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. Abstract : Dynamical field equations arising
in statistical mechanics can be regarded as lifts ‘in many
cases Liouville equations) of equations governing the time
evolution of a particle or few particles. Three different
methods leading to this altermative interpretation of dy-
namical field equations, their history and usefulness are
reviewed. '

Résumé : Les équations dynamiques de champ qut
interviennent en mécanique statistique peuvent étre regar-—
dées comme des relévements (dans de nombrewr cas des équa-—
tions de Liowville) d'équations gouvermant l'évolution
temporelle d'une ou de quelques particules. On passe en
revue trois méthodes différentes menant 4 cette autre
interprétation des équations dynamiques de champ sont
analysées, ainsi que leur histoire et leur utilité.




1. Introduction

A dynamical theory of macroscopic systems 1is
1 theory of the time evolution of an appropriately chosen
state variable which contains relevant features of a class
>f macroscopic systems. The relevant features are the
features revealed in interactions of the class of macros-
copic systems with a given class of measurement instru-
nents. The class df macroscopic systems for which predic-
tions derived from the dynamical theory agree with the
neasurements is called the domain of applicability of
the dynamical theory. The set of measurements considered
is called the experimental basis of the dynamical theory.
lassical mechanics, kinetic theory, hydrodynamics repre-
sent examples of the dynamical theories of macroscopic
systems.

A dynamical field theory of macroscopic sys-—
cems is a dynamical theory of macroscopic systems in
vhich state variables, denoted f, are cross sections of
1 bundle (E, p, B). The set B is the base space, E is
che total space and p E + B is the projection of the
»undle (see Ref. 1). For each x€B the set p~l(x) is
ralled the fiber of the bundle over x€B. The cross sec-
:ion of the bundle is a mapping B + E. Examples of the
lynamical field theories of macroscopic systems are
tinetic theory, hydrodynamics. In kinetic theory the
oase space B = B x £ is the phase space of one parti-
:le, B, x = (r, v), r denotes the position vector,

r denotes the velocity. The fiber over x € B is ¢ that
.8 the one dimensicnal space of 6-forms (volume elements)
lefined on &°. The quantity f(r, v) dr dv is the number
»f particles at the infinitesimal volume dr about r with
relocities at the infinitesimal volume dv about V.

Let the time evolution of the field f be go-
'erned by the equation '
af

6‘% :ﬁ(A, f) N ‘ (l)

where A denotes the indetermined quantities introduced by
the dynamical theory. Through A the individuality of the
macroscopic systems inside the domain of its applicabili-
ty is expressed. Let ¥ denotes the set of all admissible
states. Whe shall not, at this point, specify the alge-
brical and the topolegical structure of the set #. In
kinetic theory the Equation (1) is for example the
Boltzmann kinetic equation. In this case A represents

the cross section of a binary collision. In hydrodynamics
the Equation (1).is for example the system of the Navier-
Stokes-Fourier equations, A represents the transport
coefficients and the functional dependence of the local
pressure and the local temperature on the hydrodynamic
state variables.

IT. Lift

Let dx

o
-2 . 2
dat Fa(x't) T , (2)
govern ‘the time evolution in the base space B (X¥€B). We
look for the time evolution of cross sections of the
bundle induced by the time evolution (2) in the base space.
If the base spaceisB=®" and the total space E = B x Qh
then the time evolution equation (2) induces the Liouville
equation (Ref. 2).

af(x,t) 3

7t 2= - Sg(f(x,/t)Fa(X,t)) . (3)

If E = B x & then the time evolution equation (2) induces
(Refs. 3, 4)
af({x,t) 3 :
Pl . Sl A PR . 4
¥ + (x,t) 3xmf(x,t) (4)

We shall say that the time evolution generated by (3) or
(4) is a 1ift of the time evolution generated by (2).
(See Ref. 1).
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III. Projection

Now we shall study the inverse problem. We

assume that the time evolution of a field f is given, 1.e.

iquation (1) is given, and we look for the time evolution
in the base space, i.e. equation of the type (2), such

that its lift is Equation (1). If the Equation (2) can be

interpreted as an equation governing the time evolution
>f a particle (or particles) then we can formulate the

orojection in other ‘words. We look for an equation go-

verning the time evolution of a particle (or particles)
that is equivalent, via the process of lifting, to the

given field dynamical equation (1). My objective is

i) to review three different types of projection of
Equation (1) on its base space,

ii)to review the history of the problem (to best of my
knowledge the first example of a projection is the
Lagrangian formulation of Euler hydrodynamic equa-
tions),

iii) to demonstrate its usefulness for obtaining more
insight into the physical meaning of the field
theories, and, 1n some Cases, for solving the field
equations.

IV. Projection by using the correspondence principle

A guick analysis shows that the projection
of Equation (1) on its base space does not in general
exist unless we let the right hand side of Equation (2)
(i.e. the forces if Equation (2) represents a dynamics
of particles) depend on +he field state variable f. if
we accept this sort of generalized particle dynamics
we see immediately that the projection is non uniqgue.

A requirement of a correspondence between certain qua-
litative properties of solutions to the dynamical field
equations (1) and qualitative properties of solutions to
the projected dynamical equations might be used to single
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out one particular projection.

An important property of the time evolution
equations (1) or (2) is the time reversibility or irrever-
sibility of their solutions. We shall first introduce the
property of the time reversibility in the context of
Equation (2).

We introduce inkB a transformation j : B+ B
such that j.j = identity. If B is a phase space of clas-
sical mechanics then j is always introduced by

jlr,v) = (£,-v) . ' - (9

The elements xEB that are invariant with respect to 3
are called even state variables, the elements XEB that
remain unchanged by applying j except the change of sign
are called odd state variables. With the help of the
transformation j we can split uniquely the right hand
side of Equation (2)

Flx.t) = Fr(x,0) + F(x,£) , (6)

where. +
‘ Pl e) 92T S(F(x,E) £5F(3%,E)), (7)

F+(x,t) is called the time irreversible part, F (x,t) is
called the time reversible part. Solutions to Equation
(2) are time reversible if F*(x,t) = 0. Indeed, in this
case the transformation j in the space B of state varia-
bles compensates exactly the inversion of time (i.e. the
flow B x & - B that is generated by Equation (2) remains
unchanged if on the left hand side x + jx and t -+ - t,
te ® . The Hamiltonian dynamics, with the Hamiltonian
function invariant with respect to j, is an example of
‘he time reversible dynamical theory.

Now we introduce the property of the time
reversibility in the context of Equation (1). In the spa-
ce ¥ of cross sections f of the bundle (E,p,B) we intro-



juce transformation J by

JE(x) = £(jx) . (8)

Vith the help of J we again split the right hand side of
iquation (1), i.e.

R(A,£) = RE(a,0) + € (a,0) (9)
vhere g
& (1, £)°EF 2R, £) £IR(A,J5)) (10)

Phe even and odd state Qariablés and the time reversibili-
ty is now introduced in the same way as in the previous
»aragraph except the transformation j is replaced by J.

We are now in position to formulate the cor-
respondence principle.

We require that
FT(f;x,t) = 0 (11)
For f that are solutions of & (A,f) = O. V

[n other words, we require that in the class of the field
fariables f for which the solutions to the field equation
‘1) are time reversible also the solutions to the projec-
zed dynamics are time reversible.

We proceed now to the actual construction of
:he projected dynamics that satisfies the correspondence
srinciple. We shall assume that &*(A,f) has a particular
*orm (gain-loss balance)

f
RH(a,f) = fdy de' fdy' whin;x',y';x,y) (12)
s s ] { 85 85
[eXP{ 5F(x'.t) sty ,t) - TFPLT 3F(x,t) T sf(y,t.
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“he quantities in (12) that are left indetermined, i.e.
-ne quantities A, are W*, S and transformation

a,y) I (x',y'). By choosing appropriately these quanti-
ties we can obtain the time irreversible parts of all well
known kinetic equations including the Boltzmann, the
Fokker-Planck and the Enskog kinetic equations. We shall
explain the notation introduced in (12). By n(g,t) we de-—

note fdv f(r,v,t). The transformation (x,y) I (x',y'")
transforms two -particles before binary interaction tec the
state (x',y') after the binary interaction. We shall
assume that T commutes with j. An example of the trans-
formation T that satisfies this property is the transfor-
mation of velocities due to a binary collision. The quan-
tity WY has the meaning of transition probability, we
assume thus that W+ > O for all n, x', y", X, y. Moreover,
we assume that Wrin; x,y ; x',y') = wtrin; jix"), jy');
jix), j(y))='w+(n; x',y'"; X, y): By S(f) we denote a
sufficiently regular conveX functional of f, we assume
moreover that S(Jf) = S(f). By %%T;_ET we denote the func-
tional derivative of S with respect to f(x,t) (i.e.

. S(f+ep) - S(f) _ { e
iig e = 9% 3%, ©)

bitrary sufficiently regular function of x).

w(k), where ¢ is an ar-

It can be proved that the only solutions of
6#(A,f) = O are the solutions of '

§S 8§S 8§’ 8S

3E(x .ty T 8f(y',t)  8f(x,t) T 5y, ) (13)
[Proof : We first prove'that de %%T;—ET & (r,f) >0, where

the equality holds if and only if Equation (13) is satis-
fied.
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dxsﬂ RNAf =I®<hy[&'JW'%%;ESWW.HH.“];
5 }Ax de Jéx' J&y'[ii(x’t) + :?(y,t)}W+("')["'] =
i Jox [y o de'['\g:ts“(x,t) a1 eap dal <y

V+(..-)[-..l ;bo »

vhere the equallty holds if and only if Equation (13) is

satisfied. The last inequality follows from (g - x)(e - e
>0, where the equality holds only for g = ; £ and x are
real numbers. Now, the above result implies that the only
solutions of & (A,f) = O are the solutions of Equation

(15) since if there would be another solution, say {1, of

N
R*(A,£) = O then sdx 5 & (a,f) = O. But this is
s¥(x,t)
excluded by the previous result].

* Now we shall introduce the Irwing Kirkwood
lemma (Ref. 5).

fax' (o(x',x) - o(x,x"))

where xGﬂP, x'Eﬁ?, a =

=—‘—3—K(X),
[s 1

39X (14)
a

... n, ¢is an arbitrary function,

Ka(x) = rdx' }an x! o(x(n),x'(n)),
0 (15)
X(n) = X =1 x'
x'(n) =x+ (1 - n)x'.

By applying the Irwing-Kirkwood lemma to (12) we obtain
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1 [ ri
Fa(f;x,t) = RER) de de' Jéy' Odn x& x
W (n;x(n),y(n)ix'(n),y'(n)) «x (16)
§S §S )
e"p[' SE(x(n),t) df(y(n),t)) ’
where

x(n) =x-nx'", x'(n) =x+ (1 -n)x
We can see easily that F;(f;x,t) = 0 for f satisfying (13),
i.e. we can prove that the projection (16) of (12). satis-

fies the correspondence principle.

[Proof : In the right hand side of Equation (16) we make the
transformations n + (1 - n), X' » -x', y' + =y'.
We obtain :
+ ) 1 [ 1 +

. o ' vl ' . .
F (f,x,t)»- eR) fdy [dx de L?n x, W (n;x(n),y(n);

x'(n),y' (n))x exD{- 35 - oS
§f(x'(n),t) sf(y'(n),t)

If the field state variable f satisfies (13) then we obtain
F*(f;x,t) = - F¥*(f;x,t) and thus F*(f;x,t) = 0]. We do not

know however if the correspondence principle singles out
the F*(f;x,t) given by Equation (16).

The time reversible part & (A,f) of all common-
ly used kinetic equations (see Ref. 6) is the sum of a
part that is clearly the lift of a particle dynamics (thus
the projection of this part is readily obtained) and possi-
bly of a part of the type of gain-loss balance whose
projection can be obtained by using the Irwing-Kirkwood
lemma. Detailed analysis of the Fokker-Planck, Boltzmann

and the Enskog kinetic equations can be found in Refs. 7,
8.
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An application of the Irwing-Kirkwood lemma ‘
can be well illustrated on a simple example. Let.us 09n51
der a simple model of radioactive decay of a radioactive

material
’ & _ |4« (17)
dt = 7 ,
where méﬂ,is proporfional to the number of atoms gf the
radioactive material, a is a positive constant. The

corresponding Liouville equation to (17) is

af(x,t) _ _ o 3 (xr(x,t)) . (18)
at IX

listic model of the ra-
In order to construct a more rea .
dioactive decay process, that takes into accoun? thg facze
that in every elementary decay the change of x is discrete,

we replace Equation (18) by (Ref. 9)
aflx,t) = af(x + L)f(x + 1,t) - xf(x,t)] . (19)
3t
By using the Irwing-Kirkwood lemma to Equation (18) we
obtain the projection

—— .

gt

1
where _ 1 X+ (1)
= ——— [ dz z f(z,t)
* = fx,t) i 07 ’
of the field equation (19). By comparing (17) and (22; Y:
see the difference between (18) and (19) from a new angie.

The usefulness of the new representation of

the field equation obtained by projecting it on thi'bai?c
space is illustrated by the example of the VlasoY 13e i
equation (Ref. 10) and by the argument of Raveché an

Green {Ref. 11). ‘

It is well known that the Vlasov kinetic
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equation can be regarded as a Liouville equation of a par-
ticle moving in a so called mean field that depends on

the one particle distribution function f(r,v,t). In fact,
Vlasov's (Ref. 10) original derivation of the Vlasov equa-
tion is based on this point of view. The concept of the
mean field has been then also used in constructing va-
rious iterative procedures for solving the Vlasov kinetic
equation.

Raveché and Green have studied in Ref. 11
truncations of the hierarchy of equations for the densi-

ties ni(gl,...,gi), i=1, 2, obtained from the BBGKY

hierarchy by inserting into it f(r,, v,, Gy L, v, t)

-1 =i

=0 (ry,ce,ry) exp(F - %8(vi + + v})) (the quantity

N is determined by fdv, ... fdzi exp(N - %B8(v: + ... + v;)

= 1). The problem is to identify the class of truncations
that lead to physically reasonable finite system of equa-
tions for the densities. Raveché and Green suggested that
the truncated system of equations is physically acceptable
if the projected equations are the equations for stationa-
ry solutions of a Hamiltonian dynamics. The physical mea-
ning of a truncation is thus expressed by Raveché and
Green in the projected equations. In Refs. 6, 12 a class
of field equations of the type (1) was studied. The pro-
bDlem was to identify the class of the indetermined quan-—
tities that make the Equation (1) compatible with equili-
brium- thermodynamics. The physical meaningful dynamical
equation is thus defined as a dynamical equation that is
compatible with equilibrium thermodynamics. It has been
found that the condition that guarantees the compatibility
with equilibrium thermodynamics also guarantees that the
brojected dynamics is a Hamiltonian dynamics, provided f
is restricted to solutions of &*(A,f) = O.

The projections of a dynamical field theory
on its base space that fits the setting of this section
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have probably first appeared in the context of the
Smoluchowski equation that is a reduced form of the
Fokker-Planck equation (see Ref. 13 for the list of refe-
rences of the papers of Kramers and Kirkwood that were
written in- about 1930),,The'non—standard dissipative for-
ce, that depends on the field state variable, in the
context of the Smoluchowski equation is called the

Brownian force.

, In the context of the Vlasov equation the
concept of the mean field was introduced by Vlasov (Ref.
"10). The mean dissipative forces arising by projecting
the Fokker-Planck kinetic equation have been identified
by Chandrasekhar (Ref. 14). A systematic study of the
Fokker—Planck kinetic equation considered as the Liouville
equation of a particle dynamics has been initiated by
Fronteau (Ref. 15) and Salmon (Ref. 16). Generalizations
to a larger class of kinetic equations has appeared in
Refs. 7, 8. '

V. Projection on dynamics of deformation fields

In this section we shall consider the field
equations of the type

aplr,t) 3
B = - ara(p(g,t)ua(g,t)) (22)
du (r,t) ‘
= -G (p,u;r, t) , a = 1,2,3.
9t a - -

The base space is ®® and the fiber associated with each
r is ! x K3, where Q° is the space of 3-forms, volume
olements, on ®*. The dynamical field equations (22) arise
in hydromechanics ; P is the mass density, U is the velo-
city of a fluid. In hydromechanics
G (p,u;r,th==-nu By 2
a - - o]

— 5, (23)
Y{BrY a ay : ,

3
ar

where the pressure tensor n remains indetermined functio-
nal of p and u. The projection of the dynamical field
eguations on its base space is obtained as follows. The
first equation in (22) is the Liouville equation corres-
ponding to

dr
—2 = u (r,t)
T ° Y (5 . , (24)
Let . 3
r, = Xa(go,t) ' (25)

denote the solution of (24) that satisfies the initial
condition ry, = X,(r,,%t,). We shall assume that the map-
ping X is one-to-one for all r, and all t. The impenetra-
bility of matter implies that this aséumption is satis-

£i ) axa(£°’t)
ied. Since ua(g,t) = Tt =t we rewrite the second
equation in (22) as 4
‘ SZXG(Ea,t)
—r = wa(x,t), a =1,2,3 . (26)

The right hand side of (26) is obtained from G(p,u;r,t)
X (ro,t)

ar,
(25) to rewrite derivatives with respect to r, that

might appear in G, through derivatives with respect to

ry. The dynamical equation (26) is the projection of the
dynamical field equation (22) on the base space. The quan-~
tity E(En’t) is called a deformation field. In hydrome-
chanics the dynamical equations (26) are called the La-

%;;?gian form of the Eulerian hydromechanical equations

by noting that p(r,t) = p, det ( ) and by using

‘ Usgfulness of the Lagrangian equations (26)
is well recognized in hydrodynamics. Mathematical advan-

" tages have been exploited by Arnold (Ref. 17). Applica-.

tions of the methods of classical mechanics to Equation
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(26) have been considered by Kobussen (Ref. 18) and recent—~
1y by van Saarloos (ref. 19).

The dynamical field equations (22)3 (23) ?o
not represent a full sgt of hydrodynamic eguatloni. Mli:
sing is a time evolutiQn equation for the.lnterna e;e
gy. If instead of the internal energy we 1ntr?duce tleton
total energy E(r,t) as a new field then the time evofut;
ation for E(r,t) can be written as a local form o e

equ r ‘
conservation of the total energy
3E(r,t)
= L A (E(r, 0 (2,8)) (27)
3t ar - a -

The quantity W, that includes hea? flgx remain§ indeter-
mined. If the usual Fourier constitutive relation for
the heat flux is replaced by a more complete Maxwell—'
Cattaneo consti%utive relation (Ref. 20) then. we obtain
an additional time evolution equation

aw (r,t) o
9= -G (p,u,Esr,t) (28)
3t o — —

4
where the form of Gy has been suggested by C?ttane? 4
(Ref. 20). We note now the pair of the dynamical fle}
equations (27),(28) has the same structure as the palr.ve
(22). We can therefore apply the samg procedure to aigg)
at a Lagrangian time evolution equation of thg type. i
for a new deformation field X(rLt). The dynamical fie ;
equations (22), (27), (28) that represent the full sit o
hydrodynamic equations (the function G depends now adso
on E and w) can be thus projected on the set of ?wo yga—
mical equations for two deformation fields. Details an
some applications can be found in Ref. 21.

VI. Projection by using the Hopf or alternatiYely the
Klimontovich reformulation of field equations

We can consider dynamical field equat%ons as
a base space dynamics {the base space is an infinite
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dimensional space B = #) and we can look for the Liouville
equation corresponding to this base dynamics. Since there
is no natural volume element in infinite dimensional spa-
ces, the Liouville equation cannot be easily constructed.
By using the notion of the characteristic functional

(Ref. 22) it can be however constructed an equation, known
as the Hopf equation (Ref. 23), that plays essentially

the same role as .the Liouville equation. Similarly as the
BBGKY hierarchy is constructed from the Liouville equation
corresponding to the finite dimensional base space dyna-
mics we can construct a BBGKY-type hierarchy of time evo-
lution equations from the Hopf equation (see Ref. 24).

The dynamical equations from the reduced distribution
functions can be then projected, in the same way as in
section IV, onto its corresponding base space (that is

now finite dimensional). In this way a particle dyna-

mics corresponding to the original field equation is
obtained. : ‘

This method has been developed mainly for a
special case

2 . 3 \
du ‘ Ju ar'(uB(_x:_ ’t)arlu (_I: ’t)
_2 . u ——E_..?___l.‘_fdru B N
3t~ Ty ar or 4m "= T =]
Y a - ol
aZ
Y 3r ar. o (29)
Y Y .

of hydromechanical equations (22), (23) that corresponds
to incompressible fluid (i.e. p = const and thus, from

au
the first equation in (22), we have 5;2 = 0 ; the pressu-
re tensor 7 is considered'of the form ¢

N aua auB
= ) — e M
L paas + %o (ar + 37 : the scalar pressure has
.. B a aua

been eliminated by using —— = 0 ; v is the viscosity

. . AT .
transport coefficient (Refs. 24, 25)). We shall briefly
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review the dynamics of two particles that is associated
with Equation (29) (see Ref. 25). Instead of using the
Hopf equation Lungren has suggested to use Klimontovich
definition of reduced distribution functions (Ref. 26).
This method leads finally to the same dynamical equations
for the reduced distribution functions as the ones obtai-
ned from the Hopf equation (see Refs. 24, 25). The main
advantage of the Lungren method is its simplicity. The
one particle distribution function f(r,,v,,t), r, € @3,
v, e R, r, is the position vector, v, the velocity, is
defined by ' ‘
f(EXIXltt) = < G(E(Elyt) - !1) >, (30)
where & denotes the delta function, <>is an ensemble ave-
rage that does not need to be specified explicitely. Si-~
milarly, the two point distribution functions
f,(r,,v,,r,,v,,t) is defined by
£,(r,,vi,r.,V,,t) = <8(ulr,,t)-v,)8(ulr,,t)-v,)> (31)
The equation governing the time evolution of f(gl,xl,t)
is obtained as follows. First we note that
af(zx»X1:t)

at

]
A
!

(32)

- >
Vg §(ulr,,t) - v,)

The right hand side of Equation (32) is then rewritten
by using Equation (29). After some calculations (for de-
tails see Ref. 25) Lungren obtained

af(x,,t) af(x,,t) 3
—) L2 .
at - Viy 3F1Y 3r,y favs Y2y fz(x‘txz’t) *
3 1 3 1 R E
+ — [dx ]{v ————} £f(x,,%x,,%)
3V, 4n lar,y |py-r,]| S0 3r,, ) PRI {
3 3 ] (33) k
- 1lim 'y = fdv, v £,0x%;,%,;,%)
o 3,y 3Ts3q AT g 3 Vay ta\X X307,

- RANR

t

where x, = (r,,v,), X,

v (r,,v.), x5 2 (ry,v,).

By using the same method Lundgren also obtai-
ned the equation governing the time evolution of the two
point distribution function. We shall write only non-dis-

sipative part of the equation (i.e. vz0),

Af, (x,,%,,t) 3 ' 3
= -V, y—— f t) - v,y—— f
e V‘YBFIY 2 (X1 ,%,,t) VzY3r2Y 2(#1’X2!t) +
Wz, ey, ) ¢ [,
AVyylar,y Yol 3f1Y
r,=-r,i{>n
f;(xl,xz,x,,t)) -3 =t
2 yil—fz(xl,xz,t) + 1 (dx,iﬂll
dV,yy 3T,y Yo / ar,y
Irs-r.|>n
fJ(xllxzyxavt) ’ » (34)
- ‘ , . ' 47n?
where n is Kolmogoroff's microscale and y, = 3 ,
‘ Yo
3 z o 4n
b= [(v.—v) ] (35)
i i "3'Y a{r.-r, r.-r,
J J it Iy Jl

The equation (34) has the same structure as the second
equation in the BBGKY¥ hierarchy. We note that the poten-
tial energy ¥ is now velocity dependent. The dynamics of
two particles of which Equation (34) is the corresponding
Liouville equation is clearly '

dr, . dr
Qa _ 2a = v
at T Ve dat ~ V2q
dv ;
20 = - EELL - l. f dx 3V, fa(xxrxz’xsyt)
dt v, Yo 3 ar f(x,,X,,t)
dv Ir:—£z|>“
a - LA _ l_ I dx Y, 4 f3<x1,xzyx3,t)
dt ar o Yo } L £,(x,,%,,t) (36)
l£s-r,|>n
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