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A recurrent question in physics is why Maxwell's equations are
not invariant -at least to first-order approximation in velo-
cities- under the Galilean transformation. We point out the
little-known fact that Heinrich Hertz discovered a "covering
theory" of Maxwell's that was Galilean invariant. Hertz's
theory was rejected by physicists because he gave a new velo-
city parameter contained in it an unfortunate (ether-related)
interpretation that brought the theory into conflict with
observation. We show that a more operationally meaningful in-
terpretation of this parameter -as veloeity of the field de-
tector relative to the observer- removes the observational
conflict and opens the way to'a generally-invariant "neo-
Hertzian" formulation of electromagnetism. Notable features
include (a) a predicted influence of detector motion on light
speed and (b) the breaking of spacetime symmetry. These accord
precisely with a previously-proposed radical kinematics, of
which the invariants are length and proper time. The main ele-
ments thus emerge of a consistent "test theory" of Maxwell-
Einstein physics.

1. Introduction
Maxwell's equations of electromagnetism are foundational to
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the current world view in physics. Historically, they supplied
the first instance of Lorentz covariance, hence the impetus to
Einstein's kinematics of 1905. Yet there remains a curious
aspect of Maxwell's equations, directly connected with their
transformation properties, that was the subject of much in-
quiry during the last century. Though today largely forgotten,
the question is still unresolved and is in a sense more poin-
ted now than ever. This is 7 Why are Maxwell's equations not
invariant under the Galileam transformation to first order in
velocities ? Since at that order of approximation the Galilean
and Lorentz transformations are practically the same, and sin-
ce the equations of classical mechanics are Galilean invariant
and are in agreement with observation at this same order of
approximation, the answer to this question is far from obvious.
It was this noninvariance feature of the accepted mathematics
that bolstered the nineteenth century's persistent hope of
optically detecting (at first order) the earth's motion with
respect to an "ether".

Indeed, first-order noninvariance of the equations of optics
presented a direct challenge to the relativity principle,
even as it was known in the nineteenth century. As Tonnelat
(1] notes, by 1874 "Mascart [2] was suggesting that in optics,
as in dynamics, it was impossible to distinguish any special
Galilean system by any experimental means whatsoever". When
Maxwell's four field equations are subjected to a Galilean
transformation, two of them fail of invariance by terms of
first order in velocity. So either something is wrong with
those two equations or something is wrong with the relativity
principle ... which if it holds at all orders (as Einstein
postulated) certainly must hold at first order.

The modern physicist would prefer to dismiss such gquestions

by ruling out of order the demand for invartiance of physical
laws and substituting covariance ; but in fact relat1v1ty
theory contains true invariants of its own (the proper-space
and proper-time intervals), the utility of which for cons-
tructing "invariant laws" of physics can hardly be ruled out’
of order a priori. The abandonment of genuinely invariant des-
cription as the physicist's goal (and as the mathematical key
to "relativity") lacks any rationale apart from expediency.
Similarly, the necessity to invokKe second-order considera-
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tions to answer first-order questions is dlfflcult to:.ratio-
nalize from any first principles.

Physicists of the nlneteenth century were no better able to
cope with: the question of electromagnetic invariance than
their modern counterparts : Most of them shrank from the only
logical conclusion (in lack of the "covariance" device, which
had not yet been-invented) to be drawn from failure of all
attempts to detect ether drift at first order -namely, that
the first-order-noninvariant equations of optics were wrong at’
first .order. This fact may baffle future historians of scien-
ce, for it was not a case of bad theory being better than no-
ne. A better mathematical theory did exist, as we shall see,
associated with one of the most distinguished names in the
history of electromagnetism.

To Heinrich Rudolph Hertz, who was not only the: experimental:
discoverer of electromagnetic waves but also a powerful theo-
rist, the answer to the question posed above was both obvious
and radical : Maxwell's equations were wrong at first order,
in the sense not of error within their limited scope, but in
the sense of demanding to have that scope sO expanded as to
impart to the laws of electromagnetism invariance properties
identical to those of the laws of mechanics. In seeking ex-
panded theoretical scope, Hertz recognized the need for what
today would be termed an invariant "covering theory" of
Maxwell's electromagnetism. In his classic book, Electric
Waves, he published just such a theory.

Hertz judged a first-order difference in the transformation
properties of electromagnetic. and mechanical laws to be into-
lerable. (Even today, it is hard to disagree with him.) He
therefore sought and readily found a modified mathematical
formulation of Maxwell's equations that, like the mechanical
laws, was Galilean invariant. (We repeat : invariant, not co-
variant!) We shall begin by reviewing Hertz's important mathe-
matical discovery and the reason it has been disregarded and
forgotten by physicists. Next, we propose certain further mo-
difications and reinterpretations needed to modernize the
Hertz theory and to improve its operational significance,
higher-order accuracy, and invariance. We also explain from
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first principles why "covariant scrambling" of field compo-
nents is not a necessary feature of physical description. In
a second part of the paper some consequences of the modified
equations- are examined, with particular reference:to solutions
of the neo-Hertzian wave equation; and crucial experiments to
distinguish neo-Hertzian from Maxwellian electromagnetism are
briefly discussed. The observational differences, though far-
reaching, -are apparently not:. 'such as to have been revealed by
experiments hitherto performéd. This conclusion must remain
tentative in the absence of a fully-developed matching kinema-
tics. (The present paper deemphasizes kinematics, insofar as
possible, in order to-focus on electromagnetism). The reader
will perhaps share the writer's surprise to discover so much
life in a subject long accorded the honors of the dead.

2. Maxwell's vs. Hertz's Equations under Galilean Transforma-
tion . . '

We simplify at the outset by postulating with Lorentz (1892)

a micro-scale on which all physical materials are idealized

as particles in free space. This enables us to suppress the
constitutive relations and to.express electromagnetism via the
Maxwell-Lorentz "microscopic equations", V

-+ »> 13E 41|'+ ’ -
v . — =
< H c 3t c us 0 (1a)
> = 1 of : ‘
VxEBE+rog=0 ? Maxwellian (1b)
VH =0 (1c)
> >
V.E = 4mp = (1d)

+ T
Here p and ug = PV are field-source terms that may be either

continuous or discrete charge distributions. Nothing essential

is lost by this reduction from the traditional four field quan-
.tities {(E,D,B,H) to two. In this and the next section we limit

our concern to considerations of first order in velocity para-
meters.
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Let inertial system S' move with constant velocity

v = (vx,v,,vz) with respect to system S; and let

(r1,t') = (x',y',z',t') denote the coordingtes in S' of the
physical event point designated (x,y,z,t) in S. The Gal;lean
transformation

Fo=r -Vt , th o=t , (2)
implies that

3 x' 3 3x' 3 az' 3 at' 3

ET R T U T T T M TR T
or

3 3 = 3 > 6' ) (3a)

T = -ET -v.V' = Tl + Vi ’

+ ‘-’ . s 03 ) s' So .-
where v' = -v is the velocity of S with respect to . Simi
larly, :

3 ax' 3 Iy A - AN I L A

3x O X * x “ay! M A T R T xt

etc., so - _
- ST | | (3b)

A Galilean transformation of field-source velocity, valid at
least to first order in v;/c, implies that

-

vé = ;é(x',y',z',t') = ;S(x,y,z,t) -V . | (4)

If we assume scalar invariance of charge density,

p'(x',y',z',t') = o(x,y,z,t), )
then
+ + -+ < e + + - 7
Ve = pl¥! = p¥ - oV = U - pV {6a)
ul = (ev,) pIVL = oV, - p 4 ,
or ) B
U =ul + v = ﬁ; - o'V . (6b)
]




With one further set of assumptions. we are ready:tp study

the transformation properties of Maxwell's equations under
Galilean transformation. Misguided as it may seem to today's
mathematical physicist steeped in-covariance, we- postulate
the simplest thing, viz., that the field quantities transform
as scalar invariants : '

E'(x',y',z',t") = E(x,y,z,t) . (7a)
i (x',t',2',t') = A(x,y,z,t) (7b)

Consider first Eg. (lc). By Eqs. (3b) and (7b) we establish
invariance :

T TR A (8)

Similarly, with Eqs. (3b), (7a), (5), Eq. (1d) yields

-

V.E - 4n0 = 5'.E',— 4np! =0 . (9)

This equation, too, is invariant. Thus, given assumptions (5)
and (7), two of Maxwell's equations are invariant under Gali-
lean transformation. The other two are not. With the help of

Eas. (3) and (7), Eq. (1b) yields

Sup . 1 EE = TixEt |3 *'}*;
UxE + T v XE M vy « vt 9t H
4 - 1 aﬁ' 1,- -+ > R
= 9! xE? 288 L v 9)H =
xE' + T C(v LVUH 0 . (10)

Here, invariance is spoiled by the appearance of an extra

first-order: term, é(;'.a')ﬁf. Similarly, Eq. (la) yields, with
use of Eq. (0}, ‘

+ .,

> 1 3E 4n » - i{a PO -

IxH - z _3? - C— us = V'xH' = E‘[—a-t—'- +> v!.V! ﬁ' - %l(u's - p';')
O 1 QE' <+ + > -

S - LB _drg L drog LGaingy -0 ()

Again, invariance fails by terms of first order in v'/c, shown
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in curly brackets.

So, it is necessary either (A) to discard the scalar invarian-
ce assumptions embodied in Egs. (5) and (7), or (B) to modify
two of Maxwell's equations, (la) and (1b), at first order to
make them invariant. Lorentz, Einstein, and all modern theo-
rists follow alternative (A), the route of covariance. Hertz,
preferring the route of invariance, chose (B). By definition,"
invariance of an equation means invariance of each of its
terms individually,‘so there is no evading the necessity of
field transformation law (7), once the goal of invariance is
chosen,’Wekshall follow Hertz. SRR ;

Let us introduce an arbitrary velocity-dimensioned parameter.
vd = (vdx’vdy’vdz)’ purely as a mathematical artifice, without

attempting~as yet to endow this ﬂvglccity" with any specific

physical significance. We suppose V4 to have vector character

in S and §', hence (at least at first order) to obey the Gali=~
lean velocity addition' law,

. $a(x',yv,zl,t!) = Fd(x,y,z,t) -7 E - (12a)
or -
| AR R L © o (12b)
In place of Eq. (1b), we postulate the following in system $ :
> 1 aﬁ 1,+ == . A
e o (v MH=0. - (13)

Here use has been made of a technique from the theory of alge-
braic forms to insert an extra first-order term, formally the
same as that which spoiled the invariance in Eq. (10), but

with v' replaced by our arbitrary parameter V. We assert that

Eq. (13) is formally invariant under Galilean;transformation,
regardless of the physical interpretation of vdJ,Proof : From
Eqs. (3) and (12), : '

>
> > 1 3H 1, = o R SO |
VxE + E‘ —a? + E‘ d.V)ﬁ = UxE + ‘C' ——BE' + v'.V ﬁ'
1 awaw 1ol 1w =
+ E[(vé TR TN R T L =5 ¢ E(?&.V')ﬁ' =0, (14)
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g.e.d. Applying the same technique (replacing v' by'vd in Eq.

(11)), we postulate as our invariant replacement for Eq. (1a):

> - laE 4> ﬂ > ’l* > -0 . (lS)
IxH - c 3t - US + P DVd C(Vd.V)E ’

Verification of~invariancé wi@h the help of Eqs. (3),(6),(12)
is immediate. !

The newly-postulated\equations (13),(15), together with Egs.

(1c) and (1d) (unaltered), constitute the Hertz equations. A.

few manipulations will bring them into more per§picuous fo?m.
Introducing a Galileanrinvariant current-dimensioned quantity
Em'by the definition . - : ot |
: . - Lk ; : “(16)
up = u = V4, ‘ ’

/‘ U . [y . - ' 3 . "
and ‘defining an invariant "convective derivative by

%t— =—g—€+;d.$ 5 ' ‘ ‘ ' (17)

we may rewrite Eq. (15) as

+* & 1 di 4_1" _ . (18)
: H-cf T Wm0
and Eq. (13) as
UxE + % %% =0 . ; ) ‘ (19)

The invariance of this total or convective time derivative is
readily verified. From Eqs. (3a),(12) :

d 3 >
——— T a— .v-‘-’
Jc "t " Yd

+
3"
+
<
<1
_—
+
—
ot
1
<4
=
<+

T (I e

Similarly, by Eqs.‘(lé),(6a),(12a) the invariance of u_ is
established :
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> +

+* > +> - > - -
up = (ug = ovg)' =uy - evi = (U - ov) - olvy - V)

-> + +
=u - evy =u . | | (21)
Eqs. (3b);(7),(20),(21)'5how each term in Egqs. (18) and (19)
to be individually invariant. Hence the Hertz equations,
which we collect here for reference, are the GalZlean=inva-
riant expression of the laws of electromagnetism :

& 1 dE 4m >
el A _ , (22a)
. > { Hertzian
V.H=0 . : o (22¢)
V- dmo = 0 | | |  (220)

It will be observed that the Hertz equations (22) are formal-
ly identical to the Maxwell equations (1) except that

(a) The source current Es in Eq. (1) is replaced

by u_ = ug - evy = p(vS - vd).

(b) The partial time derivative 3/t in Eq. (1)
is*replaced by the convective time derivative, d/dt = 3/t
+ v,.V,
d

To verify that the Hertz equations constitute a "covering
theory" of Maxwell's theory, observe that when vy = 0 by de-

finition ﬁm becomes identical to ES and d/dt identical to

3/3t, so Eq. (22) reduces to Eg. (1) and Maxwell's theory is
recovered as a special case within Hertz's. For 7 # 0 the

Galilean invariance of Eq. (22) has been shown, so Hertz's
theory is an invariant covering theory of Maxwell's. The va-
lidity of the scalar-invariant transformation of fields, Eq.
(7), has been established incidentally. There is no covariant
"scrambling" of fields in Hertz's theory, nor is there any
"spacetime symmetry" (since d/dt is not mathematically symme-
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trical with partial spatial derivatives, 3/9x,3/3y,3/9z).

So far, we have performed purely mathematical manipulations,
in emulation of steps that Hertz may have followed. We now
come to the crucial question of physical interpretation of
the new parameter vd A startlng point of discussion is the

interpretation Hertz himself gave to this parameter ; but we
emphasize the necessity to distinguish Hertz's equations from
Hertz's interpretation. In his day the attention of all phy-
sicists was riveted on a luminiferous medium, the ether. Pos-
sessed of a new velocity-dimensioned parameter in the equa-
tions of electromagnetism, Hertz understandably identified

v, with the velocity of the ether. Not satisfied to deal with
an operationally undefined quantity, he went on to adopt the
assumption (due to ‘Stokes) that ether was 100% "dragged" by
ponderable ‘bodies, hence that ¥, was the measurable velocity
of bodies in the laboratory. He consequently presented his
theory as the "electrodynamics of moving bodies™.

A few years after Hertz's early death, which occurred in‘1894;

experimentalists [3], [4] disconfirmed predictions, based on
Hertz's theory, that a dielectric moving in the laboratory
would generate a magnetic field measurable by a stationary
detector. So, Hertz's theory was discredited and discarded.
By contrast, Lorentz and "covariance" (Minkowski's term of
1908) stormed on to a conquest so total that the very exis-

tence of Hertz's invariant covering theory has been forgotten.

Had Hertz lived, the story might have been different, for it
is obvious from his writings [5] that he adopted the Stokes
hypothesis about ether drag .exactly as a scientist should
very tentatively. Balked empirically in that direction, Hertz
might have realized that the whole idea of an ether was of
dubious compatibility with the mathematics he himself had de-
veloped. For his new law, Eq. (22), put electromagnetism for
the first time on the same group-invariance footing as mecha-
nics. It certified a mechanical-optical relativity principle
and legitimized (at least at first order) the defining of
"inertial system" as kinematically equivalent to "Galilean

system". Since mechanics gets along perfectly without "ether",

the necessity of that concept on the side of optics becomes
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dubious (in wview of the -existence of a mechanical-optical
dualism that goes back to Hamilton). If ether is unnecessary, .
why not abolish it -at least pro tempore ? That Hertz did not
reason thus from the start is proof of the power of a fixed
idea over even the greatest of minds.

In this section we have rederived in simplified form and mo-
dern notation (with invaluable help from the work of Miller
[6] in translating Hertz's archaic notation) the Galilean-
invariant equations of Hertzian electromagnetism, Eq. (22).
The Hertz theory can never conflict with that of Maxwell be-
cause the former is a covering theory. Suitably interpreted,.
it can yield additionmal physical predictions (including most
startling ones, as we shall see in Part II), for right or
wrong -but it cannot contradict deductions from Maxwell's
theory. The weakness of Hertz's work was that he achieved
only half a theory. He produced vital mathematlcs, but not
valid interpretation of the key parameter, v,, contained in
the mathematics. One gets physics by combining mathematics
and interpretation, only the combination being subject to em-
pirical test. The task of our next section is to discover an
alternative interpretation of v, that will. enable Hertz's
equations' to become physics. Thus far, Hertz. Now we commence
the "neo-" part.of this paper.

3. Reinterpretation of Jd

The irreducible elements for producing observable electroma-
gnetic phenomena are (a) the observer, (b) the field source,
(c) the field detector. Among tangibles (i.e., omitting
“ether") there are no others. The observer plays his part by
specifying an inertial system S. That ‘is, his presence is ma-
nifested in the theory through parameters (x,y,z) measured

in S. The field source and its degrees of freedom are mani-
fested through parameters o, V_. But in Maxwell's theory the-
re are no parameters expre551n§ degrees of freedom of the
field detector. There are, to be sure, guantities E, A repre-
senting measurements by a detector stationmary with respect

to the observer (i.e., at rest in S). But there is no veloci-
ty-dimensioned parameter related to field sinks in the same
manner vs is related to field sources. Thus one of the phy-




3

stically essential elements 1s pargmetrically unrepreSented n

the mathematics. ; v

Since field detectors are actual instruments, i.e., composi=
tions of matter possessing physical degrees of freedom -and
since "fields" cannot exist, or at least cannot be measured,
without them- it seems that the absence from Maxwell's theory
of a velocity-dimensioned parameter descriptive of field-de-
tector motions might have been noticed as a deficiency even
without hints from Hertz's rival mathematics. This would 'seem
to have been doubly true of the relativity-conscious climate
of the early part of this century, when physicists became
acutely aware of the fallacy of "privileged observers". What
(someone might have asked) should an observer defined as "at
rest" with respect to a particular composition of matter be
called but a "privileged observer" with respect to that bit
of matter ? And if all observers are so defined with respect

to their own bits of matter (in the manner of Einstein) is

such replication of privilege the same as elimination of pri-
vilege 7 ; ) :

In light of such questions it is clear that an intellect suf-
ficiently conscious of the relativity <dea might have been
dissatisfied with Maxwell's equations from the start and would
have welcomed any method of injecting into those equations a
velocity-dimensioned parameter capable of describing field-
detector degrees of freedom in S ; i.e., field-detector velo-
city relative to the observer.

We have used a great many words in this section to prevent
the reader from evading a conclusion to which he has doubt-
less long since jumped ; namely,

Interpretation of v The parqmeter ;d in.the
Hertz equations, Eq. (22), 18 the velocttq of the field
detector (or radiation absorber, etc.) relative to the obser—
ver.

As a check, weﬁnoté that when v, = O the fieldvdetector is at
rest in the observer's inertial system S and we recover from
Eq. (22) exactly Maxwell's equations, Eq. (1). This is con-
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sistent with the basic assumption of Maxwell's theory, that
the field detector is at rest with respect to the coordinate-
defining observer. The aforementioned experiments (31,41
that disproved Hertz's interpretation of v, as velocity of
an ether-convecting "body" in the laboratory, merely serve to
confirm the present interpretation of v,, as velocity of the
field detector in the laboratory. For in those experiments
the field detector remained in all cases at rest in the labo-
ratory, so v, = 0, even though the dielectric "body"™ moved.
Since v, = 0, Hertz's eguations reduce to Maxwell's, and the
experiménts in question fail to test the distinction between
the Maxwell and Hertz formalisms. ’

It is true that a field detector idealized as a "unit test
charge" must in principle acquire some motion in order to ma-
nifest its detection of a field ; so our claim that Maxwell's
theory "freezes out" detector degrees of freedom may be chal-
lenged. But this test-charge motion can safely be ignored,
since in Maxwell's theory (a) the initial state of motion of
such a detector is always the rest state in S, (b) microsco-
pic motions suffice in principle, and (c¢) any field-induced
change in state of motion of the test charge is outside the
purview of the theory, which contains no parameters. to des-
cribe it. It may be convenient to think of a f7eld detector
either broadly, as any object susceptible to electromagnetic
influence, or narrowly, as a small "black box" with a pointer
and scale on it, calibrated to read numerical "field value",
whether electric or magnetic. The black-box idealization re-
lieves us of the need to be explicit about the dynamical de-
tails of the field measurement process, and is consonant with
the spirit of the Maxwell-Hertz approximation to physical
description. '

It is a truism that the "field" is nothing more nor less tian
what'a field detector detects. Still, this is worth emphasizing
because it provides the key to the counter-intuitive result
obtained in the previous section, viz., that the £ and A

fields of Eq. (22) transform invariantly (Eq. (7)), instead

of covariantly, as do the fields of Eq. (1). Elucidation lies
just in the above truism -that "field” means different things
in Hertz's and in Marwell's theories. Different laboratory
procedures or "operations" are performed in the two cases.
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According to Maxwell the "field" is what is measured by an
instrument defined to be in a state of rest with respect to
the observer. Such a field is a simple quantity with rather
complex (covariant) transformation properties. In Hertz's
theory (modified as above in respect to interpretation of V)
the "field" is what is measured by an instrument defined to
be in a state_ of motion specified by three velocity compo-
nents, vd = (v x’vdy’vdz)’ w1th respect to the observer. Such

a "field" is a rather complex quantity with simple (invariant)
transformation properties. From these considerations it is at
once apparent that covariant "scrambling" (linear combining)
of electromagnetic field components is by no means a law of
nature but an artifact of definition. (On the side of kine-
matics, of course, the same is true in respect to "scrambling
of space and time descriptors -as has been argued elsewhere
{7],[8] without reference to electromagnetic symmetry-brea-
king).

"

Clearly one is not getting something for nothing from Hertz's
theory. One is paying something (in increased complexity of
"field" definition) to get something supremely worth having
in the relativity context, vZz., elimination of "privilege'
of observers in respect to their motions relative to all phy-
sical compositions of matter. In Hertz's theory we acquire
for the first time the basis -though only at first order- for
a genuine relativity theory in which true equality exists
among all inertial observers, for optical observers on. the
same group tnvariance basis as for mechanical observers. Even
if the reader remains convinced by his schooling that thece.-
variance demanded by Eq. (1)} is "just as good" as the inva-
riance offered by Eq. (22), he still must acknowledge that
there is some mismatch between a classical electromagnetism
covariant at second order and a classical mechanics invariant
at first order. Hertz's Eq. (22) eliminates all mismatch by
making everything explicitly invariant at first order. Sure-
ly one ought to get first-order physics right before essaying
the first step toward higher orders. On the supposition that
we have now belatedly got first-order electromagnetism right,
what about the. higher orders ? It is to this interesting
question that we next turn attention, proceeding to what
might be termed the (neo-)2 stage of our inquiry. We confine
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ourselves here to electromagnetism, analogous considerations
for mechanics having beén touched on elsewhere [7].

4. Proper-time Formulation’

Thus far we have claimed no more than first-order accuracy
for our results, in the spirit of getting first-order things
right first. At higher orders, corresponding to speeds readi-
ly attainable in the laboratory with high-energy particles,
there is every reason.to disbelieve Eq. (22) and to seek a
more exact (hlgher—order invariant) formulatlon, which redu—
ces to Eq. (22) in the low—speed limit.

It is necessary to begin with a dlgreSSlon into kinematics,
which we shall keep as brief as possible because a full dis-
cussion would require more space than”can be given to it here.

‘The fact that an alleged "spacetime" symmetry is broken (or

never arises) in Hertzian electromagnetism implies that the
Lorentz transformation is irrelevant to Hertzian physics,
hence that the kinematics of high-speed motion must be total-
1y reappraised. Such a reappraisal has been under way for
some time and preliminary results have been reported {71, [8]
[9]. In brief summary, it is indicated that

(1) Elnsteln s deflnltlon of the 1nvar1ant proper«
time interval,

dt? = dt? - —T(dx2 + dy? + dz?), . (23)

together with recognition of the inexactness of the differen-
tial dt, is a brilliant and lasting contribution to physics
with a firm basis of empirical confirmation [10]. Here'dt is
delimited by two events on the worldline of-the same particle.
Proper time possesses a clear operational definition as the
"pocket-watch time of the co-moving observer!.

(2) The supposedly invariant proper-space inter-

val,
2 = dx? +dy? 5 dz? - c? dt? () (24)

is without empirical confirmation. Its invariance would be
valid only if there existed true spacetime symmetry, which
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Eq. (22) denies. There is no known counterpart in nature nor
operational definition of do, an "interval" delimited by
events on the worldlines of two different particles. An inva-
riant mathematical relationship between two such events im-
plies the objective "reality" of some connectedness between
two occurrences that by definition cannot be connected by a
light signal or anything else ... a virtual contradiction in
terms. Nobody has ever met such a connectedness in the labo-
ratory and every attempt to measure the Lorentz contraction
(11], [12], [13] has failed. If one asserts operationalism,
then one must discard the "elsewhere" and all its works. All
the worldline-relational ("metric") statements of special
relativity theory are therefore to be viewed as potentially
false. Consequently we reject Eq. (24) and accept Eq. (23),
interpreted as referring to events on a single worldline. The
simplest alternative to Eq. (24), consonant at first orde
with the Galilean transformation, is that length '

,ds = /dx? + dy? + dz? transforms as an invariant scalar.

(3) The invariants of kinematics are therefore
postulated to be length and proper time. This postulate re-
flects the Hertzian asymmetry of space and time. "Spacetime"
possesses no metric geometry and no objective existence. For
a reconstruction of the foundations of kinematics consonant
with this postulate, Ref. [8] may be consulted.

We now proceed to apply the above conclusions about kinema-
tics to our problem of electromagnetic description. We may
interpret t = t, in Eq. (23) as field detector proper time.
Let v = (dx/dt,dy/dt,dz/dt), where the x,y,z differentials
refer to detector coordinates. From (23) proper time and
frame time are related in the familiar way :

dr, =dt /1 - S (25a)
or

{25b)
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Taking the total proper-time derivative of an arbitrary func-
tion of detector coordinates, we obtain

d dx | of dy ,of dz af dt ,af
I t(x,y,z,t) = ()X (@Y )3 dz \of de \of
drd ? ’ drd x drd 3y dr,” 3z dtd at
dt 3 3 IR BE VRERRPE YR S
= (a-;d—) [de—a-)-c- + de-a-g; + de-a—z" + R]f = Yd(at + Vq.V)f
-y, U | ' (262)

a4 dt
the last equality.following from Eq. (17). Thus we obtain the
operator relation : .

d d
=@ , (26b)
d .

Since v, = 1 + 0(v?/c?), it is apparent that d/dt and d/d‘rd
differ only at second or higher order. It therefore becomes
natural in up-grading the invariance properties of 'Eq. (22)

to replace d/dt wherever it appears there by d/dt,. This will
ensure recovery of Eq. (22) at first order, i.e., in the limit
of low detector,speed. It will also express time variation of
electromagnetic phenomena in terms of ‘a parameter independent
of coordinate or inertial/noninertial system choice.

It is necessary at the same time to up-grade the jinvariance
properties of the source term, Uy = Uy - evy = o(vS - vd),

appearing in Eq, (22§). It will be noted that only the rela-
tive velocity (v_ - v ) of source and detector enters the
Hertz equations. To achieve an invariant formulation, the
most direct approach is to replace ordinary velocities v

(derivatives with respect to t) with proper velocities V, de-
fined by ,

s _dr _dr dt _» _ ¥ : ~ ,.
Ve " m=vr= = - (27)
-3

One thus postulates vector additivity of proper velocities
-subject to later confirmation of the kinematic consistency




(9]

e
o

of so doing- and is hence led.to define (with subscripts s
and d denoting source and detector, respectively) a proper
current;

i =o(V -V

m s d) ’ (28)

which is an invariant of direct physical significance : It is
the source current measured at the source position (i.e., nu-
merical value of a "pointer readlng") by a current meter that
rigidly co-moves with the detector. (For a discussion of such
non-rotary distant "rigid co-motion", see Ref. [8]). Note

that when field source and 51nk are in the same state of mo-
tion (v = v ) U vanishes. . (28) must be considered pro-

v151onal untll the klnematlcs of velocity composition is elu-
cidated.

Qur invariant "neo-Hertzian" equations of electromagnetism

,are thus postulated to be

Vi -1 d—E—- - 4r it =0 ) t (29a)
: c drd c m . .
Tk LA (29b)
C d'l‘d } )
Y. Neo-Hertzian
V*H =20 (29C)
VeE - 4mp = 0 (29d)

The reader should not be misled by the superficial resemblan-
ce of Eq. (29) to Maxwell's equations. The only relatlonshlp
is that Eq. (29) reduces to Eq. (1) at O(v_/c) when v, = 0.
Otherwise, the physics is quite different, as we shali show
in Part II of thlS paper.

The full invariance group of Eq. (29) has not been identified.
The only question concerns the velocity-dependent source term
in Eg. (29a). The remaining three of Egs. (29) appear to be
perfectly generally invariant (not covariant), given identi-
fication of the invariants of kinematics as length and proper
time. But, in the case of accelerated relative motions bet-
ween source and detector, it requires more discussion than
can be given here to deal with misgivings about supposed
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effects of causal delay of distant actions. (We shall see
presently that ordinary ideas of causality do not enter into
Hertzian electrodynamics). To resolve all questions will re-
quire a combination of continuing theoretical and experimen-
tal investigations.
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