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Abstract : Possibility of carrying out quantiza-
tion procedure based on the equation for quasiprobability ope-
rator, proposed by Kuryshkin and co-workers and reflecting
principle of dynamical correspondence, 1s demonstrated. Solu-
tion of ‘the equation mentioned above is found out for the con-
crete physical system—-harmonic oscillator. It turns outr that
the solution obtained cotncides, in special cases, with anti-
normal, normal and Weyl's correspondence rules and teads to
results, reasonable enough from the standpoint of generally
accepted quantum mechanics. ’

Résumé : On expose la probabilité de contrdler la
procédure de quantisation sur la base de l'équation d'opéra-
teur de quasi-probabilité, proposée par Xuryshkin et ses col-
laborateurs, qui refléte le principe de correspondance en dy-
namique. On a trowvé la solution de L'équation proposée plus
haut pour un systéme physique concret : l'oscillateur harmo-
nique. Il s'avére que la solution obtenue coincide dans le cas
particulier avec U'anti-normale, la normale et les régles de
correspondance de Weyl et raméne 4 des résultats intelligibles
du point de vue commun de la mécanique quantique.



In the paper of Kuryshkin and co-workers (1) the
principle of dynamical correspondence was formulated. This
principle is nothing else but a weakened Dirac principle of
correspondence of classical and quantum Poisson brackets. Whe-
reas Dirac's principle operates with two arbitrary physical
quantities A and B, in the?principle (1) one of the quantirties
must be the Hamiltonian of the system considered. Hence the
correspondence rule such obtained is connected with the dyna-
mical characteristics of the physical system considered. In
(1) the proposed principle is given also in the form of equa-
tion for quasiprobability operator (2), defining the rule of
_correspondence.

The natural question arises- does the given equa-
tion possess any solution whatsoever, or in other words, does
the principle of dynamical correspondence, formulated as a
possible way of achieving a solution of the problem of corres-
pondence rule, lead to any solution i.e. to any correspondence
rule ? If the answer of the question is affirmative then im~
mediately another gquestion arises , whether the obtained rule
produces acceptable, from the standpoint of senerally accepted
jquantum mechanics, results or whether the result contradicts
experimental data. The current paper deals with a study of
these problems.

Thus our aim is to solve the equation for quasipro-
bability operator

(1) ‘a‘li + (H(Q,P,t)7F(Q;P:t)} =

at
- Efﬁ(q',pit)[F(q,p,t),F(q‘,p',tHdQ'dp'

where F parametrically depends on coordinates g, momenta p and
time t, H is the Hamiltonian of the physical system considered,
{,} and [,] denote classical Poisson bracket and quantum commu-
tator respectively. In the present paper one dimensional harmo-
nic oscillator is taken as the physical system, with the fol-
lowing Hamiltonian
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(2) H{gq.,p) = p¥2m + m w 3%/2

and as the generators of Bose-algebra of quantum operators we
take the Hermitian operators §, p with the standard -quantum
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commutation relation

) (q,p] = inx
where I is the unit operator of Bose-algebra. Demanding that
Ehe operator A should depend only on the operator Jloperator
p) when and only when the corresponding phase-space function
Alq,p,t) depends only on <coordinate q(momentum. p), following
representation for quasi-probability operator can be found

(3) Flq,p,t) = (Znﬁ)_zru(i,n,t)exp %[n(ﬁ—q) - & p-p)ide dn

nge the function u(¢,n,t) is similar to Cohen's function defi-
nln%.Cohen'S generalized correspondence rule (). In order to,
fulfill the required properties of quasiprobability operator(~)

(4) F(q,p,t) = F'(q,p,t), I%(q,p,t)dqdp - T )

where f+” denotes Hermitian conjugation, the function u(§,n.t)
must satisfy the conditions

(5)  wHe,n,t) = ul-g,-n,t), ul0,0,t) =1

Substituting in equation (!) the operator F in
representation (3) and Hamiltonian (2), performing the commu-
tation operation in the right-hand side and carrying out the
required integrations, we obtaln the following equation for
the function u(&,n,t)

. dulg,n,t) n [du dulg,0,t) )
(6) 5% R B Y £=0)
c !
w?E u(g,n,t) " sulQ.n,t) }
In 3In n=u

Solution of this equation is any differentiable
function V of the integrals

_1 1
(7) G, = (2m) 2n sinwt + (mw? '2)%¢ coswt ,
e 1
(2m) %n coswt ~ (mw?/2)%¢ sinwt

9]
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and with the properties

(8\) V*(C!l_,cvz) = V(-Gl, —Gz), V(Q,O) = 1',

aV(G,,0) _av(0,G,)
3G, G,=0 " 3G, 7 [5,=0

i

Demanding the time-independence of the operator i,
when the classical function A(q,p,t) does not explicitly de-
pend on time, we obtain a_V = 0. Since from the integrals (7)
only one time-independent integral E = G? + G2 can be cons-

. tructed, the solution (3) can be represented as

V=V(E), V(0) =1, V¥ =V

The set of solutions such obtained, contain, for
Vo 1, Weyl's, V = exp{-H(£,n),/2Mw}-antinormal,

V = exp(H(g,n)/ 2Mw}-normal () correspondence rules respecti-
vely. We will now consider the question of including
Ruryshkin's (2) rule of correspondence in this set of solu-
tions.

Kuryshkin's rule is given by the function U, if it
possesses the following structure

{9) u(g,n) = Z(¢§(K—€/2)¢k(x+€/2)exP(%”X) dx = V(H({&,n))

k)
where (¢, (€)} is the set of functions, defining the rule of
correspondence (see refs.(279) for details). Putting £=0 and
n=0 separately in (9) and comparing the expressions obtained,
we arrive at an integral identity wh%ch, in dimension]ess va-
riables x' = (x,a), where o = {(H. mw)2 and n' = {mgf)~2n, looks
like

{10) ZJW&(X')@k(K')exp(in'x')dx' = fvﬁ(x'—n'/l)wk(x'rn';2)dx'

k

A~

where Wk(x') = ¢k(ax').

Expressing the functions wﬁ, Yy in the left-hand
side through their Fourier-transforms, we Obtain
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ﬁj‘pﬁ(})'?n' )lbk(p! )dp' = EJVQ(}(' )‘Uk(.‘('*n' Ydx !
According to (7) onlykthe Hermite-functions can satisfy this
identity and hence we can take

L
(11) o () = 4 expl-mux?/21) H ((mw/1)72x)

where H, is Hermite polynomial, 4, is some complex coefficient.
Finally performing the integration in (9), taking into account
(11) we obtain

(H(g, m?

H(Z,n)
w ki Tho P

5 L

{
(12) u(g,n) = Jlc, [? expi-
K k (

Here Lk is Laguerre polynomial and ¢ are coefficients rela-
ted to Ak.

From (35) we have for them the condition

(13) = Ple 1? = 1.
k K ’

Thus the rule of correspondence (?) satisfies
equation (6) or (1) under the assumptions made. Requirement of
the fulfillment of principle of dynamical correspondence (1)
(equation (1)) narrows the class of functions o, , leaving the
incompleteness of Kuryshkin's rule, for the case of harmonic
oscillator, in the choice of the coefficients L satisfying

(13).

Operators of the principal physical quantities,
characterizing the physical system considered, can be determi-
ned by the general rule

A= f Alq,p,t)F(g,p,t)dadp ,

taking into account the representation (3) of F and the kernel
(12). From the papers (>-0) of Kuryshkin it is known that his
rule of correspondence, in the case of harmonic oscillator,
guarantees fulfillment of the ordinary gquantum-mechanical re-
lations between the average values of coordinate, momentum,
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their squares and energy. So here we cite only the expression
for the constant denoting the identical shift of all the ener-
gy levels, keeping the difference between the levels same as
given by generally acrepted quantum mechanics and measured
experimentally

E = fu(ns1/2) ~fwe’ e = 1/2 « [ kle |*.

n

k
Quasiprobability operator for the rule (2) is po-

sitive-definite and as such can be interpreted as the operator
of joint probability-density of coordinate and momentum. The
solution (12) obtained allows us to rewrite F in a form, where
its positive-~definiteness becomes obvious. With this aim, we
shall use the formalism of annihilation and creation operators,
introduced in the usual manner

(.-‘
p—

3|
K)l'—‘

1
= (mw/2n)2q + i(2hmw)”

a {(mw/2/M)23 + i(2hmw)”
(14) L
a

(mw/20)23§ - i(Zﬁmm)‘EA,z% = (mw/Zﬁ)ﬁq - i(2mme) 2p

-
A

—
Wi

i

Technicalities of manipulations in this formalism and eertaén
important relations used by us can be found in the refs.(4

Let us write the quasiprobability operator with the kernel
(12) in the form

R ey /
{15) F(z,z%*) = 0 ~"§lc |2f<k!D(a)|k>D(a)er(a? - az¥)d%a

k
where [k> is the eigenvector of the number operator 4a"a,p(a)
explad® - o¥*3i) is the displacement operator (4), d%a = d(Rea)

d(Ima), a, o* are linear combinations of &,n in just the simi-
lar manner as z,z% are combinations of q,p in (14). Using the
following easily verifiable property of the quasiprobability
operator

a - -1

D(z)F(0,0)D” (z) = F(z,2%)

and the theorem stating that from the representation
5(a,a ) = f g(a,a®)D(a)d?a |,

it follows that

g(a,a®) = ! Tr{G(4a,a )D(a)]

we rewrite the operator (15) in the form
(16)  F(z,2%) = ™' [ D(z) k><k|D™(z) .
k

Positive-definiteness of the operator (16) is e¢vident from its
structure. We mention that the eigenstates of the operator
(16) are the Vectors D(= ) |k> and the corresponding eigenvalues

are the numbers 1 Ickl2

Thus it is shown that the equation (1) for quasi-
probability operator, being equivalent form of writing down
the principle of dynamical correspondence (!) {weakened Dirac
principle of correspondence of classical and quantum Poisson
brackets), possesses solution. This fact is demonstrated in
the example of harmonic oscillator. The solution obtained con-
tains normal and antinormal rules, Wevl s and Kuryshkin's rule
of correspondence.

PrlnCLple of dynamical eorrespondence limits the
arbltrarlness in Kuryshkin's rule, in the problem considered,
upto-a choice of the coefficients” c . In other words, princi-
ple of dynamical correspondence ( ) is a step forward towards
the concretization of the rule (2-9).

Representation of the quasiprobability operator in
the formalism of creation and annihilation operators (10) ma-
kes its positive-definiteness obvious and gives a new perspec-
tive of development of the rule (2-9) in this formalism.

The authors are indebted to Dr. V.V. Kuryshkin for
his constant encouragement, valuable suggestions and discus-
sions.
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