, unless it 1is supplemented by extraneous
theoretical concepts.” (The emphasis is Pauli's.)

The "mechanical®™ stress-momentum—-energy ten-—
sor, such as that of Becker and Sauter(lz), is one such
naxtraneous theoretical concept" referred to by Pauli;
the Poincare stresses(lo) are another manifestation of
the same extraneous theoretical concept; and the Laue
energy currents(le) are yet another such concept.
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Ordinarily, when a transformation of a four-
vector equation is made from one frame of reference to
another, the transformed first and fourth component equa-
tions are merged as two simultaneous equations to reduce
the number of variables and thereby to simplify the
transformed equations as described below (12) and (13).
This procedure leads to the same mathematical form in
both frames involved in a transformation; and of course
the same mathematical form is the essence of covariance.
The proposed solution of the problems and paradoxes
associated with Poynting's theorem is to recognize that
the merging of real energy and fictitious momentum terms
to create a single "energy" term is an illegitimate
procedure because it erradicates the distinction between
real and fictitious quantities. Maintaining this
distinction between real and fictitious quantities
requires that the mathematical form of Poynting's theorem
be more complex in a nonrest frame than in a rest frame.

To understand precisely, how the interpreta-
tion of terms is distorted by the merging process, we
consider it in some detail. We transform the four-vector
equation ‘ '

Aﬁ = Bﬁ (14a)

from a rest frame S' to a general frame S. 1In the usual
way we obtain the first and fourth components:

(st Component) YA, + i§BA“ = YB, + iyBB, {14b)

(4th Component) YA, - iyBA, = ¥B, - iyBB, . (14c)

Equations (14b) and (l4c) represent side-for-side the
identical physical entities represented by the corre-
sponding components of (14a). There is no problem with
interpretation so far. Rewriting (14b)
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YA = YB, + iyBB, - iyBA, (144d)
and substituting (14d) into (l4c¢) we obtain
YA, - iyBB, + yB®B, - YB®A, = yB, - iyBB,. (l4e)

Equation (l4e) is still side-for-side the same as the
fourth component of (l4a), and there is still no problem
with interpretation. So far, we have merged two equa-
tions containing four variables to obtain a single
equation containing. three variables. However, if we add
iyBB, to both sides of (l4e), then we eliminate another

‘variable, leaving only two variables, as follows:
ya, + y8*B, - YB%*aA, = yB,. (14£)
Further algebraic manipulation leads to
A = B . (149)

But we choose to stop at (l4e) because adding inB1 {or
iyBf,) to both sides of (l4e) causes irreversible damage
to the physical interpretation of (l4e). This step
amounts to adding inf1 or iypv.E (which is nonphysical
power density) to both sides of an equation relating two
real power-density terms. Of course, if p = 0, then
this step is legitimate. But if p # 0, then pv.E is
merely an artifact of the motion of the observer; and
since this fact is obscured by the removal of this term
from each side of (l4e), a general observer is unable to
compensate for the artifact content of As and Bs.

Therefore, returning to (12), which in effect
keeps separate accounts of real and fictitious quanti-
ties, we multiply both sides by y [for the same reason as
(13)] to obtain
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divy?s + y2v.T) + (3/3t) (y*w - y?8.8/c)

-[¥? (@ - pv) .E ~ y?B. (3xm)] (15)
or

divy?s + y2v.T) + (3/3t) (y?w - y?B.S/c)

-[¥?3. (& + Bxm) - pv.E], (15a)

which is the proposed electromagnetic energy continuity
statement for a general observer, whether sources- are
present or not.

Perhaps it should be emphasized that a term-
by-term substitution of the ordinary transformations of
J', p¥, B', H', div’, and 3/0t’ into (10) leads also to
(15).

. We interpret the three major terms in (15) as
follows. For a given point P in the field (coupled by
Maxwell's equations), the right-~-hand side of (15) is the
power per unit volume being transferred to the field from
a source element at P; the time~derivative term is the
rate of increase of field energy per unit volume stored
at P; and the divergence term is the rate at which energy
per unit volume is flowing away from P to other parts of
the field.

Each side of (15) is wvalid for (i) any
orientation of the coordinate system (in three—space),
(ii) any constant speed of the system being cbserved with
respect to the laboratory (or the orientation of the
coordinate system in four-space), and (iii) any direction
of the relative velocity. Furthermore, the 1left-hand
side is (iv) independent of the system of electromagnetic
units.

- 187 -



Note that, if B = 0, then (15) reduces to
Poynting's theorem as it should. A transformation of
(15) to another frame S* need not stop at the analog of
{12); hence may be shown in a straightforward way to lead
to the same mathematical form as that of (15) .

. From (15) [as interpreted] we write revised
definitions for electrémagnetic-energy-current density &,

&= v’s + y?v.T , (16)
for electromagnetic-energy-storage density T,
B = y’w - y®8.5/c, (17)

and for electromagnetic-power-transfer density,

Electromagnetic-power Density
for 0 = Y?[J.E - pv.E - 8. (3xH)] . (18)

The argument of Abraham(?2) with respect to
the vector S can be applied to the energy-current-density
vector & to obtain an electromagnetic-momentum~density
vector: & /.

5. INTERPRETATION OF THE PROPOSED ELECTROMAGNETIC-POWER-
TRANSFER-DENSITY TERM

For a rest observer 0!, the quantity J'.E' is
indeed a valid definition of electromagnetic-power-
transfer density, and it is easy to appreciate intui-
tively the physical significance of the product J'.E'.
On the other hand, the physical significance of the
second and third terms inside the brackets of (18) is not
immediately obvious. But if observer 0 is to be consis-
tent with 0’, then O must use (18) or some equivalent
expression.
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What is the intuitive physical interpretation
of the terms in (18)7? Essentially it is this: the
product J.E as conventionally defined includes convection
currents and induced electric fields that arise solely
from the motion of the observer; hence even for electro-
static or magnetostatic systems, the product J.E impligs
nonzero power transfer; this apparent power transfer is
fictitious; the second and third terms subtract such
fictitious power that exists in J.B to give the ne? real
power transfer  density. The following paragraph illus-
trates this concept in some detail.

Because of the vector identity
Ae (BXC) = B' (C}“l) £
the third term in {18) may be rewritten
B.(JXH) = J. (BXB) = J.E, s
where . B, is the induced electric field associated with
the magnetic field H. Since
pv.E, = pv. (Hfv/c) = 0,

we may add this term to the right-hand side of (18),
obtaining

Electromagnetic-power Density
for 0 = Y?(J.E - pv.E - J.E, + pV.E)
= y2(J - V). (B - E,) (19)
Thus we see that the effect of the second and third ter@s
in (18) is to subtract from J.E the first-order terms (in

g) that arise solely from the motion of the observer.
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It is instructive to derive an alternate {(but
equivalent) power-transfer-density expression 1in an
apparently different way which permits a direct compari-
son with elementary concepts from relativity theory. To
do so, we distinguish between the contributions of
"separated charges” and "currents in neutral conductors”
to the quantities J, p, E, and H. The quoted terms in
the preceding sentence are defined in the language of g1,
an observer at rest with respect to all sources.

Letting a subscript g denote a quantity that
owes its existence strictly to separated charges and
letting a subscript i denote a quantity that owes its
existence strictly to currents in neutral conductors, we
write the modified standard transformation equations as
follows:

p; = B.J;/c (20)
Iq = 7 (21)
E; = H;XB (22)
H, = BXE,. (23)

Using (20)~(23) and the standard transforma-
tion equations for J' and EB' we write

NANS

i

£
J§Ex + J§E§ + JéEé

Y(TLE, + JYEY + J,E, - pVE,

- BIyH, + BIH,)

YIWTix + Jgu) Bgx + Jiy(Eqy + Ejy) + Jiz(Bgg + Ejz)

-(gq + pi)Vqu - BJiy(Hiz + qu) + BJiz(Hiy + qun

L}

(35 By - BzJi.Bq) = J;.B/Y- , (24)
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, The somewhat complicated procedure that led
to {24) is analogous to the well known simple procedure
that leads to

dt' = dt/y

and also to other common equations for the transformation
of the fourth component of a time-like vector between a
rest frame §' and a general frame S.

Therefore, on the one hand, it follows that
the quantity J;.E; transforms in the same way as the
fourth component of a time-like £four-vector. On the
other hand, the quantity J.E (although it does transform
mathematically 1like the fourth component of a four-
vector) does not necessarily transform like a time-like
four—-vector. Indeed the ensemble fu does not possess
ordinary time-like or space-like characteristics typical
of four-vectors representing physical guantities. [In
other words, the space components of a time-like vector
for a body  (such as momentum-energy) vanish in a rest
frame; and the time component of a space-like vector
{(such - as the interval between two scratches on a bar)
vanishes in a rest frame.] Furthermore, J.E does not
represent strictly real power transfer if moving sources
are present.

If a rest observer o' ‘defines electromagne-
tic-power-transfer density to be J'.E' and if observer O
is to be consistent with 0' in what he defines as
electromagnetic~power—transfer density, then the analysis
from (20) to (24) requires that observer O define
electromagneﬁic—power-transfer density to be Ji.Eq:

Electromagnetic~power Density for O = Ji‘Bh (25)

or some equivalent definition. The expression J.E is not
a consistent definition of electromagnetic-power-transfer
density as long as J is interpreted to include convection
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currents (moving charges) as well as conduction currents

as long as E is interpreted to include the "induceé
electric field" associated with moving magnetic sources

and as long as E is interpreted not to include the micro:
scopic field associated with the "mechanical® restraining
forces within the body on which the charge resides.

Although the immediately preceding analysis
énd conclusion [based‘pn (24ﬂ were made and arrived at
in a different manner from the procedure that led to
(18), a direct substitution of (20)-(23) into (18) leads
to Fhe same expression as given by (25) for electromag-
netic-power~transfer density for observer 0.

Tyus we have three equivalent expressions for
electromagnetic~power-transfer density for a general
observer: (18), (19), and (25).

. We note that the quantity (J - pv) from (19)
is not precisely equivalent to the quantity Ji»from (25)

because the x component of J o -
posuse ( pPwv) transforms as

Je TPV =YW +0') -y +BI/C)v =y (3} - B2IY)
=YL - B%) =3, (1 - B?).

S%milarly, the quantity (B - En) from (19) is not pre-
cisely equivalent to the quantity gq from (25) because

th
foilosgﬁnsverse components of (B - En) transform as
(B - B, = (E- ), =vy(E' - BxH'), +y[BX(H' +BxE")],

YE] + Y[BXBXE")], =vyE!(l - B2)

- a2
Eq; (L - B*y).
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Perhaps it should be emphasized that Jj and
E_ have unusual transformation properties: fields and
quantities that are not coupled in S are not coupled
upon transformation to S in the process of obtaining J;
and B.. That is to say, E, is the result of transforming
only ‘that which is electric field in S* at pP—any
independent or noncoupled magnetic field at P is ignored
in this particular type of transformation because there
is no energy transfer between a stationary conductor and
a magnetostatic field, regardless of the motion of the
observer. Similarly, J; is the result of transforming
only that which is current density in S' at PpP-—any
independent or noncoupled charge density at P is ignored
in this particular type of transformation because there
is no energy transfer between a static charge and an
electric field, regardless of the motion of the observer.
The basic reason that the unorthodox transformation
properties eliminate the paradoxes is that the object fp
is itself unorthodox: It includes real energy and
fictitious momentum in its components.

It is easier to .apply  (25) than (18) to
simple situations to gain an intuitive appreciation of
the proposed definition of electromagnetic-power-transfer
density. The basic physical interpretation of Ji.gq is
that whatever a rest observer interprets as real power
transfer density at a point P a general observer will
interpret the power transfer density at P to be y times
as much. ’

. Consider a specific example illustrating this
concept: a line segment of a neutral resistive conductor
parallel to v. Since the electric field parallel to v is
the same for all observers and since J;, = yJ,, it
follows ‘that Ji'qq = yJ'.B' for this example, a result
which 1is consistent with elementary concepts from the
theory of relativity.
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Consider another specific example: two small
static distributions of charge with opposite signs at
opposite ends of a rod parallel to the x' axis. Let P be
located in or at the positive charge. According to o,
no work is being done at P because J' = 0. However,
observer 0O, using J.E for electromagnetic-power transfer
density, concludes that work is being done at P because

J.E = pv.E # 0.
The proposed definition (25) leads to

Ji.Eq = (yJ') .B' = 0.

Consider one more simple example (which was
used in a different context in Sect. 3): an element of
charge dg being pulled slowly with velocity u by a string
across the space between the two parallel plates of a
charged capacitor. At the location of dg the power
transfer density is J'.E' = p'u'.E' according to gr.
Transforming to frame S, we write

J; By = (yJ').E' = yJ'.E',

which again agrees with elementary concepts from relati-
vity theory but does not agree with conventional electro-
magnetic theory involving Poynting's theorem and sources.

6. A PROPOSED ELECTROMAGNETIC POWER-DENSITY FOUR-VECTOR
AND POWER-DENSITY FOUR-TENSOR

The interpretation of £ as the density of
the time rate of transfer of energy in the classical
equation of continuity is valid; but it is clear that fé
as usually defined may not legitimately be interpreted in
general as the density of the time rate of transfer of
momentum. One can easily find a new expression for a
compatible companion for f;, i.e., one can use f: to
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construct a complete four-vector all of whose components
may be legitimately interpreted in the conventional way
as the density of the time rate of transfer of momentum-
energy in systems in which there is no.relative motion
among the sources. To do so, we start by defining for a
rest frame S' the density of the time rate of transfer of
momentum-energy to the electromagnetic field:

Py = -(0, iJ'.E'/c). (26)
Next we transform P} to a general frame S
Py = -{yB(3'.E") /c,iva' .E'/c}. (27)
And then we substitute the ordinary transformations of J'
and B' into (27) to obtain
P, = -{Y’[0.E - ov.E - B.(axm)]B/c,
| iv?[3.% - ov.E - B.(3xm)] /c}. (28)

By inspection we see that (28) may be rewritten

where B, = (YB, iY). One can see further by inspection

that the fourth component of (28) or (29) leads to the
same redefinition of power transfer density as (18).

Note that the net effect of taking the inner
product £, B, is to annul the influence of the fictitious
momentum transfer rate represented by fé (because fqu =
fIR! = f;B;), thus eliminating the capability of fj to do
mischief by intermixing with £ upon transformation to a
nonrest frame, thereby misleading a nonrest observer as
to the real power density.
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The space part of PA in (28) may be under-
stood as follows. Assume that an observer O is charging
a capacitor by means of an electrical battery while
everything is at rest in his laboratory to which frame S°’
is attached. The capacitor is hanging by a fine wire so
that it is free to swing. Another observer O using a
frame S with respect to which S’ has a velocity B notes
that the- electromagnetic momentum must be increasing
between the capacitor: plates as well as the energy U
(because this energy has a mass equivalent to U/c? and a
velocity equal to Bc). Since observer O does not see the
capacitor lag or swing back (i.e., he does not see it
tend to slow down as its mass is increased) he concludes
that the source of the energy (or the source of P“) must
also be the source of a force (or the source of pk) that

gives this energy the momentum that it needs to keep up
with the rest of the moving laboratory (i.e., to keep B
constant) . This 1is the essence of Trouton's first
experiment(zs) to detect the motion of the earth through
the ether. Of course he did not observe the capacitor to
slow down when he charged it.

We note in passing that, although "paradoxical
results may be obtained if one tries to identify the
Poynting vector with the energy flow per unit area at any
particular point,"(’) no such results are obtained with

DA. The transfer, flow, and storage of energy predicted

by (15) and (28) do no violence to the intuition. If we
imagine that Trouton used one parallel~plate capacitor to
charge anotlier, then detailed calculations by observer o
of power transfer, energy flow, energy storage, forces,
and torques over Trouton's laboratory (S7) reveals an
interesting but otherwise unremarkable distribution of
values.

Applying either the procedure leading to (15)
or the procedure leading to (28) to the space components
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of (1) we find the general-frame form of the equation of
continuity to be

DiVHBATuva = fuBUBA' (30)
which may be rewritten in the form
pivyT yy = Pas (31)
where »
Y2 (s/c+B.T)B  iy?(W-5.B/c)B SB/c iBmB
IAU - 2 i .
iy?(s/c+8.T) -y*(w-s.B/c) i6/c - B
(32)

is a generalized stress-momentum-energy tensor that elim—
inates the inconsistencies associated with Thve

Equation {15) [ﬁhe electromagnetic energy
continuity equation] follows immediately from (31); and
the corresponding momentum continuity equation also
follows from (31). Note that the (k,4) components of
IX represent momentum density, that the (4,k) compo-
nen%s represent energy current density, an@ that the
(4,4) component represents energy storage density.

If ¥, ; is substituted for ™71 in (21-62) of
Panofsky and Phillips (Sect. 1 herein), then.the reSﬁlt—
ing equation is covariant whether the field is "free" or
not; and the resulting ¢t is therefore a four-vector.

Furthermore, if one uses IXH instead of Thv,
then Pauli's statement, "The energy-momentum tensor S5,

of Maxwell-Lorentz electrodynamics has t? have terms
added to it in such a way that the conservation laws
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2‘ QEZH-= 0
8XU

1s valid for systems in which no work is being done

v7. DISCUSSION

poynting's égzz interpretations of the three terms in
beratar” noune rém are very appealing to the intuition
pocause e;i ing’s theorem applies to electromagnetic
horR ond 1£g§ the samg classical concept of continuity
R timepp 23 to flglds, heat, neutrons, ., | .. Per
Chace me Zn pPer unit volume at g given point P in
exte:éal SouTount of work pgrformed on the field by some
onera Storedcg cf ene;gy 1s equal to the increase in
emeroy rore in the field at » Plus the net amount of
sy g Lo ggt to other. parts of the field. Equation
aer, "y 1?1:5pr925$1122§?e gaﬁf way. By substituting
! . P into (15) we obtaj
tggz:gon that even .resgmbles in appearance Poyséfn ?n
m and thereby implies the same interpretation: 9

BRI
-J..B_ = =4 gj
1By ot + div s, (33)

However, an examination of
18 (16)1 (17) a
étoza rezfal§ that the energy current density, égernd
ge' ensity, and power transfer density at a i b
sgace involve nonlocal terms: the B's and ¢ O ver
Since Poynting's theorem was assumed to appl}yéz mon:;
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sources and stationary sources with uncoupled overlapping
fields, physicists have believed that one could ascertain
the electromagnetic energy storage density and energy
current density at a point in free space by a measurement
of only E and H at that point. It now appears that this
attractive concept is not valid within present conven-
tions if moving sources are present. One needs to know
what is happening somewhere else: in particular, one
needs to know how a given field is produced and how fast
the sources are moving. If some conventions are changed
(e.g., the partial force concept from electrostatics)
then it may be possible to eliminate the Bts and Y's from
the definitions of electromagnetic energy and momentum
densities; but such considerations are outside the scope

of the present paper.

The mathematical expressions for the momentum
and energy densities implied by (16) and (17) are the
same as those obtained by Rohrlich(la’lu), even though he
used a different physical argument, model, and logic, as
described in Sect. 1; he was working specifically with
the point electron whereas the present work is concerned
specifically with macroscopic Maxwellian charge; and he
was working with a static system whereas the present work
concerns dynamic systems. The essential point here is
that the requirements of physical covariance (as distin-
guished from abstract mathematical covariance) were
imposed on both derivations (Rohrlich's and that herein).
Quantitative discussions of ,Rohrlich's results, when
arbitrarily applied to certain macroscopic charged
bodies, have been given(2*’2%). Several other authors
have successfully resolved the discrepancies that arise
when the classical concepts of electromagnetic momentum
and energy are applied to the classical electrong a brief
history of these efforts has been published(2 ). The
asynchronous formulation of mechanics proposed by
Cavalleri and Salgarelli(ls) is analogous to the approach
of Rohrlich and gives the same results.
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Not 1
Sios ai@ei in pFoof. A detailed and thoughtful discus-
ston o t'e p@llosophlc basis for the choice of simul
ne Yy criterion { synchronous Vs. asynchr i
cently been presented by H. Arzeliés onous)
3

The asynchronous 13=1¢
. . approach
1ntegrat{on by observer 0 at constang t’ )
pProper time. As previously shdwn(zs),

involves
or constant
this requirement

is equivalent to a substi i

\ stitution = of
re a four-
representation do,, for the volume element dv j I=vector
of Sect. 1; viz,, in (21-62)

G, = fTuvde,
where
doy, = ydv(yB,iy) = (y28,iy?)dv.
For the special c¢

been shown(zs) th
to

aisihgf ai)electrostatic system it has
1s substi i
titution of dcv for dv leads

B 2, 2
¢ = Jor’/c?) [cmm + 5(5? - g%y - c (BxH) | av.

Thus we see that integration

proper time  subtracts 1 i

zzz?ziﬁzmxziiz: iffrz:;théng}przizzgﬁa;iiythzhzleziigiggi
system i i

g?isr;iz f;_animthigiZUtii i? ;n;?ief;ﬁ;fgfeiin;ie$;:;:?

:;;r::cn}::er::g, é:::t ma;io; di-ff:;e:csesel;:tf:esntatfhig ;ﬁ:::lr‘::

proper time may be sun;gZZi:;?%s ;:Sji;iinn 2 eonstant

by observer 0 at constant
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Present Approach. The composition of the
Poynting energy flow vector S and energy density w are
described in detail by the sequence of equations (l4a)-
(149); i.e., for static systems referred to a general
frame, S and W include subcomponents that arise from the
fictitious momentum and energy associated with balanced
partial forces. The present approach is to stop at (l4e)
because adding iYBf1 or iypv.E to both sides of (l4e)
does irreparable harm to the physical interpretation of
the terms. Stopping at (l4e) is equivalent to choosing
(29) because the taking of the inner product pr also
annuls the influence of the £y components. The result in
either case is that one obtains unconventional expres-
sions for electromagnetic momentum and energy densities
which are then used in (21-62) in the conventional way:

G)\ = fIMdv.

Asynchronous Approach. . Although the step
between (l4e) and  (14f) destroys . the interpretation of
the terms involved, it is still possible to retrieve the
basic information from (14f) or (14g9) by requiring all
observers to perform the integration at constant proper
time, which  is equivalent to taking the inner product

Tyd0,, in the equation
GU = ij\)do\)'

This procedure subtracts out -the classical result and
substitutes a new result which is the same as that of the
present approach. For intuitive purposes one might think
of the constant-proper-time requirement as a photographic
snapshot of the situation by observer ¢0f; such a snap-
shot, when used by observer O, precludes the combination
(motion of system S and the balanced partial forces
applied to static elements of a system in S') from intro-
ducing any apparent transfer of momentum-energy, even for
observer 0, thereby eliminating the classical problems.
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Comparison. For observer ¢ to obtain the
correct answers for electromagnetic momentum and energy
Oof moving static systems, it is essential that the effect
of fé {or the Ccorresponding components of Divipe )  be
annulled in one way or another. There are two ways to do
this: (i) Stop at (14e) while transforming (8) from g
to S or take the inner product f B to obtain the densi-
ties as illustrated by (29) or (ii perform the integra-
tion at constant proper time or' integrate with a four-~
vector representation do,, of the volume element, thereby
effectively taking the inner product Tuva'

S0, in effect, for static systems the Present
approach may be said to involve correction before the
‘integration (i.e., at the "density" stage) whereas the
asynchronous approach involves correction during the
integration (or at the total momentum-energy stage) .

8. APPLICATION OF (15) 10 ELECTROSTATIC SYSTEMS

The present baper grew out of the discovery
that the electromagnetic mass m of a charged parallel

plate capacitor is 2U0/c2 {where u, is the electrostatic
field energy of the capacitor at rest), This value
arises (i) from application of the Poynting vector to
calculate the electromagnetic momentum of the capacitor
moving in a direction parallel to the pPlates and
(ii) from equating‘this value to m,.v- If the direction
of motion ig perpendicular to the plates, then m

becomes zero. But if the electromagnetic energy U of Egg
moving capacitor is calculated from the Poynting energy
density by equating i;memv2 with U;Uo, then the electro-
magnetic mass becomes 3Uo/c2 for motion parallel to the
plates or -Uo/c2 for motion perpendicular to the pPlates.
Other combinations of orientation, electromagnetic field
integration, and electromagnetic mass equation give V3
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i ble
2 is appeared to be an intolera
: /CZ o vl UO/C o i P? lectromagnetic mass not
sgate of affairs for physics: e if r kg etlc mass not
of ran
appeared to be a tensor ! .
:;;Zaregp to be dependent on the choice of mechanical

defining equation.
The electromagnetic mass of a sphere was cal-

2 from the
culated by Heaviside (1885) to be (4/3)U0/c

initi of mechanical linear
i vector and the deflnltlen ;
romentin This value has received a great deal of

mentum.
mztention, but another value apgears to havethbiig
?gnored' the Poynting energy density together wi

definition of kinetic energy at 1low speeds leads to
(5/3)U,/c2.

We now consider the electromagnetic energy,
and electromagnetic mass of any eleetrosta;;:
system  according to the proposeid .sub:t;ltiustepurely

i £ the fie in
ting's theorem (15). I A _ y
ZiZZtrogtatic, then (15) may be reduceq to a simpler for
by the.use of (23) and the vector identity

momentum,

AX (BXC) = B(A.C)' - C(A.B). (34)

Substituting (23) and (34) together with

J..E_ = 0 into (15) we obtain

1" q N
aiv[iy? (82 - B v] + /0t) ey (8 - 8] =0 (35)
or |
DiV[!sy(Ez - Hz)u\)] =0 (36)
or .
Div, (- ¥YFayu,) = 0, (37)
where u, = (yv, 1iyc) and where Fkxis the conventional
N

electromagnetic field tensor.
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the same ¢ Equations (35-37) are just different forms of
the S ourthfcogponent equation. We now write the
quation of continuity as a complete four-vector equation

Divy (-4Feyu )8, = 0. (38)

Comparing .(35y ‘with (15)

_ . or (7) a i
the same interpretations of the terms (wL ;gi Waklng
energy-current—density vector wnoan

& = 2m2 _ p2 )
T ANE - B, (39)

B = ¥y?(E? ~ H?), (40)

which may be com ared i i
[defined by Cﬂ]. o with the conventional expression

neti -

fou;fveZZmentum energy of a charged body constitutes a

owr lor. For example, the eénergy contained in a
e element dv according to observer o is

du = W®dv = ky? (g2 - H2) 4y = by2 (B'2- H'Z)dV‘/y = ydu'

spher ical sh;ﬁf Zs:t;:.xgn ﬁor a moving uniformly charged
. ( int charge) is not parallel to
?ngigzzilo?otgth?ndfpace. Instead, for points genergli;
ehin a moving positive char e
component toward (away from) the velocity agxi’s EXHI?acSm:
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interprets cEXH as the energy current density, then
energy must be flowing generally toward the forward velo-
city axis, which therefore must be an energy sink (and
generally away from the aft velocity axis, which there-
fore must be an energy source). Of course, the forward
(aft) velocity axis 1is' not actually an energy sink
(source) . This prediction of Poynting‘'s vector is one of
the "paradoxical results" referred to by Panofsky and
Phillips('). Note that no such paradoxical prediction is
made by the energy current density vector & of (39)
because & 1is everywhere parallel to B. "According to &,
the stored field energy contained within each and every
volume element dV* (fixed with respect to the charge)
moves at the wuniform velocity v in accordance with

intuitive expectations.

9. APPLICATION OF (15) TO PERMANENT MAGNETS

For a system consisting of permanent magnets
(but with no separated charges or macroscopic currents)

one may substitute (22) and (34) along with Ji'gq = 0
into (15) to obtain

aiv [y?@? - E2)v] + (3/3t) [%v2 @2 - E2)] = 0 (41)

or
3y ] 2 2 =
piv[ky(n? - E Ju ] =0 (42)
or
Divv(%yFéxuV) =0 (43)
or B i
= (44)

. 2 ) =
Dlvv(%FK}\u\))Bu 0.

The symmetry of (41)-(44) with (35)-(38) is
obvious. Since the quantity (2 - E?) is Lorentz invari-
ant, it follows immediately that the electromagnetic
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momentum-—energy of a permanent magnet constitutes a four-
vector. Rohrlich(zs) has previously derived the energy
and momentum densities implied by (41) for permanent-
magnet systems, Here, as in the case of electrostatic
systems, his physical and mathematical models are so
different from those used herein that it is not immedi-
ately apparent that they would lead to the same answer.
But what they have ‘in  common is the property that
matters: each model in jts own way requires both
mathematical and physical covariance.

10. APPLICATION OF.(15) TO RADIATION

convariant for radiation in the absence of sources. The
reason that Poynting's theorem is physically covariant
for radiation whereas it is not physically covariant for
sources is that, if no Sources are present, then

fﬁ = fp = (0, 0)

for all frames. Hence fﬁ here does not contain the
contradiction wherein 4 nonzero force acts on a source
element, producing no acceleration; and similarly, for

BTQv/Bxé. Therefore, the procedure described between
(12) and (13) may be followed so that (15) reduces to the
Same  mathematical form ag Poynting's theorem. It

follows, therefore, as a matter of Course, that (15) is
also covariant for radiation.

Poynting's theorenm may alternatively be
justified for radiation on the following somewhat
intuitive basis. Poynting's theorem is a combination of
Maxwell's two curl equations (the source equations are
ignored in the usual proof). Radiation is described
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. ibe
reasonable to expect Poynting's .thgorem. to% digzzzce
correctly energy continuity for radiation in the

of sources.

the special case of radiation, certain

at For example,

other mathematical simplifications occur.
since F = H, it follows that

- . . {45)
Wrag = E?' “

and the energy current density is

Srag = cE?i, (46)

i i i ion.
here i is a unit vector in the direction of propagat
W

As a speéific example of the applicatiov og
(15) or (17) to radiation, consider a.tglal;x:a pg];z;rlzid
) i -
eling along the x° axis w '3
;?Vf H?iav Ob;irver O' writes for the energy dU’ within a
volume element dV' '
au' = E'%av’'. (47)

d
Observer O, using (17), (45)-(47), and the standar

electromagnetic field transformationnequations, writes
(y2w - YZB.S/c)dV = (YZE% - BY?E%)av

yvE2(L - prav = y2[y2 ey + gap2l @ - g (dV;/y)
=yi@ + )2 - B)E'?av’ = [(1 +B8)/(1 - B)] dqu’,

du

which is thé energy version of the ordinary longitudinal

7

Poynting's theorem.
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11. RECAPITULATION, CONCLUSIONS, AND EPILOGUE

The major equations of ele i

are Lprgntz invariant. Yet almost fr;xxggjgzizéctfgsorg
relativity theory, the electromagnetic momentum—eser of
sources has been believed not to constitute g3 gguo—
vector. How can this be? Logic demands that a covari rt
theory }ead to covariant quantities. Perhaps a m ?n
factor in the general “acceptance of this logic inconggof
tency in electromagnetic theory has been the apparest
success.of tée ingenious ad hoc theories (in particula?
the P01nc§re stresses and the Laue elastic ener ;
currepts)_ln explaining away numerical discrepancies ?Y
quan§1§at1vely correct terms, while simultane ln
‘proYldlng for ‘the stability of the system It o T
acc1dental. coincidence that these ‘ad Aoc tgzzii::
:gcceeded in providing just the right amount of correc-

ion to.account for the discrepancies, because these dis-
crepa§c1es, the instability of the system, and the ad ;S
theoFles all have the same ultimate ba;is- the e
vent19n§, definitions, and interpretation; involc?n-
qugntltles that are called by the names force and stZégg
;gr that are treated in Fransformations as bona fide

ces and stresses but which are not associated with

transfer of momentum or energy. " :

It. is an amusing pastime to calculate i
sgmpéfiiigﬁiall for specific configurations the amounig
o ot us energy and momentum introduced by the

: eérmixing of the first and fourth components of £} (and
DlVOTﬁv) upon transformation to ga dgeneral frame anélthen

to observe that these amounts turn out to be exactly

a§soc1ated with the Poincaré stresses (or pressur

w1§h.Becker and Sauter's tensor of mechanical or zihor
origin. Similar considerations hold for fictiti i
torque and the Laue elastic energy currents. o
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An even more interesting pastime for observer O
is to calculate in detail the amount of Work required to
produce a charged body with a specific configuration at
rest in s¢. For some reason such calculations appear to
be missing from the common literature. What makes such
calculations so amusing 1is that they present some
striking examples of nonconservation of energy.
application of (31) removes such embarrassing results.

Perhaps it is worth noting that Poincare,
Becker and Sauter, and a line of others were close to the
truth when they kept attempting to relate the instability
of the electrostatic system with the anomalous 4/3 factor
in the electromagnetic mass of a charged spherical shell
{or of the electron). Although it is now clear that
there is no intrinsic connection between the stability of
a charged body and the nature of its electromagnetic
mass, momentum, and energy, there is an extrinsic connec-
tion: the unorthodox convention of using the word force
and the symbol F in a manner that:- is inconsistent with
Newton's second law. In the proposed resolution of this
problem, the question of stability does not arise
because, if one treats the partial force for what it is,
there is no exchange of energy or momentum between the
electromagnetic system and the stabilizing system; each
obeys the Lorentz transformation in the same way.

The approach of Rohrlich or the application
of the asynchronous formulation from the mechanics of
Cavalleri and Salgarelli elimihates. the mischief of the
partial-force convention for static systems by requiring
that length measurements and integrations over extended
bodies be performed at constant proper time. This
requirement is equivalent to taking the inner product
T vdGV during the integration, as a substitute for
(51-62). For static systems the present approach is
equivalent to taking the inner product of £ B BA before
the integration, as a substitute for fu. Thus we see that
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éach procedure, in its own way, effectively negates the
influence of the partial forces f,. In a sense, the
gonstant—t' requirement retroactively undoes the damage
introduced by the step from (l4e) to (14f), which added

the ?ic?itious energy iYPv.E to both sides of the energy
continuity equation.

I? appearg to be appropriate to acknowledge
that such objects as £, do transform mathematically in
the pFoper way (because they are defined to do so): hence
Poynting's theorem is a mathematically true statement for
all ﬁrames. It 'represents a mathematically covariant
description of the continuity of something. If no
§ources are present (or if all sources are stationary and
if all overlapping electric and magnetic fields are
goupled by Maxwell's curl equations) then that something
is electromagnetic energy; but if moving sources or
uncoupled overlapping electric and magnetic fields are

presgnt, then that something appears to have no useful
physical interpretation.

N ;n spite' of the aforementioned problems
assoc1a§ed W}th £y, it still appears that the technique
of working wlth just the electromagnetic force acting on
source elements is convenient and useful in solving many
problems in electrostatics, magnetostatics, and in some
areas of electrodynamics. Equation (15),

. 2
div(y’s + y2v.T) + (3/3t) (Y®w - Y2B.S/c)
_ 2
==Y (J - pv).(BE - HXB), (15)
by éugomatically keeping separate accounts of real and
fictitious quantities, permits one to do that. Each

major term'in (15) is interpreted in the same way as the
corresponding term in Poynting's theorem.
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Since the energy current density and storage
density terms from (15) contain nonlocal gquantities, it
follows that the energy current density and storage
density cannot in general be expressed strictly in terms
of only local quantities as usually interpreted, Equa-
tion (15) is valid if all sources have the same velocity
B with respect to S. If relative motion exists among the
sources, then the energy and momentum transfer densities
at some point P in the field can be calculated only after
one somehow resolves the field at P according to the
various contributing sources and radiation. He may then
sum over all the contributions. It appears that the most
convenient way of performing - this summation is in terms
of the independently transformed guantities Eq and H;.

Most of the considerations herein have been
directed at systems which are at rest with respect to a
common frame of reference S', which itself may have any
velocity less than ¢ with respect to another frame S.
Currents in neutral conductors have been permitted, and
convection currents in stationary configurations have
also been permitted. Of course this limitation of no
relative motion among sources restricts the usefulness of
the result because many systems of interest involve
relative motion among different parts of the system.
Such systems will be the subject of another investiga-
tion. For present purposes it is. sufficient to observe
that the present treatment permits slow relative motion
among different sources comprising the system (with no
limitation other than ¢ on the motion of the system as a

whole).

The - approach here has been concerned
primarily with the £flow of energy in dynamic fields
(where electromagnetic work is being done) involving
sources; and secondarily, with the electromagnetic
momenta and energies of moving electrostatic oOr
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magnetostatic systems. Systems involving uncoupled
f%elds (e.g9., overlapping electrostatic and maghetostatic
fields) and systems involving electromagnetic momentum
associated with circuits but not with work (e.g., a
constant current in an isolated superconductor) are

outside the scope of the present paper. These will be
treated in separate works.

paulite & The present paper has attempted to show that

: ensor S5;, need not necessarily "have terms added
to it in such a way that the conservation laws . . .,
become compatible with the existence of charges™; rather,
that the tensor S;r itself can (and indeed ‘must) be
reconstructed within pure electromagnetic theory such
:thét the conservation laws become compatible with the
existence of charges, When such is done, there is no
longer any need for Poincaré stresses or for the Becker
and Sauter tensor of mechanical or other origin or for
Laue elastic energy currents or for any other such ad hoc
hypotheses about the existence of physical quantities
that are not experimentally observable.

' Perhaps it should be noted here that i
himself (*) did not apply his theorem to moving soﬁszzzlgg
to uncoupled fields. BHe applied it only to radiation ana
to stationary sources with coupled fields., Therefore
there are no paradoxes in his own applications of his
tpeorem. He seemed to realize the conditions under which
his theorem was valid. Poynting's interpretation of the
theorem ;?s in terms of energy storage and energy flow.
Abréham( ) later added the interpretation of electromag-
netic field momentum for charged bodies; and he and
others applied the theorem to moving sources. Even
before Poynting deduced his theorem, J.J. Thomson(27)
utlllZ?d the concepts of W. Thomson(z) and Maxwell (3)
regarding electric and magnetic field energy to develop
the concept of electromagnetic mass.
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The case for Poynting's theorem as an electro-
magnetic energy continuity statement was argued eloquently
by Stratton(?®). "The «classical interpretation of
Poynting's theorem appears to rest to a considerable
degree on hypothesis. Various alternative forms of the
theorem have been offered from time to time, but none of
these has the advantage of greater plausibility or greater
simplicity to recommend it, and it is significant that
thus far no other interpretation has contributed anything
of value to the theory. The hypothesis of an energy
density in the electromagnetic field and a flow of
intensity § = EXH has, on the other hand, proved
extraordinarily fruitful. A theory is not an absolute
truth but a self-consistent analytical formulation of
relations governing a group of natural phenomena. By this
standard there is every reason to retain the Poynting-
Heaviside viewpoint until a clash with new experimental
evidence shall call for its revision.® ‘

The present paper is an attempt to show that
an alternative form of the theorem does have the advantage
of greater plausibility if not greater simplicity. For
example, the direction of electromagnetic energy flow for
a moving electrostatic system as predicted by the proposed
form of the theorem is consistent with the intuition and
with the rest of physics. On the one hand, it appears
that Poynting's theorem, together with the ordinary con-
cepts of classical mechanics, does not constitute a self-
consistent formulation because this combination predicts
(i) that electromagnetic mass is a tensor of rank two,
(ii) that it assumes different values in different equa-
tions from mechanics, and (iii) that energy and momentum
are not conserved quantities. On the other hand, it
appears that the proposed substitute form of the theorem,
together with the concepts of classical mechanics, does
provide a self-consistent formulation for certain classes
of systems. Hence the present paper is a call for the
revision of Poynting's theorem.
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