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Abstract : We congider a particular class of un-
certain dynamical systems. Since some of the uncertain ele—
ments may result in unstable behavior, we seek controllers
which guarantee that all possible responses of the system are
uniformly bounded and approach a desired response. Toward
that end, we present a class of adaptive controllers.

Résumé : Nous considéroms une classe particuliére
de systémes dynamiques incertains. Comme quelques uns des
éléments incertains peuvent entrainer un comportement instable,
nous cherchons des commandes qui garantissent que toutes les
réponses possibles du systéme ‘sont uniformément bornées et
approchent une réponse désirée. A la fin de l'article, nous
présentons une classe de commandes adaptatives.
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1. Introduction

In order to control the behavior of a system in
the "real" world, the system analyst seeks to capture the
system's salient features in a mathematical model. This abs-
traction of the "real" system usually contains uncertain ele-
ments, for example, uncertainties due to parameters, constant
or varying, which areiunknown or imperfectly known, or uncer-
tainties due to unknown or imperfectly known inputs into the
system. Despite such imperfect knowledge about the chosen ma-
thematical model, one often seeks to devise controllers which
will "steer” the system in some desired fashion, for example,
so that the system response will approach or track a desired
reference response ; by suitable definition of the system
(state) variables such a problem can usually be cast into
that of stabilizing a prescribed state.

Two main avenues are open to the analyst seeking
to control an ur~ertain dynamical system. He may choose a
stochastic approach in which information about the uncertain
elements as well as about the system response is statistical
in nature ; for example, see Refs. 1 and 2. Loosely speaking,
when modelling via random. variables, one is content with de-
sirable behavior on the average. The other approach to the
control of uncertain systems, and the one for which we shall
opt in the present discussion, is deterministic ; see Refs.
3-33. Available, or assumed, information about uncertain ele-
ments is deterministic in nature. Here one seeks controllers
which assure the desired response of the dynamical system.-

In this paper, thé mathematical model is embodied
in ordinary differential equations, the state equations of
the system. For each of the systems under consideration there
exists a state feedback control which assures that the zero
state is globally uniformly asymptotically stable. However,
these controls depend on constants in the system description
which are not known ; for example, such constants are the va-
lues of unknown constant disturbances or unknown bounds on
time-varying parameters or inputs. We propose controllers
which may be regarded as adaptive versions of the feedback
controls mentioned above ; in place of the unknown constants,
one employs quantities which change or adapt as the state of
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the system evolves. Under séme circumstances, these adaptive
quantities may be considered to be estimates of the unknown
constants. The method of devising these adaptive controllers
is based on the constructive use of Lyapunov theory as sug-
gested, in a somewhat different context, in Reéfs. 9, 10, 11,
34, 35 and 36 ; see Ref. 21.

2. Systems Under Consideration

The class of ‘systems under consideration here is
a subclass of those considered in Refs. 20 and 21. The systems
are described by ’

%(t) = f(t,x(t)) + Af(t;x(t)) + B(t,x(t))u(t) (1)

where t € R, x(t) € R® is the state, and u(t) € R™ is the
control. The functions f, af : R x R® + R" and B : R x R
+ RY™ are unknown but assumed to satisfy certain conditions

(Assumptions Al - A3). :

Roughly speaking, the problem treated here is
that of specifying u(t) so that all solutions of (1) are
bounded and converge to the zéro state.

We suppose that the following assumptions are sa-
tisfied :

Assumption Al. (i) The function f is Caratheodory
(see Appendix) and f(t,0) = 0' for all t€ R..

(ii) There exist a,C1 function V : R x R » R,
and continuous nondecreasing functions v,, Y,, ¥ : R_+ 'R

which satisfy * *
Y£(0) =0, r>0= Yi(r) >0, i=1,2,3 (2)
llm Yx(r) = ®, (3)

[ a]

1
We use "O" to denote a zero vector.
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_such that for all (t,x) € R x R

i(xl) < V(t,%) < va(1xi), (4)

T, )+—<t SOL(6X) < -ryixd). (5)

Assumption Al asserts that there exists a
Lyapunov function V which guarantees that the zero state is
a g.u.a.s. {globally uniformly asymptotically stable) equili-
brium point of the system descrlbed by

*(t) = flt,x(t)) ; . . (6)
see Refs. 36, 37, and 38.

Assumption A2. There exists a positive-definite
symmetric matrix F € R ™ and a strongly Caratheodory func-
tion B® : R x R® » R*™ such that (see Appendix)

B(t,x) = B*(t,x)F v (t,x) €R x R™ (7)
and, at each t € R, a(t,x(t)) is known, where’

a(t,x) = B'(t,0)" (e, )7 . : (8)

One may consider the matrix B(t,x) as reflecting

uncertainty in the manner in which the control enters the
system description.

Assumption A3. (i) There are constants d € R",
DE R™P and strongly Caratheodory functions h : R x R® -~ RP
and e : R x R® = R™ such that, for all (t,x) € R x R,

M (t,x) = BO(t,x)[d + Dh(t,x) + e(t,x)] . (9)

2
Superscript T denotes transpose.
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The function Af represents the effects of poten-
tially destabilizing uncertainties on the system. The next
part of Assumption A3 concerns the amount of information
available on Af.

(ii) There exists a known strongly Caratheodory

function 7 : R x R® «x R& > R+ such that for some B € Rf

(possibly unknown),

fe(t,x) I

XmintF:

< (t,x,8) (t,x) € R x R" o (10)

where Amin(F) denotes the smallest eigenvalue of F. Also, at
each t € R, h{t,x(t)) and x(t) are known.

(iii) For each (t,x) € R x R*, the function
m(t,x,.) RE ~ R _is nondecreasing with respect to each com-
ponent of its argument B8, -w(t,x,.) is convex, and an/ 38
exists and is strongly Caratheodory.

The following conditions, which are not assump-
tions, will affect the choice of some of the parameters in
the proposed controllers.

Condition C1l., For each d 2 0, there exists
b,(d) > 0 such that, for all (t,x) € R x R%,

Il <d= la(t,x)l <by(d) . (11)

Condition C2. For each d > 0, there exists
b,(d) > 0 such that, for all (t,x) € R x R,

Ixl < d= Ih(t,x)I <b,(d) (12)

Substituting (7) and (9) into (1) yields
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%(t) = f(t,x(t)) + B(t,x(t)) [Fult) + df Dh(t,x(t))

+ e(t,x{(t))]. (13)

Now, following Refs. 23 and 25 it may readily be
shown that, if one could utilize the control given by

u(t) = v + Kn(t,x(t)) + p(t,x(t)) (14)

where 1 '1 .
v = -F 4, K=-F'D (15)

and p : R x R® » R™ satisfies

At,%) e x8) (16)

a(t,x) # 0 = p(t,x) = - Ta(t,x)|

and ‘assures existence of solutions to

x(t) = f(t,x(t)) + B(t,x(t)) [Fp(t,x(t)) + e(t,x(t))], (17)

then the resulting controlled system would be described by
(17), which has the zero state as a g.u.a.s. equilibrium point
and hence has the desired properties. However, utilization of
the control that satisfies (14) - (16) requires knowledge of
v, K, and B, which we have not assumed.

In the next section we present a class of control-
lers whose utilization requires only the assumed information
and guarantees the desired performance.

3. Proposed Controllers

To assure that the systems presented in the pre-
vious section have the desired behavior we propose the utili-
zation of one of the following controllers, each of which
consists of three parts and is given by

wt) = V)« 0Py + @), (18)

The first part of each controller is given by
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WD) =o0) - s, (19)

#(t) = -2,8(¢), ‘ (20)
where #(t,) € R® is arbitrary,

%, >0, T, 0, L (21)
%, > 0 4if C1 is not satisfied, and

St) = alt,x(t)). R (22)

Note that u(l)(t) is also given by

W) = 9(e) + T,8(x) (23)
or o . 4’ ) N
| ..
D) = T0,800) - 3, f St + #(ty), (24)
to

and hence may be termed a PI (proportlonal plus integral)
controller.

The second part of each controller is given by

W26y = K(e)h(t,x(2)) - T,a(e)h(e,x(£)) Trh(t,x(¢)), (25)
K(t) = -a(t)n(t,x(t)Tr | (26)

where K(t) € R™°P, K(t ) being arbitrary, I € Rp P is posi-
tive-definite and symmetrlc,

%, =20, (27)
and €, > 0 if either Cl or C2 is not satisfied.

Note that u(z)(t) is also given by



72
W) = [R(e) + TK(D)IR(e,x(6) (28)
or \ t .
aP(e) = Ta(e) --[t a(t)dt + K(t)]h(t,x(e)) (29)
mere a(t)y = Q(t)h(t,x(t))T r. (30)
The third part of each controller is given by
w3 (0) = —a(e,x(0),8(6)3(0), (31)
&t)=1f”§g<tgxw,atiﬂu&tm, (32)
e(t) = ~t,e(t), (33)
where ) -
ai(t,,) > 0, i=1,2,...,k, (34)
v e(t,) >0,
103) € gE*K ;¢ 4iagonal with positive elements,
%, > 0, (35)
and

3ty = s(t,x(t),8(t),e(t)),

with s : R x R® x (O,m)k+1 + R" being any strongly Caratheo-

dory functionwhich assures that

SOl = 1s(e)lalt), (36)
so that s(t) has the same direction as a(t), and
RN > e(e) = 3(¢) = 3L (37)
la(t)l
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where " - N '
w(t) = m(t,x(t),B(t))a(t). (38)
A particular example of such a function S is given by
s(t) = sat(W(t)/e(t)) - (39)
where ' .
n s Inl €1
sat(n) = N (40)
,FEW e fnl > 1 3

see Ref. 21.

4. Properties of Systems with Proposed Controllers

Before stating a theorem, let us consider any
system described by equation (1), satisfying Assumptions Al,
A2, A3, and subject to any corresponding controller given in
Séction 3. By defining the parameter "estimate" at t

é(t) = (;T(t), ﬁl(t), ﬁz(t),..., ﬁm(t), ;T(t), e(t))T

where ki(t), i=1,2,..., m, are the rows of K(t), and by

appropriately defining (see Ref. 21) f(l) : R x RT x Q ~ R®

and f(z) : R x R «x Q - Rr, where
Q= R™ « R™P (O,w)k+1 .
r=(m+ 1p+k+1,

such a controlled system can be described by
2(t) = TV (e, x(5),a(0))
at) = T (e x(0),a00). (41)

This is a system whose state space is R® x Q.
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By a solution of (41) we shall mean an absolutely
continuous function (x(.),q(.)) : [t,,t,) + R® x Q, where
t, € (t,,=], which satisfies (41) for all t € [t,,=) except
possibly on ‘a set of Lebesgue measure zero.

Defining the parameter vector

T T T
q = (v > ki, kz:"': km: B, 0) )

where ki’ i =1,2,...,m are the rows of K, we are now ready
to state a theorem.

Theorem 4.1. Consider any system described by (1),
satisfying Assumptions Al, A2, A3, and subject to any corres-

ponding controller given in Section 3. Such a controlled sys-
tem.can be described by (41) and has the following properties:

P1. Existence of Solutions. For each (t,, x,, q,)

€ R x R® x Q there exists a solution (x(.),&(.)) 2 {t,,ty)
- Rn x Q of (41) with (X(to),q(to)) = (xo:qo)'

P2. Uniform Stability of (0,q). For each n > 0,
there exists 6 > O such that, if (x(.),d(.)) is any solution
of (41) with Ix(t I, 1§(t,) ~ qf < &, then Ix(t), 14(£) - qlf
< n for all t € [t,,t,).

P3. Uniform Boundedness of Solutions. For each
r,,r, > 0 there exist d,(r,,r,), d,(r,,r,) > 0 such that, if
(x(.),§(.)) is any solution of (41) with Ix(t, ) < r, and
14(ty) - ol < r,, then Ix(t)] <d,(r,,r,) and 1§(t) - gl <
d,(r,,r,) for all t €{t,,t,).

P4. Extension of Solutions. Every solution of (41)
can be extended into a solution defined on [t,,=).

P5. Convergence of x(.) to Zero. If (x(.),§(.)):
[ty,=) » R® x Q is a solution of (41) then
lim x(t) = 0.

t+o
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Proof. Substituting equation (18) into (13), the
controlled system under:qonsideratiOn can be described by

£(t) = £(t,x(£)) + B (t,x(e)) (' (e) + a1
« B(t,x(6)) [Fu'® (¢) + Dhlt,x(£))]
+ B(,x(6) PP (e) + elt,x(e))]. (42)

It may readily be shown that any system described by (42) and
satisfying Assumptions Al, A2, A3, is a class 4 system as de-

fined in Ref. 21. Also u(l), u(z), u(3) as defined in Section
3 yield a class 4 controller (as defined in Ref. 21) for the
system described by (42). Hence, by Theorem 4.1 of Ref. 21,
the controlled system under consideration has properties Pl -
P5.

5. An Application

Consider an uncertain system described by

z(t) = A(t,z(t))z(t) + w(t,z(t)) + Bu(t) (43)

where t € R, z(t)€ R°, and u(t) € R™. The functions A
R x R* » Rnxn’ w: R xR* > R" and the matrix Be RV™ are
unknown but assumed to satisfy certain conditions ((i) - (iv)).
Given a "desirable" state response 2z%(.) which
satisfies
1¥(t) = A¥z*(t) + Bruk(t), (44)
% f ’ 3
where z#(t) € R°, u*(t) € R™, a*e R™™, and Bxe RV , we
wish to obtain a controller which guaranteés that

lim [z2(t) - z*(t)] = 0O . (45)

t+x

It is assumed that the following conditions are
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satisfied :

(i) For some positive—definite symmetric F € R™™ and some
known B* & R°°™
B=BF ., - a (46)

{ii) The pair (A%,B°) is stabilizable.

(iii) There exists a constant d € R™ and a Caratheodory func-

tion d: R x R? + R™ such that
w(t,z) = B°[di + d(t,2)] V (t,z2) e R x R® (47)

where
1d(t,z)1 <c, V (t,z) e R xR? (48)

for some ¢, = 0.

mxn
(iv) There exists a constant H € R* " and a Caratheodory func-

tion ﬁ : R x R® » R such that
n
A(t,z) = A% + B°[H + H(t,2)] V (t,z) € R x R (49)

where
IH(t,z)l <c, V (t,z) eR xR (50)

for some ¢, > 0.
(v) For some M e R
B* = B'M ., (51)

(vi) The function u*(.) is Lebesgue measurable and bounded on
bounded intervals.

(vii) The matrices A¥ and B¥ are known and for each t, u¥(t),
z#(t), and z(t) are known.

To obtain a problem formulation in the form consi-
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dered in Section 2, we let
x(t) = z(t) - z2%(t) ; , (52)
hence
z(t) = z¥%(t) + x(t) , o (53)

and, utilizing (52), (43), and (44),
®(t) = A%(t) + [A(t,z(t)) - A% Jz(t) + w(t,z(t)) - Brux(t)
: + Bu(t).(54)

The requirement that (45) be satisfied is now equivalent to
requiring that x(.) converges to the zero vector.

Since the pair (A*,B°) is known and stabilizable,
there exists a known matrix L& R™® such that, the matrix A&,
given by ’
' X = A% + BOL ‘ (55)
is strictly stable. Thué, utilizing (54) and (55),
£(t) = &x(t) + [A(t,z(t)) - A%]z(t) + w(t,z(t)) - BoLx(t)
- Bru*(t) + Bu(t) . _— (56)

Equation (56) is in the form of equation (1) with

ft,x) = &x , _ _ (57)
af (t,x) = [A(t;z*(t) + X) = A*)(z%(t) + x)

+ wit,z%(t) + x) - B°L¥ - Brud(t) , (58)
B(t,x) = B . (59)

We now check to see if Assumptions Al, A2, and
A3 are satisfied.
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_ As a consequence of (57), A1(i) is satisfied.
Since A is strictly stable, Al(ii) is satisfied by taking any

positive-definite symmetric Q € R*™ and letting

V(t,x) = 1/2 x'Px_ ¥ (t,x) € R x R" (60)

nxn S, L . .
where P € R™™ is the unique positive-definite symmetric so-
lution of

PE+EP+Q=0; . (61)
see Refs. 36, 37, and 38.

Taking any pair, B! and F, which satisfy the re-
quirements of condition (i), letting

B(t,x) = B® ¥ (t,x) €R x R", (62)
and utilizing (59), (46), (62), (8), and (60), one obtains
for all (t,x) €R x R,

B(t,x)F , (63)

B(t,x)

a(t,x) = B*Tpx . (64)

Sinée F is symmetric and positive-definite, B® and P are
known, and x(t) is known at each t, it follows from (63), (62),
and (64) that Assumption A2 is satisfied.

In addition, it follows from (64) that condition
Cl is satisfied.

Substituting (47), (49), and (51) into (58)
yields '

Af(t,x) = B°[d + H(z%¥(t) + x) - Lx - Mu¥(t)

+ a(t,z*(t) + X) + ﬂ(t,z*(t) + x)(2¥(t)+x) 13
(65)
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hence, letﬁiﬁg,
. .4
b=l -11, ; (66)
Ch(t,x) = [(2%(t) + )T, (Ix + Mu*(»t))T] , (67)

e(t,x) = &"(t,z*(t) +X) + ﬁ'(t,z*(‘t) + X)(z%(t) + x),
(68)

5f(t,x) may be written as
&f(t,x) = B°(t,x)[d + Dh(t,x) + e(t,x)]
and part (i) of Assumption A3 is satisfied.

Utilizing (68), (48), and (50), one obtains for
all (t,x)€ R x R%

et xl =1d(t,2%(t) + x) + B(E,2%(t) + x)(z%(t) + x)

<§1I3(t,z*(t) + x +|Iﬁ(t,z*(t) + Il z3¥(t) + «

< ¢, +clhz¥t) + ‘; (69)
thus,
‘%’B’E)" <n(t,x,8) v (t,x) €R x R* (70)

min

where 7 : R x R x‘Rj *,R+ is given by

m(t,x58) = B, + B, I z%(t) + d , (71)
(BI’BZ) = ST 3
and
i c
B1 = By = . (72)
—

Im denotes the identity matrix in RO
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As a consequence of (70), (71), (67), and condition (vii),
part (ii) of Assumption A3 is satisfied.

‘Part (iii) of Assumption A3 follows from (71) and
the convexity of linear functions.

Note that,lif u*(.) is bounded and A% is strictly
stable, then 2z*(.) is bounded, and, utilizing (67), condition
C2 is satisfied.

Thus, the error system as described by (54) belongs
to the class of systems considered in Section 2. In view of
this, we propose the utilization of one of the controllers
presented in Section 3. Hence, we let

u(t) = u(l)(t) + u(z)(t) + u(3)(t), (73)
where u'1)(¢) is given by (19), (20), and (21) with

a(t) = B*Tex(t) ; . (74)
u(z)(t) is given by (25), (26), (27), and (67) with %, > O if .

either u¥*(.) is unbounded or A* is not strictly stable, and,
letting .

(3)

%) 0

=103, (75)
0o
u(3)(t) is given by

WD) = “l8,(0) + g, (002 180, (76)
gx(t) = %53)n3(t)u, é,(tu) > 0, (77)
;2(t) = 223)nz(t)uu§(t)u, Ez(to) >0, (78)
e(t) = - 2,e(t), e(t,) >0, (79)
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where R
s(t) = s(t,x(t),8(t),=(¢)),

with s : R x R% x (0,°°)3 > R" being any strongly Caratheodory
function which assures the satisfaction of (36) and»(37) with

M) = [8.(6) + Bo(0)M2(0)1 18(E),. (80)

and

%g3),2g3),zu >0 . ‘ (81)

As a consequence of Theorem 4.1, utilization of a
controller as specified above assures that x(.) is bounded
and lim x(t) = 0.

t>o
Remark. The problem, in which one requires that
lim z(t). =0, o (82)
t+oo

is a particular case of the type of problem treated above. In
this case :

z#¥(t) =0 - (83)

and hence, z*(.) satisfies (44) for u¥*(t) = 0 and any

A¥ e RPE, Also, since Af(t,x) can be written as

M(t,x) = B[d + (H-L)x + &(¢,x) + H(t,x)x] ,  (84)

one may let
D=H-~-L , (85)
h(t,x) =x | (86)

and utilize (86), rather than (67), in the controller cons-
truction.

Simulated Example. For numerical simulation, we
have taken a system described by
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2l(t) = Zz(t) ’

Z,(t) = =sin z,{(t) -1 - éos t + 0.5 u(f) .

The desirable state response was taken to satisfy
O’)l — * “‘
#¥(t) = z%(t) , ;

(v)

s
il

23 -z%#(t) - 2 2#(t) + uk(t) .

~

Letting L = O and

22
Q= 2
2 6
P was given by
2 1
P = .
1 2

The function s was taken to be given by (39), (40), and (80),
and the rest of the controller parameters were taken to be :

£, =10, T, =0 ,

10 0 0
r=10 10 0 s 2, =0 ,
0 0 10
W3 433 _ 5 4 2005 .

The results of simulations with u¥*(t) given by
1 10n <t <10n + 5 ,
ux(t) = n an integer,
-1, 10n + 5< t < 10n + 10 ,

and with initial conditions
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zl(o), ZZ(O), z%f(o)y Z“’;‘(O) = O b
;(0) =0 , %(0) =0 ,
él(o), s;(O), 0) = 0.01 ,

are presented graphically in Figs. 1-6. The desired state
response is presented in Fig. 1 and the difference between
the system response and the desired response is presented in
Fig. 2. Note that the discontinuities in the control function

(2)

seen in Fig. 3 are due to the k,u* term in the u
of the control where

portion

-~ - ~

(kl,kZ;ka) =K ;

this term is discontinuous because u¥ is a square-wave. As
seen in Figs. 4, 5, and 6, the various adaptive parameters
seem to tend toward constants.

6. Appendix
In what follows, D is a subset of RP,

A (i) Caratheodory Function. A function f :

R x D+ RY is Caratheodory iff: for each t€ R, f(t,.) is

continuous ; for each z& D, f(.,z) is Lebesgue measurable ;

and, for each compact subset ¢ of R x D, there exists a

éebesgue integrable function mC(.) such that; for all (t,z)
c

2

If(t,2)1 <mx(t) .

(ii1) Strongly Caratheodory Function. A function

£f:RxD>RIis strongly Caratheodory iff it satisfies (i)
with mc(.) replaced by a constant mee
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10.

11.
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