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Abstract : Using ideas from an electromagnetic,
thermal fluid theory which is an altermative to Schrddinger
‘quantum theory but which contains that theory exactly as a
subspace structure, it is shown that the "quantwn" potential
Vg is generated by induced "thermal" mass according to the
usual relativistic relation VQ = m(th’zcz = kT,

Résumé : En employant des idées dérivées d'une
théorie d'un fluide thermique et électromagnétique qui est
une alternative 4 la théorie de Schridinger de la mécanique
quantique, mais qui contient cette théorie exactement comme
une structure de sous—espace, Tl est démontré que le poten-—

tiel, "quantique', , est engendré par la masse 'thermique”
qu g’ © g p qu

produtite selon la relation relativiste usuelle,

VQ - m(th.)z _—
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INTRODUCTION

In recent papers [1,2], the present author has shown that
Schrédinger quantum theory for one dimension space can be
expressed in terms of classical thermal and electronic fluid
processes taking place on a two dimensional surface. This
theory supplies an alternative point of view with philosophi-
cally radical implications for the "visualisation" and under-
standing of fundamental microscopic processes. An important
feature of this new formulation of quantum theory is that it
uncovers the chain of interactions whereby a '"quantum parti-
cle" induces in its immediate vicinity electrical and ther-
mal currents external to itself, but which act back on to it,
in terms of a potential which turns out to be the.'"quantum"
potential. However, although the mathematical structure is
very clear, it is not obvious what carries the induced cur-
rents that are responsible for this "extra" self influencing
force. This paper will be devoted to showing that the extra
potential is a c-=sequence of the classical relativistic re-
lation between mass and energy and also of the way in which
the quantum density o{x,t) is defined. It turns out that the
induced currents have their origin in "gradients" associated
with the induced thermal mass. V

The utilisation of an extra space dimension with coordinate
¥, as with analytic continuation when x =+ x + iy, is an im-
portant aspect of this alternative theory. This particular
feature appears in similarly motivated work by Blaquiére [3]
which relates quantum theory with systems theory and it also
appears in work by Harper [4].

The parallel with complex functign theory arlses because the
two dimensional velocity field, v = V;l + VZJ satisfies the

two vector differential equations, V.V = VAv = 0, where

— -+ - -> . . . .
Vv = vyl - v,];, in analogy with the superfluid momentum field,

*s
P .

Work connected with the idea of forming a classical basis for
quantum mechanics has been discussed in some detail recently
by Cavalleri [5]. The fluid point of view seems to have ori-
ginated in work by Madelung [6]. Many authors have contribu-
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ted to this line and, in particular, Takabayasi [7] and
Janossy [8] have written important articles. Much of the
history of attempts to reformulate quantum mechanics can be

" found in the very comprehensive account given in Max Jammer's

book {9], where can-also be found references to a large num-
ber of contributors to the analysis of the problems.of the
fundamental significance of quantum mechanics and its rela-
tion to classical theories. Further references to related,

or work similarly motivated to that which is about to be
discussed in this paper are [10...12].

2. Induced Density

Given a wave function, ¢(x,t), solution to the Schrddinger
equation, the orthodox quantum density o(x,t) is defined by,

o(x,t) = ¥*(x,t)u(x,t). (2.1)
This‘function p has the dimension L'1 provided v is suitably
dimensioned. We.shall make much use ‘of a real positive func-

tion p(l)(x,y,t) defined by,

p(l)(x,y,t) = w*(x-iy,t)w(xfiy,t). (2.2)

The bracketed superscript will be used to indicate "minus the

dimensionality" of the p to which it is attached. Thus p(l)
h%s in common with the ¢ in {(2.1), the dimension L-1. The
o{1)(x,y,t) obtained by analytic continuation of y(x,t) and
formula (2.2) is not a two dimensional density. A two dimen-
sional density is basic to the fl?ig process that we shall
be studying and so we-introduce o'“’/(x,y,t) by

o3 (x o (Wix,y,0), (2.3)

-1
Yot) = 8
where &, is a constant with the dimension of length. Thus,
apart from the factor %,, the orthodox o is the boundary
value on y = O of p( )(x,y,t) We take thls superscript no-
tation further by also introducing a o )(x,y,t) such that

p(3)(x

o0 =03t gt s Wiy,o, (2.4)




s
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where 2§Ais another constant with the dimension length. We
need p in order to relate the formalism to the three di-
menstional charge density of Maxwell's electromagnetic theo-

_ry. Thus, if we denote three dimensional charge den51ty by

o{x,¥,t), we have

o(x,y,t) = é’o(z)(x,y,t), : (2.5)
where e' = -e<0 and e is the ma%n%tude of the %harge on one
electron. The three densities p (2) and P 3) differ in

dimensionality. However, in the work to be described here,
they will all only depend on the two coordinate variables x
and X and on the time t. Our first concern is with

mp(2 (x,y,t), where m is the mass of one electron. This quan-
tity is a mass density which arises from the alternative
theory as a basic mass distribution over the x,y plane. It
can ‘be taken to represent the degree of mass polarization
over the x,y plane or alternatively to represent the strength
of the positive pole mass density distribution over the x,y
plane resulting from a * mass polarization. This particular
interpretation of mp 2) leads, as will be shown, to some very
illuminating images concerning the movement of a quantum par-
ticle in relation to the locally disturbed vacuum. However,
this mass density only represents the primary particle mass
distribution and does not contain, as a direct and additive
contribution to its magnitude, information about mass which
may have been induced by the passage of the prlmary partlcle.
This interpretation of the significance of mp (x,y,t) is,
of course, quite consistent with the orthodox interpretation
of mp(x,t) from which it is derived by formulae (2.2) and
(2.3). The quantum density o(x,t) is, in the orthodox theory,
also assumed only to represent the "primary" particle proba-
bility density.

Suppose that the passage of the primary particle actually

"stirs up" the polarizable background and so induces a local

thermal energy field «T(x,y,t), where « is Boltzmann's cons-

tant and T(x,y,t) is a local temperature. This thermal ener-

gy field can Pt ?xpected to be equivalent to a local thermal
m

3
e I

(x,y,t), by the relativistic law,
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Consequently, the "bare" mass density D(Z)SX v,t) should be
supplemented bK a density contribution, é&p 5, from the in-
duced mass m ) o «T/C%, to give a dressed mass or total
mass density, Py

In order t? yake this connection between the induced contri-
bution, and m(th), we shall make use of a temperature,
Ty, introduced in the work of de Broglie [10],

T, =m c¥/x . . (2.6)

We shall assume that T, is the local temperature
associated with the absorption of one electron rest mass per
area &3 from the rest mass distribution to become the uni-
formly distributed thermal energy field «T,. Thus, in the
case when the local temperature has the value T, in formula
(2.6), the bare density should be supplemented by a contri-
bution . :

5082) = ~1/33 T (2.7)

to account for the loss of one electron rest mass to the
thermal field «T,.

In general, a local temperat?r? T(x,y,t) will be assumed to

ca?ss a supplementation of p by a quantity denoted by

We now make the simple and plausible assumption that
the 1nduced densities are proportional to the inducing tem-
peratures. That is

(2)
Sp T
= =, (2.8)
60(25 T,

Substituting (2.6) and (2 7) into (2.8) gives the formula,

60(2) = - EIT zoz - (2.9)

(2.10)

or mép(z) = - m(th)QIZ

In order to proceed further by making use of formula (2.9)
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we shall use an expression for the temperature T derived from
the alternative theory [1]. This formula is,

(2)

2 .
kT = -mv? 3 3ino -, (2.11)
where v =14/2m. ¥‘ (2.12)
Thus the total density, Pr ), is given by, .
2)
(2) _ (2) (2 (2) 2 -2 8% anp'
pp =0 + 689 =0 + (E) Ly —T >
(2.13)

having used (2.9) and (2.11).

We now make an "aesthetic" choice for &, by taking it to be
given by

+h

v
L, = T (2.14)
and so obtain the rather simple expression,
2)
(2) _ (2) »*F JZ,nD(
pT =0 + i . (2.15)

We shall continue to explore this structure on the basis of
the choice (2.14) and its consequence, (2.15). However,

clearly, other possibilities do Seem to be open but they will

not be considered in this article.

It is reasonable to expect that the * mass polarization over
the x,y plane carries with it a * charge polarization and al-
so a * magnetic "pole" polarization. However, it is likely
that this latter possible polarization will be the manifesta-
tion of the "distributed" magnetic dipole moment of the elec-
tron. In order to make use of the three dimensional Maxwell
electromagnetic theory formalism, we multiply (2.15) through
by ¢3'and obtain,

(3)

p%3) = o3, &;*3j_§§g__~ ) (2.16)
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T

Hence with the total "three" dimensional mass density mp
we can expect also to find a total chargé density,
e'oT ) and a total distributed magnetic induction field,

By = e o0 ek | (2.17)

where k = 1 & 3 and 8 has the value of one Bohr magneton,

i

B=-1e'/2m . : (2.18)

Thus multiplying (2.16) through by (u, fe/2m) kK, we obtain, -

S

§T =B, + 8§, ) (2.19)
where o ‘
Bo=we VR (2.20)
+ 2 -1 .
and B 3 tnp Me'! © ‘ (2.21)

= -~ L
UOvzm 3

We can express (2.21) in a more iliuminating form by making
use of further formulae from the alternative theory [1],

(3)

vy o= v 2 . (2.22)
(3)
v, = ~v 3”;}‘:" (2.23)
and sznp(z) =0. | - ' (2.24)

It follows that

§ - %%A elua k0 (2.25)

=S e st I - (2.26)
-1 )

= ~€ HUogl; @ , say, (2'27)

L

where & = 5 VAV is the local fluid angular velocity. We now

make another "aesthetic" choice. This time by taking the
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the length parameter %, in (2.27) to be the classical elec—
tron radius multiplied by 4.

That is, we let,

= 4ne = Sha © o (2.28)
Then, (2.27) becomes,
f-- g B2 W (2.29)

Which, apart from the minus,sign, is the cyclotron resonance
frequency relation betWeen ﬁ and & and, an attractively sim-
ple relation between fluid and magnetic characteristics. The
minus’ sign in (2.29) is a result of the relevant internal
equilibrium equations in this context being between osmotic
and Lorentz forces rather than between Lorentz and centrifu-
gal forces as in the cyclotron context. Here the configura-
tion of balancing forces is rather more complicated and the
details of this can be found in reference {2]. We shall con-
fine our attention in this paper only to the case given by
the choice (2.28). Maxwell's electromagnetic theory can now

+(t)

be used to obtain the induced curre%t 7 , say, associated
2

- with the magnetic induction vector |

o >
we TV L % (2.30)
Hence J() = - B Fa¥ad . (2.31)
2ey, :
It follows that
-»(t) _ m e -+
J =~ o V(V.v), (2.32)

because v2v = 0 as a result of (2.22), (2.23) and (2.24).
The magnetic induction B, carried by the primary particle
exerts a Lorentz force , per unit volume on the induced

current J( )

This Lorentz force is given by,

i, (t) A Bo = —ﬁQ, say, i (2:33)
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and Rg will be the Newtonian third law reaction force expe-
rienced by the primary particle from the induced back-ground

(t)

current J

From (2.11), (2.32) and (2.33), we see that this extra force,
Q’ experienced by a quantum partlcle per unit volume, is

. =30 h s, - Wy (2.34)

with the quantum potential being Vg = «T. The force,‘ﬁQ, is

o3
v

additional to the force F = ~0 ., derived from the pres-

cribed external potential,

Vi(x,y) = Re. 2L V) (2.35)

Thus the one dimensional Schrddinger equation is, in all res-
pects, equivalent to the boundary value, when y = 0, of the
Newtonian equation,

(3) gp j(t) A -ﬁo - 9(3’)VV1, (2.36)

t
where E = m(v11 - VZJ) = mvaVan (2.37)
and dt 3% + v.Vp . (2.38)

3. Conclusions

This work supplies a clear physical picture of how the passa-
ge of the primary particle through the "vacuum" is accompanied
by a polarizing disturbance which -is both electromagnetic and
thermal and has the effect of modifying the expected "simple"
Newtonian behaviour of the primary particle. The derivation,
in this paper, of the quantum potential, Vq, shows how this
extra potential is generated from the thermal mass; m'‘t

which in turn has its origin in the local thermal energy KT,
with these two quantities being connected by the usual clas-
sical relativistic relation between mass and energy.
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