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The neo-Hertzian wave equation is solved for linear and for
circular motions of the field detector. It is shown that pro-
pagation (wave) speed in this theory is ¢ .plus the average over
the photon's propagation time of the component of detector ve-
locity parallel to propagation direction. Possible crucial ex-
periments to distinguish neo-Hertzian:from Maxwellian theory
are examined.

1. Radiation Convection : Introductory Heuristics

Equation numbering will continue consecutively from Part I of
this paper [1]. Perhaps the most interesting departure from
expectation implied by the Galilean-invariant Hertzian equa—
~tions (22) or the more generally-invariant neo-Hertzian equa-
tions (29) is that the electromagnetic field detector or
absorber, by its motion relative to the observer, is predicted
to convect the radiation it absorbs. That is, motion relative
to an observer of the absorber of a particular photon affects
the propagation speed to. be attributed to that photon by that
observer. In a classical model, the effect (at least in one

- spatial dimension) is not unlike what would be expected if the
photon detector carried "the ether" along with it. Such a mo- -
del, applicable to Eq. (22); must be modified to refer to de-
tector proper time, rather than to Newtonian t-time, to fit
the neo-Hertzian case, Eq. (29).

Just such an effect of "radiation convection by the absorber”
was previously predicted [2] on purely kinematic grounds, as

a necessary consequence of postulated length invariance, hence
of physical nomoccurrence of the Lorentz contraction. (Light
has to "hurry up" to cover the extra distance resulting from
this nonoccurrence.) That is, our postulate [1] that the
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invariants of kinematics are length and proper time implies
failure of Einstein's second postulate {universal light-speed
constancy). Experimental evidence supports Einstein's postula-
te for source {emitter) motions, so the only way that postula-
te ~an fail is if light speed, is affected by detector (absor-
ber; motions. That such g possible failure mode may have been
overlooked is apparent from the fact that radiation detectors
in normal practice tend to be at rest in the observer's labo-
ratory. (Maxwellian field detectors, as we noted in [1], are
defined to be at rest relative to the observer).

From the standpoint of quantum mechanics it need only be noted
that an influence of Hetector motion on light speed (c¢f. Bohr's
observation that "the apparatus as a whole makes the measure-
ment™) should occasion no surprise, since "detection" of the
photon is "quantum measurement”, and it is known that the sta-
te of motion of a detection apparatus relative to the obser-
ver in general affects the predicted "measurement” outcome in
a nonclassical way. Denial of such a physical possibility is
based neither on reason nor on empiricism, but on implicit
faith in all aspects of the special relativity theory -a theo-
ry that evinces such purely causal thinking about the physical
nature of light as (a) to verge on determinism and (b) to be
soméwhat anachronistic in the era of "quantum nonlocality",
"wave function reduction', etc.

In this second part of the paper we shall formulate neo-
Hertzian wave equations and develop several forms of solutions.
In each case quantitative predictions of radiation convection
by the absorber will be derived.

2. Neo-Hertzian Wave Equation in One Dimension

Taking the curl of Eq. (29a) and applyln (29b), (29c), and
)

the vector analy51s formula VxVxH = V(V.H) - v2H, we get
B 47 » » '
~-y2 — = =
Vel o+ c2 a7 H=— vl =0, (30)

provided ﬁm is curl-free. Similarly, the curl of Eg. (29b)
yields
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+ 1 d% = pid 1 d &
_V2E+€!aTéE=—-41T(Vp+?EUm)- . ’ (313)

by 4 .
In free space, remote from field sources, p and Um vanish, so
we get a second wave equation ¢

-+ 2 >
_vE 4 1 g-—E-O. : (31b)

Q—wo

To solve an equation such as (31b), one method is to gombine
Egs. (26b) and (17) to obtain

ICL

= (5 + ¥y D), (32)

[a¥

Kl
which can then be used in (31b) to solve for E = E(x,y,z,t).
This noninvariant approach, however, is mathematically more
complicated than using the proper-time convective derivative,
d 3 x> :
-—.=—-—+V.V 5 : (33)
drd ‘ aTd d ,
which is manifestly invariant, to solve (31b) for E = E(x,y,2,
Td). The results will be shown.to be equivalent.

Consider a one-spatial-dimensional problem. First we do it the
hard (noninvariant) way, looking for a solution of type E =

E(x,t). With (32), (31) becomes in the case of unaccelera-
ted detector motion in the x-direction

1
- %Eg T Yd(__T * 2vd a at +,V§ axz)E =0 (34)

A solution of the more specialized form E = E(x + at) will be
sought. On substituting, we get a quadratic for the constant
a :

2 - 2 2
a? + 2vda c? + 2vd 0
with roots

z z (35)
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Thus a d'Alembert-type solution for the E-field is
E = E.(x + [/cz—vé - vd]t) + E,(x - [{cz—vé + vd]t), (36)

where E, -represents an arbitrary wave traveling along the x-
axis to the left at speed [c - vyt O(vé/cz)], and E, is ano-

ther wave traveling to the right at speed [c + vyt O(vé/cz)]
If the detector moves to the right (vd > 0) the wave traveling

to the left is slowed and the wave traveling to the right is
speeded up. If the detector moves to the left (vd < 0) the abo-

ve statements are reversed. Thus in all cases there is a first-
order convection (pulling along) of the wave field in the di-
rection of motion of the detector relative to the observer.
This convection vanishes only if the radiation detector (ab-
sorber) is at rest in the observer's. system (the usual case,
as we have noted, “° actual laboratory practice). Such a con-
vective alteration cf the speed of light, earlier hypothesized
[2] as necessary to permit non-occurrence of the Lorentz con-
traction, restore definability to distant simultaneity, etc.,
is consistent with our present identification of length as a
rigorous invariant of kinematics. In this one-dimensional pro-
blem the convection bears a resemblance to the effect of a
wind blowing in the acoustic case -but since it represents an
influence on the photon of the motion of a detector which the
photon has not yet reached (according to a Huygenian retarded-
wave "propagation” model), it is clear that neo-Hertzian elec-
trodynamics violates deeply-held "causality" conceptions of
the nineteenth and earlier centuries that were passed on in-
tact to the twentieth century by Einstein.

Let us treat the invariant formulation of the same problem.
Substituting Eq. (33) into (31b) and considering a one~dimen-
sional solution of type E = E(x,rd), we have

dZE 1 32 32 5 92
-7 E,(__ér * Wi gor Vi Rr)E=0. (37)

Looking for a solution of form E = E(x + Brd), we obtain a
quadratic,
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B2 + 2V 8 + Vi-ct=0 ,
whence '
B=-Vy tc . (38)
Our general solution is therefore
= E,(x + [c—Vd]rd) + B (x —[C+Vd]rd), (39

The simplicity of this invariant form of the result will be
noted. If the detector is at rest (V, = 0) the customary speed-
¢ dfAlembert solution is obtained.

From Egs. (25) and (27) we have
t = — , V, = — % . (40)
v d /v
I - d 1 d
c? T

These relations convert the argument of (39) into that of (36).

For example :
v

E.(x + [c—Vd]Td) = ﬁl(x +‘[c - ]Td)

. ‘ .
=E, (x + [/cz—vé —,vd] d ) = E,;(x + [/ci—vé - vd]t).(41)
1-(v,/c)?
d

Th¢ equivalence of solutions (36) and (39) is thus established.

3. Two-dimensional Wave Equation : Doppler Effect

We now extend our examination of neo-Hertzian wave equations
to treatment of .the two-spatial-dimensional wave equation in
the invariant formulatlon Detector proper velocity is deno-
ted V = (V V ). . (33)

d 3 3 ]
E;;—jﬁ;-i-vxa—}z-%‘vya—y- o (42)

On substituting this into Eq. (31b) and seeking a solution of
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the plane~wave type, E = E(k X + k y - Wrd) where Kk = (k 5
ky) is an arbitrary propagatlon vector and W a constant, we

obtain the algebraic condition
o m2a2 2 2 yepz _ =
- R*c* + B? + Vx + ny 2VxB 2VyRB + ZVXVyR 0, (43)

where
= X -
R = kx s B = . | (44)

To study the Doppler effect, we apply a "proper" (or proper-
time version of the) Galilean transformation,

- > <>
r' =r -V

(45)

d “a’ R ERAE
v being the proper velocity of the detector (Eq. (27)) refer-
red to detector proper time t,, such that Vo1, =7 t, t being
frame time in the 1aboratory intertial system S (connected to
by Eg. (25a)). (45), which might be termed "neo-Gali-
lean transformatlon”, expresses the physical invariance of
proper time rather than frame time. It replaces the classical
Galilean transformation in neo-Hertzian theory and is essen-
tial to the kinematics of inertial motions, which is not our
subject here. If primes denote the inertial system S' (moving
with velocity v, relative to S) in which the detector is at
rest, a constant phase-value of the E-solution is expressed

by

k.r - Wty = const. = kr.re - LARSS (46)
Such a condition is sometimes referred to as "invariance of
phase", but it is not an "invariant interval" statement (such
as 14 = t'), because the angular frequencies W and W' are mea-
sured by Single timing devices (frequency meters) at rest in
S and S', respectively. Thus they cannot refer to an interval
between two specified events (it being impossible for two gi-
ven events to occur at the same place in each of two frames in

~relative motion). On putting (45) in (46) and introducing the

notation
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W W
kx=ﬁlc, ky:Um, 22+m2=1,
N k= =T TR - (47)
U X v Ao

with corresponding primed symbols for similar quantities in S',
we get

W W W! W'
gE W - Wrd =g W (x - erd) + T n'(y - Vyrd)‘- W'rd,
(48)

where §d = (VX,VY). Equating coefficients of the arbitrary va-

riables X,¥, 74, We obtain three conditions :

To=i (49a)
Jm=tn - ‘ (49b)
- 3o e mv W (49¢)
Eq. (49c) can ge written as
W=W(1+2 é? +m' ﬁ¥) (50)

which is one form of the Doppler formula. ‘Taking the ratio of
(49a), (49b), we get

m  m' ’
235 (51)

. which in view of Egs. (44), (47) implies

.y _m_m o
R=pr=g=qr=R. (52)
x
Substituting Eqs. (49a), (49b) in (49c), we get

W W
W= i EVX tgm Vy + W',
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or i W VX ’ Vy

=Wl - 2 g-m ﬁ*), (53)
an alternate form of the Doppler formula. A symmetry emerges,
in that the interchanges W « W', (¢,m) « (2',m'), U « U',
(VX,Vy) - (-Vx,—Vy)”}eave our Doppler formulas (50), (52)

invariant. In the above formulas (¢,m), (&',m') are direction
cosines of the k-vector of wave propagation relative to the
+x-direction (coincident with the +x'-axis), W is proper an-—
gular frequency in S (defined below), and U is proper wave
speed ("phase velocity") in S' in the E—direction, related to
ordinary wave speed in S by

u
U — . ‘ (54)
/l—ivd7c5!
We note that vy = 0 in S§', so
Uf = u!' =¢ , (55)

inasmuch as the detector's being at rest reduces Hertz's (and
the neo-Hertzian) equations to Maxwell's, for which the wave
speed in vacuum is known to be c. This may be proven by wri-
ting down the primed equivalent of Eq. (42) with (VI,v!) =
(0,0), which yields >y

- c?* - R'2¢?2 4 B'2 =0, (56a)

On using B' = W'/k; =U'/e', and R' =m'/e', Eq. (56a) implies

= (56b)

pIE
]
I+
<
—
'~J
=
i
I+
—~
aj<
o
g
[
¥
—
i}
1+
°|
= ~—
]
=
N
|
=8
H
)
s
=
o

wh;ch leads to U' = #¢, ¢ = *2', the ambiguity in sign of ¢
being the same as that encountered in the one-dimensional pro-

blem, Eq. (38). For present purposes it suffices to choose the
plus signs,

Ut = ¢, L' =, m' =m . (57) .
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The equality of direction cosines in S, S' reflects our pos-
tulation of lemgth as an invariant of kinematics. Egs. (49a)
and (57) imply that :

or

W=D . | o (®
Comparing (58) with (50), we evaluate U as
\ \Y .
= _—)-(- _y_ - . .
U=c(l + & i m' U,) =c+ % Vx + m Vy’ (59)

which explicitly exhibits radiation convection by the absorber
(detector) moving with proper velogity (VX,V ) in S for given
propagation direction (%&,m). On putting ,

W U _c ; . . _ 1=2?
B'E;*I'I+Vx+Rvy’ with R* = =7, (60)
into Eq. (43), we find that Eq. (43) is satisfied as an alge-
Eraic identity for arbitrary &. Therefore the direction of the
k—vectog remain§ arbitrary and unaltered. Making use of (%,m)
= (kx/lk!, ky/lkl), one can express Eq. (59) in vector nota-

tion : -
> &

Vd.k
U=c¢c + — (613.)
K|
or v, .k
u = /ci-vi o+ (61b)

Ik
the latter being in agreement with Eq. (36) for the one-di-
mensional case, the former with Eq. (39). Eg. (61) indicates
that only the component of detector velocity parallel to
light propagation direction affects light speed, and there is
no change of propagation direction associated with coordinate
transformation.

Returning to the Doppler formulas and using Eq. (59) in (53),
we get ‘ ~
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o 2 Vx +m Vy o c )
c + 1 Vx + m.V’y T e+ & Vx + m Vy
" W =Wl+ e =+m -Y"-’(-)“1 . (62)
T« c

To proceed, we must be‘certain of the.operational definitions
of our symbols. In particular, let

w, = angular frequency of radlatlon measured with all ins-
truments at rest in S.

W' = angular frequency of radiation measured with all ins-
truments at rest in S'.

W = "proper angular frequency in S" = 2v times number of
waves received between events E, and E, at a detector statio-
nary in S, given that E, and E, occur with unit time separa-
tion as recorded by two clocks at rest in S' ‘that spatially
coincide with E; and E,.

Note that the detector at rest in S used in defining W is a
different detector from the one at rest in S' (associated with
proper velocity Vd) with which our discussion is mainly con-
cerned. The detector at rest in S does not convect radiation
in the view of the S-observer, so (by the definition of W and

w,y)

Wt t . ' (63)

4= %
The emitter and detector involved in defining W and w, are
both at rest in S, and w, is simply the "source" or "emitted"
angular frequency. W and w, differ only by the choice of fra-
me ‘in which the time-measuring device is at rest. On recalling
the relation between t and 7, = t' (frame times in S and S'
respectively), Eq. (40), we get from (63)

W — (64)

V1- vd [

To repeat : The quantity W is a sort of hybrid, which is "in
S" as far as radiation detection is concerned, but which
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refers its time mesurements to clocks at rest in S'. Thus
n"detection” and "time measurement"” are treated in neo-Hertzian
theory as distinct physical operations, whereas the distine-
tion is immaterial to Einstein's physics. Eq. (64) shows the
choice of time measurement system to be essentially a trivial
matter, easily compensated by a square-root factor:

The quantity W' is the Doppler-shifted angular frequency mea-
sured by the moving detector and its comoving clock. From
Eqs. (62) and (64)

vi -3 Vo V.-l
w‘:Lua(l--E}') (1+z-c—-+m€¥-) . ’ (65)

A related quantity of interest (also of a hybrid nature) is
the angular frequerncy, measured by a clock at rest in S, of
the radiation received by a detector at rest in S', connected
to the clock by flexible leads. That is, "time measurement"
occurs in S but "detection" occurs in S'. Such an angular
frequency -call it w¥- is given by Eq. (65) with the square-
root factor omitted. Whether W' or w¥ represents the "true'
Doppler effect depends on details of. the measurement process.
In general conventional relativity theory conditions us to
view W' as embodying the "real” Doppler shift, but to make
this true in practice would require putting frequency meters
into motion in the laboratory. It would seem that in earth-
bound laboratory experiments involving moving detectors w®
would generally be the quantity relevant to electromagnetic
Doppler observations.

On expressing proper velocity components in terms of S-frame-
time components by Eq. (40), we get

vi -3 v v -1
W'o= w1 - E%) (1 + & D am—
/1- vy/c 2 /1- vd/c 2
v v L vé o
= 0(1-2—_mEX§ 5 7)) + 0(v?/e?), (66)

which agrees to second order with the Elnsteln Doppler formu—
la,
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vi -3
L
wt =m°(1_69'2) (I—EVx—gvy)
A vy 1Y% |
= we(l - 2 65 = m EX + 5 Eq) + O(Y’/C’) . (67)

On the other ‘hand our hybriq quantity wit,

. Vv .
W‘s=m°(1+£ Vx B y 1
¢ AV /e)? ¢ AV /e)?
v Vv .
= wy(l= 8 c_x,_ m .C-Y-) + 0(vi/c?) , . (68)

‘

B L
agrees with the other formulas to first order and with classi-
cal theory to second order. Thus a second-order Doppler expe-
riment, such as that of Ives-Stilwell {3], can at best verify
time dilatation, not distinguish neo-Hertzian from Maxwell-
Einstein theory. Similarly, there is no possibility from a
first-order effect such as stellar aberration to derive any
observable distinction between the theories. We omit discus-
sion of Fresnel drag from this paper, since this lies in the
subject area of kinematics (velocity composition law) rather
than electromagnetism. Preliminary investigation suggests
that no feasible crucial experiment lies in that direction.

For completeness we record a set of field-component solutions
that satisfy the neo-Hertzian field equations, Eq. (29). They
are

B, = -k, F, E =k F, E =0,
H =0 , . H =0 |, H =k F, (69)

where F = F(kxvx + ky y - Wrd) is any smooth function and
k = (kx’ky) is an arbitrary propagation vector. The only

departures from the corresponding solution of Maxwell's equa-
tions are hidden in the notation ; e.g., k = /k; + k; = W/U,
vice k = w/c. The proof that -Eq. (69) satisfies (29) involves
repeated usage of Egs. (47), (53); and (58).
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4. Two-dimensional Wave Equation : Circular Motion of Detec-—
tor

Interest in circular planar motion of a radiation detector

arises. in the astronomical context (earth's orbital and axial
rotations) as well as in connection with possible laboratory
experiments. Suppose the detector moves in a circle of radius
R at constant angular velocity w and speed [;dl = v = Ru,
with coordinates

ry = Ix+Jy=1Rcos(utvd,) + J R sin(wt+e,) .

The detector velocity is

- -+ -

vy =d rd/dt =1iv + ¥
and its proper velocity is Vd = d;d/dr = ;d//l—zvkiI =
i VX + 5 Vy’ whence

-1 v sin(uwt+8,) + § v cos{ut+6,),

[} ]
<
#

.Vx‘= -A sin(wdrd + 64), Vy = A°cos(mdrd + 8,), (70)

where A = v//1-{v/c)? and we have made use of O3ty = wt,
t = rd//l—(chiz, wy = w/Y1={v/c)%. From (70),

av

X
(3?5) = ~A'md cos(mdrd + 8,) = -uy Vy, (71a)
av . S
(s;i) = -A wy sin(wdrd +’60) = uy Vx . (71b)

We shall seek a solution of the neo-Hertzian wave equation,
Eq. (31b), of the form-

E = E(kx X + FY y - W(Td)Td),', (72)

where W(rd) is a function to be determined and k = (kx,ky) is

the propagation vector of incident plane-wave radiation. Eq.
(31b) may be rewritten, with the help of Eq. (33), as
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: On integrating we find
| & e L g oo (73a) : ,
Ty o = Al coslugrgre,) -k sin(ugrgre,)] + €
| L. d 3 3 8 73b) : , ; L
§E L=E=E¥;+VX3§+VY'BY. (/J ‘ =kyvy+kxvx—.i-c, - (80)
From Eqs. (72), (73b) we obtain ; From Egs. (74b) and (80) we get
LE = K(T‘d)El’ (74a) K=~ 4 + kX VX + kY Vy_ = ~0. o (81)
where l ; Eq. (77) yields )
= - (74b) ‘ :
Kltg) at =k Ve vk Wy ! | - KB 4 Ly KEY = (<K 4 L cO)E" = 0. (82)
o = a(rd) = Td W(‘L’d), (74¢) . ’ ;
/ Thus €* = c?k?, or,.if we choose the positive root,
! and primes denote differentiation. Hence ‘
C = Ck, k = m ® (83)
L2E = L(LE) = L(K\fd)E’) = (LK)E' + K(LE') = (LK)E' + KZ2E". X vy
(75) | Egs. (80) and (83) evaluate o = (r&W)'. Integrating this,
Eq. (71) indicates that LV = -uy Vy’ LVy = wy V.. Hence (I . L ='f o dry + Gy, (84)
(LK) = = a" - k. wg Vy + ky wg Ve - (76) ‘ we get finally
Eqs. (73a), (75) yield W(Td) = ck + iyt ky[51n(mdrd+6°)~sineo]
i .
-(k;+k;)E" £ éy L?E = -k?E" + %7 K2E" + ET(LK)E' = Of (77) . + kx[cos(qd3&+e°) - Ccos 0, . ' (85)

wherein the integration constant C, has been evaluated by im-
posing the condition that W(ty) remain finite as t, + 0. Eq.
(85) confirms the existence of a solution of the form (72).

To facilitate solution we impose the condition that the coef-
ficient of E' vanish ; i.e., from Eq. (76),

= - a =0, (78a) . :
(LK? o f(rd) Specializing to the case k_ = 0, kx = -k, and using the fact
| f(Td) = wy(-k, vy + ky v . (78b) that A = v/V/1<(v/c) 2 = Re//1-(v/c) ? = Rug, we get
Thus 4 i W= ck{} - E%—[cos(wd:d+eo) - cos8, ] } . (86)
a! = ] f(rd)drd + C, C = const. (79) | - d
where 6, is the initial phase of the detector's circular
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motion. The corresponding proper wave speed of light, by Eq.
(47) -written in terms of "frame time" t of the inertial sys-
tem in which the center of the circle is at rest- is

U = g =cll - —————5——————[cos(wt + 8,) - cose,]}. (87a)
ctvi=({Rufc)?

A simple physical interpretation of this result can be obtai-
ned by evaluating the time average of the "longitudinal" com-
ponent of detector proper velocity V, (parallel to the direc-
tion of light propagation). We find, with e(t) = e, + wt,

de = w dt,- t
o fovdsme,(t)dt V, 8gtwt
<Longitudinal component> = —_—= ;E f sine de
f dt %o

0

Y4
= - Eg[cos(mt+6°) - cosB,] .

Since Vd = v//1I-(v/c)? = Rw/v1-{Rw/c)?, comparison with Eq.
(87a) shows that

(Photon proper speed) = U = ¢ + (Time average du-
ring photon's time-of-flight of longitudinal component of de-
tector proper velocity) (87b)

The adjective "proper" can be dropped from both sides of this
equation through multiplication by v/1-(Rw/c)2. The longitudi-~
nal velocity component is negative if detector .and photon mo-
tion directions are opposed, positive otherwise. By "time-of-
flight" is meant the time between photon emission (t = 0) and
absorption (t = t) events. Although this result, Eq. (87b),

has been obtained for the special case of circular motion, it
is likely that it applies for arbitrary detector trajectories.

5. Possible Crucial Experiments

Several special cases of application of Eq. (87) are of inte-
rest.
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Case A. Suppose R is the radius of the earth's orbit, consi-
dered circular, and t is the propagation time of a light si-
gnal from an astronomical event occurring outside the solar
system at time t = 0 and distance D = ct, detected by an
earthbound telescope. Since D >> R, Eq. (87a) shows that

U = ¢, regardless of the detector's instantaneous state of
motion. Hence such distant event signals cannot be used to
distinguish neo-Hertzian from Maxwellian physics. Here U is
signal "proper speed", dx/dt,, reckoned in terms of earth time,
which is detector proper time. ’

Case B. Let R be earth's radius or distance from earth's axis
to surface at some latitude of observation. Then, for all as-
tronomical events (Sié" explosions on the sun) at distances
ct =D >> R, the same considerations as for Case A apply. In
neither case does detector motion produce an appreciable
effect on light speed.” One cannot by such generalities rule
out’ all astronomical attempts at "crucial testing" of neo-
Hertzian vs. Maxwellian electromagnetism, but it is clear that
very special circumstances are required to reveal any noticea-
ble distinction, and that existing data seem unlikely to pro-
vide a test.

Case C. Let R be the radius of a disk in the laboratory, on
the rim of which are mounted two diametrically opposed photo-
detectors, both facing a distant light source. In this case
parameters can be chosen to reveal any effect of detector mo-
tion. Taking 6, = Q0°, we get from Eq. (87a)

U = c(l + __B_Eiﬂﬂz_;_} ) . (58)
{ ctv/1-(Ru/c)?

For small t, wt << 1, thé detector motions are quasi-linear
advances and retreats parallel to the light propagation direc-
tion. We have sinuwt = wt, hence

. Rw | v/c )
U=c¢c|lt =ell &l (89)
{ c/1—(Rm/c)2I [ /1-(v/c)?)

for 8, = £909, wt << 1 or vt << R.
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Since Ut, = ut, where u is light propagation speed reckoned in
laboratory time t, we have u = U(td/t) = U/I=(v/c) Z. Hence

u = c[/Ic(v/c)? £v/c] = /&iv? v, (90a)

which corresponds to dur one-dimensional result, Eq. (35).
(The sign difference is eliminated by considering the minus
root in Eq. (83).) To first order Eg. (90a) yields

u=U=ctv | for vt <<R. 4 (90b)

If the light source is at distance D = ct from the disk, we
may choose the disk radius R such that

vt << R << D, or v <<-§ << c, (91)

which assures. that the light arrives at the disk as essential-
ly a plane wave, and that the distance the detector moves du-
ring propagation of the light is small compared to R. If at

t = 0, when a light flash or sudden modulation of durgtlon E
is emitted, the two detectors are at 6, = *90 (i.e., 1nter7
detector line exactly perpendicular to light propagation d}—
rection) then according to Maxwell-Einstein the signal arri-
val-time difference at the two detectors is to first order

(8t) = 2Dv/c?, (92)

because the advancing detector meets the signal before the
retreating one does. But according to Hertzian or neo-Hertzian
theory, Eq. (90b), the retreating detector convects light with
speed ¢ + v, and the advancing detector slows it to ¢ - v, so
these first-order effects cancel and the predicted first-order
signal reception time difference is nil,

- (at) =0 . (93)

Hertz

In order to have a feasible experiment to decide between the-
se conflicting predictions it is necessary that-(At)E > E, or
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, -
D>EZ§ ) ‘ (94)

Inserting reasonable numerical values, we find that either D
must be large (many miles) or E very short (say, ~ 10-13 sec.).
So the experiment, though feasible with modern techniques, is
not a trivial one. The chance that past laboratory observa—
tions (incideéntal to other objectives) might fortuitously ha-
ve decided the issue is judged to be negligible. It is cer-
tainly out of the question (e.g., with reference to the tech-
nology of fast photo-detection) that an empirical resolution’
could have been achieved in Maxwell's or Hertz's day, or in
the era when Einstein's theory initially gained widespread
acceptance. The foregoing considerations apply to visible
light signals. The possibility of using gamma-ray bursts has
not been examined, but might prove experimentally attractive.

Case D. To conclude regarding astronomy, consider an interme-
diate-distance event, say, an eclipse of a Jovian satellite,
simultaneously observed near sunrise and sunset at two obser-
vatories on opposite sides of the earth. The geometry is thgt
of Case C, with R, the earth's radius, of the order of 5x10
cm, v = R of the order of 3.5x104 cm/sec, hence v/c = 10-6,
The distance to Jupiter might be of the order of D = 6.5 1013
cm, so (At). = 2Dv/c? = 4x10~3 sec. Thus the observed event
duration E would have tho be less than 4 milliseconds to per-
mit a crucial experiment. Even if there were no problems of
"scheduling" the event to occur at proper phase of earth's ro-
tation, it seems unlikely that observable planetary events
would be thus sharply defined in time.

Our conclusion regarding crucial experiments is that astrono-

_ mical tests appear unpromising. The best hope is a carefully

engineered photon time-of-flight measurement of the type des-
cribed in Case C, above. It is judged highly unlikely that al-
ready existing observations can decide between Maxwell's theo—
ry and the versions of Hertz's theory (termed Hertzian and
neo-Hertzian) presented in this paper.
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6. Summary

Hertz proposed a Galilean-invariant "covering theory" of
Maxwell's electromagnetism that contained an extra velocity-
dimensioned parameter. His version of electromagnetism failed
beriuse He interpreted the extra parameter as ether velocity,
which he further identified with velocity of ponderable matter
in the laboratory -a view that led to conflict with observa-
tion. )

We have proposed here a different interpretation of the extra
parameter ; namely, that it is the velocity of the field de-
tector with respect to the observer. Through such explicit re-
cognition of field detector degrees of freedom the operational

definition of "field" is changed. This leads to a "neo-Hertzian"

electromagnetism, which attains form invariance at all orders
of velocity through substitution of (detector) proper time for
{observer's) frame time. The resulting generally invariant
theory evinces acausal behavior of light (influence of detec-
tor motion relative to observer on the speed attributed to
light by that observer, in violation of Einstein's second pos-
tulate). Such a non-Einsteinian electromagnetism fits with a
previously proposed [4],[5] non-Einsteinian kinematics, the
invariants of which are length and proper time. Together, the
alternative kinematics and electromagnetism appear to comprise
a consistent "test theory” of Lorentz-Einstein physics. The
latter features simple (causal) light and complicated (Lorentz-
contracted) matter. The neo-Hertzian alternative proposes sim-
ple (length-invariant) matter and complicated (acausal) 11ght.f
Only experiment can decide between these rival physical possi-
bilities. A sampling of candidate experiments suggests that
none performed adventitiously in the past, nor any involving
astronomical data, is likely to be decisive between Maxwellian
and Hertzian electromagnetism. A laboratory experiment equi-
valent to measurement of photon time-of-flight as affected by
detector motion should be crucial.

It is to be hoped that experimentalists will exploit the pre-
sent opportunity to strengthen the kinematic/electromagnetic
foundations of physics -for, as T.S. Kuhn has aptly observed,
a theory is never tested in all its aspects, nor really tested
at all except against other theories. It must be acknowledged
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that the number of nontrivially different kinematic/electro-
magnetic test theories to challenge Einstein/Maxwell has not
been very great. An up-dated Hertzian electromagnetism deser-
ves its day in court, if only because the prevailing fashion
of mathematical covariance has long needed to be confronted
with the alternative of true Znvariance. The vastly superior
symmetry (transformation group invariance) properties of the
neo-Hertzian alternative -even more apparent within kinematics/
mechanics [4],[5] than within the electromagnetism discussed
here- make it inherently attractive to explore. A great deal
remains to be done on the side of theory (particularly kine-
matics), as well as experiment -the present paper being no
more than an initial survey of selected topics.

Lest any connotations of what has been said here be construed
as derogatory of one of the premier physicists of history, let
the last word be said by Maxwell (6] :

"The facts of electro-magnetism are so compiicated
and various, that the explanation of “any number of them by
different hypotheses must be interesting, not only to physi-

cists, but to all who desire to understand how much evidence
the explanatlon of phenomena lends to the credibility of a

theory ..."
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ADDENDUM

The foregoing two-part paper, originally submit-
ted to Il Nuovo Cimento, was rejected on the advice of a re-
feree who felt that (a) "No equation of motion of charged
particles is given", hence the field quantities cannot be de-
fined, as in Maxwell-Lorentz theory, "by their action upon
test-charges", and (b) consequently, "Lacking any physical
description of the detector, ... the theory formulated in the
submitted papers cannot be considered as a well defined theo-
ry of classical electromagnetism". Concerning item (a), it
may be mentioned that a neo-Hertzian (or rather, neo-Lorent-
zian) force law has been discussed in other papers rejected
by other journals, one of which has, however, been published
(Journal of Classical Physies, 2, 1-23 (1983)) subsequently
to the referee's comments. Mechanical equations of motion
consistent with the kinematics sketched in Part I of this pa-

per (i.g., having . ength and proper time as invariants) appea—

red in Ref. 7 cited in Part I.

Concerning item (b), it is unquestionably true that the pre-
sent papers skim too lightly over the matter of operational
definition of the neo-Hertzian field quantities. I merely
described the detector as a "'black box' with a pointer and
scale on it, calibrated to read numerical 'field value'". In
order to measure Maxwell's field quantities, let us consider

what this box must contain. To measure electric field, a char-
ged test body, say, a pith ball, may be employed. The (x,y,2)

force components that must be applied to this test body to
prevent it from moving relatively to the walls of the box
are proportional to the Maxwellian electric field components
at the test body's position. By suitable calibration and
translation the measured forces can be caused to register as
pointer readings or digital readouts on three scales on the
outside of the box, labeled (EX,Ey,EZ).

In Maxwell's theory the box is at rest with respect to the
laboratory observer -but (according to Einstein and common
sense) observers in arbitrary states of motion will agree on
the numerical readings the pointers point to. That is, the
pointer or digital readings are general motional invariants.
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Similarly, magnetic field component values can be displayed
by arranging within the box three independent short wire seg-
ments carrying known currents, each under frictionless con-
traints to move within one of three orthogonal planes. Three
more scales with pointers thus appear on the outside of the
box, displaying (Hy,H,,H ) components at the locality of the
current elements. As efgre, these field-component values are
proportional to the forces that must be applied to the current
elements to keep them immobile with respect to the walls of
the box. This completes the operational definition of the
Maxwell field quantities. Note that since all material ele-
ments are immobile at all times, no equations of motion are
needed to discuss any aspect of the operational definition

-so electromagnetism is a science logically independent of
mechanics.
To define the neo-Hertzian field quantities, we employ the
same black box just discussed, identically calibrated, and
simply impart to it by definition the arbitrary irrotational
velocity (vx,vy,vz)~with respect to the laboratory observer.
As before, the field quantities are proportional to the for-
ces that must be applied to the test objects to keep them
immobile with respect to the walls of the box. And, as before,
the pointer readings are general motional invariants, hence
perfectly well-defined in the view of the laboratory observer,
who -at any fixed point P in the laboratory- uses the instan-
taneous values he reads from the pointers on a collinear
stream of such black boxes in identical states of motion
passing through P as his (time-dependent) measured "field va—
lues" at P in verifying the neo-Hertzian equations and their
invariance properties. I emphasize again : The measurements
carried out by means of the relatively moving boxes are the
laboratory observer's instantaneous "neo-Hertzian field va-
lues". They differ numerically, of course, from the same la-
boratory observer's "Maxwellian field values", defined by
reading on boxes stationary in the laboratory. Neo-Hertzian
"fields" are different from Maxwellian "fields"... as empha-—
sized in the text. Though different, they are equally quali-
fied as the basis for "a well defined theory of classical
electromagnetism”.

Only by parameterizing the detection instrument's motion (vy
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means of v.,v ,Vz) can the laboratory observer take explicit
cognizance of” the degrees of freedom that this instrument
actually possesses in the physical world. His reward for this
recognition of physical fact is an invariant covering theory
of Maxwell's, with scalar invariant transformation properties
»Z the field cemponents. This mathematical (Galilean) inva-
riance property was first discovered by Hertz and deserves to
bear his name. The equations referred to incorrectly by
Einstein in his 1905 paper as "Maxwell-Hertz" equaticns do
not have this invariance property and should presumably be
attributed to Maxwell-Lorentz.
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