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Abstract : We show that quantum mechanics is not
a complete theory. We do not as in the case of Einstein
Podolsky and Rosen derive this incompleteness by a logical
reasoning ex absurdum, but indicate explicitely which are the
missing elements of reality in the description by quantum me-
chanics of separated physical systems.

Résumé : Nous démontrons que la mécanique quanti-
que n'est pas compléte. Cette incomplétude n'est pas déduite
ic¢i par un raisonnement par 1'absurde comme 1'ont fait Einstein

Podslsky and Rosen ; nous indiquons explicitement les éléments

les éléments de réalité manquants dans la description par la
mécanique quantique des systémes physiques séparés.
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1. Introduction

Einstein, Podolsky and Rosen show that quantum mechanics is
not a complete theory [1]. In a recent study of the descrip-
tion of separated physical systems in a more general theory
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than quantum mechanics we were able to show that guantum me-
chanics cannot describe separated physical systems [2][3] and
that this incapacity of quantum mechanics is at the origin of
the incompleteness proof of E.P.R. [4][5]. Indeed in this in-
completeness proof E.P.R. use the physical situation of two
separated physical systems and they apply quantum mechanics
to describe these two separated physical systems. In doing so
they make the hypothesis tHat quantum mechanics describes cor-
rectly two separated systems and from this hypothesis they
construct elements of reality of the subsystems that are not
contained in the guantum mechanical description of these sub-
systems. Since these subsystems are arbitrary they can conclu-
de that quantum mechanics is not a complete theory or that
‘quantum mechanics does not describe correctly separated sys-—
tems. Since they say in the beginning of their paper that they
suppose quantum mechanics to be correct, and hence also gquan-
tum mechanics to give a correct description of separated sys-
tems, they can conclude that quantum mechanics is not comple-
te. We think that E.P.R. have touched in their reasoning at a
serious deficiency of quantum mechanics. The deficiency of
quantum mechanics is however not in the description of the
subsystems as is indicated by the reasoning of E.P.R. but in
the description of the joint system of two separated systems.

1t is the description of this joint system of separated sys-
tems by means of the tensorproduct of the Hilbert spaces of
the subsystems which is not correct, as we show in [4] and
[5]. In this paper we shall show that quantum mechanics is not
a complete theory, because it cannot describe separated phy-
sical systems. And we will not as in the case of E.P.R. deri-
ve this incompleteness by a logical reasoning, but we will
explicitely indicate which are the missing elements of reali-
ty in the description of separated physical systems.

2. Completeness of a theory

Let us recall the definition of element of reality given by
Einstein, Podolsky and Rosen : "If without in any way distur~
bing a system, we can predict with certainty the value of a
physical quantity, then there exists an element of reality
corresponding to this physical quantity". The condition of
completeness putted forward by E.P.R. is the following : "A
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theory is complete if every element of reality has a counter-
part in the theory".

Clea?ly E.P.R. did not mean that a theory should describe all
p0551b1e elements of reality of the physical system. Indeed
}f this was what they meant, then of course every theory is,
1pcomplete, because a theory only gives a model for the phy-
sical system and this model describes a well defined set of
elements of reality of the physical system. Therefore we would
like to put this criterium of completeness in a_ different way.
We would say that : "4 theory is complete if it can describe
every possible element of reality of the physical system ‘
w?thout leading to contradictions". .This completeness crite—
rium should be satisfied by a reasonable physical theory. It
means in fact that the theory is flexible enough to provide a
model for any well defined set of elements of reality of the
physical system. This is not the case for quantum mechanics

as we show, because quantum mechanics cannot provide us a mo-
del for the description of separated physical systems.

3. Separated physical systems

Two physical systems S, and S, are separated if a measurement
performed on one of the systems does not disturb the other
system. This of course does not mean that there is no interac-
tion be@ween S, and S,. In general there is an interaction
between separated systems and by means of this interaction the
dynamical change of the state of one system is influenced by
the dynamical change of the state of the other system. In
classical mechanics for example almost all two body. problems
are problems of separated bodies (e.g. the Keplerproblem).

Tyo systems are non separated if a measurement on one system
disturbs the other systems. We can even say, two systems are
non separated, 'if it is possible to define an element of rea-
lity of one system by means of a measurement performed on the
other system. For two classical bodies this is for example the
case when they are connected by a rigid rod. Let us try fo
express this idea of separated physical systems in an opera-
tional way.

Sgppose we consider two experiments e and f on a physical sys-
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tem S with outcome sets E and F. In general it is not possi-
ble to perform e and f together. This because often the per-
formance of one of the experiments changes the state of the
system in such a way, that it becomes impossible to perform
the other experiment. Sometimes however it is possible to per-
form e and f together. This means that there is a new experi-
ment which we shall denote e x f with outcome set E x F, such
that the performance of e x f is the performance of e and f
together. This means that if we perform the experiment e x f,
and we find one of the outcomes (x,y) for a certain x € E and
an arbitrary y € F, then we interpret this as the outcome x
for the experiment e. If we perform the experiment e x f and
“we find one of the outcomes (x,y) for certain y € F and an ar-
bitrary x € E, then we interpret this as the outcome y for

the experiment f.

Example -1 : Consider a system S of two spin 1/2 particles in
the singlet spin state. We perform an experiment e that con-
sists of measuring the spin of one of the particles in a cer-
tain direction in one region of space, and a measurement f of
the spin of the other particle in the same direction in an
opposite region of space. The outcome sets of ¢ and f are
{0,1} where O means that the electron is absorbed and 1 means
that the electron has passed the Stern Gerlach. What we mean
is the well known experiment proposed by Bohm [6] and carried
out meanwhile several times to test Bell inequalities.

Stern. Gendach Stean. Gerach
. catecfor
S, A A ZKES

A
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e x f consists of performing e and f at once. The outcome set
of e x f is {(0,0), (0,1), (1,0), (1,1)}. As is shown by the
experiments [7] and as is also predicted by quantum mechanics
for e x f we always find one of the outcomes (0,1) or (1,0). ’
For'e however we can find the outcome O and 1 both with pro-
bability 1/2 and also for f we can find the outcome O and 1
both with probability 1/2. '

Exgmple 2 : Consider a system S consisting of .two vessels con-
taining each 10 1. of water connected by a tube as is shown -
on the figure. The experiment e consists of testing whether
the volume of the water contained in the first vessel is more
than 10 1. We perform this experiment by emptying the vessel
by means of a siphon and collecting the water in a reference
yessgl.rWe give the outcome 1 if the water stops flowing af-
ter it depasses 10 1. in the reference vessel and we give the
outcome O if the water stops flowing before it depasses 10 1.
The experiment f consists of testing whether the volume con-
tained in the second vessel is more or equal to ‘10 1.

e x f consists of performing e and f at once. Again we see
that for e x f we always find the outcomes (0,1) or (1,0). For
e'however we always find the outcome 1 and for f we always
find the outcome 1.

In both examples we see that some of the combinations of out-
comes of e and f are not possible for the experiment e x f
Inde?d in both cases 1 is a possible outcome for e and 1 ié a
possible outcome for f but (1,1) is not possible for e x f.

.
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This indicates that e x f is really a new experiment. It is
not just the performance of e and f together. In both exam-
ples this is due to the fact that the system consists of two
systems that are not separated. These examples inspire us the
following intuitively clear definition of separated experi-
ments. ’

Definition 1 : Two experiméhts e and f are separated iff

i) they can be performed together
ii) if x is a possible outcome for e and y is a
possible outcome for f, then (x,y) is a possi-
ble outcome for e x £
iii) if {x,¥) is a possible outcome for e x f, then
x is a possible outcome for e and y is a possi-
ble ocutcome for f.

Clearly in both examples this definition is not satisfied such
that in both examples e and f are non separated experiments.

Definition 2 : Two physical systems S, and S, are separated
iff all experiments of S, are separated from all experiments
of S,.

4. The missing elements of reality

We shall now proof that an experiment of the type e x I where
e and f are separated experiments cannot be described by quan-
tum mechanics.

Theorem 1 : If e and f are separated experiments on a physi-
cal system S, then the experiment e x f cannot be described
by quantum mechanics.

Proof : Suppose we can describe e x f by quantum mechanics.
Then there exist a Hilbert space H and a selfadjoint operator

0 corresponding to this experiment. Since also e and [ are
experiments, there exists selfadjoint operators R and S corres-
ponding to the experiments e and f. If E is the outcome set of
e and F is the outcome set of f, the E x F is the outcome set
of e x . If x € E and y € F we will denote by PX, Py and

P(X v) the projection operators of the spectral decompositions
, ;

A
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of the operators R, S and 0. Consider now an arbitrary (x,y)
€ E xF and a vector v € ¥ such that vX P(x )" If the phy-
2

sical system is in the state v, then (x,y) is a possible out-
come for e x £f. As a consequence X is a possible outcome for
e and.y is a possible outcome for f. Hence V'M.Px and v)L.Py.

Soif weHand wil P_orwlP , thenwlP . This means
X y (x,¥)
that 1 - P_C 1 ~'P and 1 - P C1-P
x (x,y) y (x,
cP . Or P/ cCP_NP_.
y) Ty (x,y) ~ 'x 7y

y). From this
follows that P
(x,y

) b
Consider now a vector v € H such that va = v and Pyv = V.

) () Px and P(x

Then if the physical system is in the state v, X is a certain
outcome for e and y is a certain outcome for f. As a conse-
quence (x,y) is a certain outcome for e x.f.

This means that P(x )v = ¥. From this follows that
: ]
) and as a consequence P(ij) = Px N P_. But

P NP
X y s ) _ Y
then Q(x,y)EExF PN Py = 1. From this follows that [Px’Py] = 0.

As a consequence [R,S] = 0, which shows that e and f have to
be compatible experiments. If R and S commute we also have
PN Py = Px'Py and from the foregoing then follows that
P =P _.P_.

(x,y) "~ "x7y
Consider now two outcomes x, z of e and two outcomes y, t of
f such that Px'Py # 0 and Pz'Pt # 0. Consider two vectors v,

- P(x

w such that Px.Py v = v and Pz'Pt~w = w and consider then the

vector u =V + w.

P (v) + P (¥)

Then Px(u) = =V
va(u) = Pz(v) + Pz(w) = W
Py(u) = Py(v) + Py(w) =V

= W

Pt(“) = Pt(v) + Pt(w)

Hence u is not an eigenvector of Px, Pz’ Py’ Pt such that for
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e the outcomes x and z are possible and for f the outcomes ¥y
and t are possible.

We can even choose very easily u in such a way that we have

probability 1/2 to have the outcome X for e and probability

1/2 to have the outcome z for e and that we have probability
1/2 to have the outcome Yy for. f and probability 1/2 to have

the outcome t for f.

w while

i
]

But PX.Py(u) v and Pz'Pt (u)

i

0 and P .P_ (u) = 0.
z Y

Tﬁis means that for e x f we only have possible outcomes (x,y)
and (z,t) if the system is in the state u, and (x,t) and (z,y)
,are not possible.

PX.Pt(u)

This shows that e and f are not separated experiments since
ii) of the definition 1 is not satisfied.

Suppose now that we have two separated systems S, and S,. If

e is an experiment on S, and f is an experiment on S, then

e x £ is an experiment of the type that cannot be described

by quantum mechanics. It are the elements of reality of the
joint system S consisting of the two separated systems S, and
S, defined by experiments of the type e x £ that cannot be
described by gquantum mechanics. This incapacity of quantum me-
chanics leads to the contradiction in the E.P.R. reasoning.

Completing quantum mechanics cannot be achieved by changing
the description of the subsystems by adding additional varia-
bles (often called hidden variables) to this description be-
cause it is the description of the joint system which is wrong
and has to be changed. In [2] and [3] we give such a descrip-
tion of separated physical systems in a more general theory as
quantum mechanics, and we see that the mathematical structure
of the set of states of the joint system is indeed not a vec-
torspace structure. Such that the superposition principle
shall not be valid in the description of this joint system.
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5. The E.P.R. reasoning

Since we showed that separated systems cannot be described by
quantum mechanics, the E.P.R. reasoning is still valid but
becomes a reasoning ex absurdum. Indeed E.P.R. suppose that
quantum mechdnics can describe separated sygtems. Let us ana-
lyse again their reasoning knowing this result. E.P.R. consi-
der the following two sentences (1) quantum mechanics is not
complete (2) physical quantities that are not compatible can-
not have simultaneous reality. Obviously these two sentences
cannot both be wrong. Indeed if two non compatible quantities
can have simultaneous reality then quantum mechanics is not
complete, because the wave function cannot describe these
elements of reality. So we have one of the three cases

A (1) false (2) true B(1) true”(2) false '

C (1) true (2) true : ,

Opce E.P.R. come to this conclusion they consider the situa-
tion of two separated systems S, and-S,. By applying quantum
mechanies to describe these two separated systems, and using
the Schrddinger effect they can show that it is possible to
attach simultaneously elements of reality to non compatible
quantities. Hence (1) has to be true. So what E.P.R. show is
the following : co

Quantgm mechanics describes correctly separated systems
Quantities that are not compatible can have simultaneous
reality :

Quantum mechanics is not complete.

From Fhis they can conclude that quantum mechanics does not
describe correctly separated systems or quantum mechanics is
not complete. E.P.R. mention in the beginning of their paper
t?at they suppose quantum mechanics to be correct, and then
they can indeed conclude that quantum mechanics ié not com-
plete. If one supposes quantum mechanics to give a correct
dgscription of separated systems, this reasoning of E.P.R. in-
dicates which are the missing elements of reality in qu;néum
mechanics. These are elements of reality corresponding to non
commuting observables. This made a lot of people thin; that it
should be possible to solve the problem by introducing classi-
cal hidden variables that take into account these missing ele-
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ments of reality, and in this way complete quantum mechanics.
If we take into account that quantum mechanics is wrong in the
description of separated systems, then the E.P.R. reasoning is
still valid and the conclusion is correct. But because the
premise is false it does not indicate missing elements of rea-
lity. Indeed the statement "Quantum mechanics is not complete
because quantities that are qbt compatible can have simulta-
neous reality" is not a true statement, because it is only a
statement used in the reasoning ex absurdum. I want to put

the attention to this fact because often people are not inte-
rested in the -conclusion of E.P.R., namely that quantum mecha-
nics is incomplete if it is correct, but in the conclusion
that quantities that are not compatible can have simultaneous
reality if quantum mechanics is correct. And it is this con-
clusion that leads directly to the thought that to avoid the
E.P.R. problem, we have to build a theory that takes into

‘account the fact that non compatibles physical quantities can

have simultaneous reality. Let us sum up all this and see that
there is no paradox left. There are two possible situations
for two systems.

First situation

The two systems are separated. Then quantum mechanics gives-
not a correct description of this situation. Correcting quan-
tum mechanics does not happen by adding states to the subsys-
tems but by taking states away of the compound system.

Second situation

The two systems are not separated. In this case, as we explai-
ned in section 2, it is not possible to make the E.P.R. rea-
soning. Indeed, it is not possible to give an element of rea-
lity to one system by performing a measurement on the other
system.

So as we see, the E.P.R. paper touches at a major shortcoming
of guantum mechanics, namely its incapacity to describe sepa-
rated systems. Since the E.P.R. reasoning is a reasoning ex
absurdum, it however does not indicate the way to solve the
problem.
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6. Conclusion

We can conclude and say that the shortcoming of quantum mecha-
nics of not being able to describe separated systems is due to
the fact that the mathematical structure of quantum mechanics
always forces by means of the superposition principle the
existence of states that should not be there in the case of
separated systems.. One could think in the following way : why
not just drop these states and go on with quantum mechanics.
This is indeed the solution that has been taken for the pro-
blem in connection with superselection rules. '

For the case of separated systems this solution is not possi-
ble because the wrong superpositions are not superpositions
between states of different orthogonal subspaces. If one drops
the states that should not be there, nothing of the rest of.
the mathematical structure of quantum mechanics can be applied
anymore. Let us give an example to show this.

In general the evolution of a system from one instant to ano-
ther one is described by an automorphism of the set of states.

-In quantum mechanics such automorphisms are represented by uni-

tary (or antiunitary) operators of the Hilbert space describing
the system. In classical mechanics they are permutations of the
state space describing the system. If we have in classical me-
chanics a system S described in a state space T consisting of
two systems S, and S, described in state spaces T, and T',, then
I =T, x I',. It is easy to see that a permutation of T cannot
always be decomposed in the. product of a permutation of TI', and
a permutation of I',. Moreover it are these non product permu-
tations of T that make it possible té6 describe an evolution
with interactions between S, and S,. On the other hand, if we
have in quantum mechanics a system S described in a Hilbert
space H composed of two systems S; and S, described in Hilbert
spaces H, and H,, then H = H,® H,. If we would now try to gi-
ve a description of the evolution of two separated systems in
this tensorproduct Hilbert space, we must consider these uni-
tary transformations that conserve product states. But a uni-
tary transformation U that conserves product states is always
of the form U;® U,. We shall then never be able to describe
interactions between the two systems.
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We must make one other remark. A logical possible way out is
to say that separated systems do not exist, and therefore we
do not have to try to describe them by quantum mechanics.
Often people seem to consider this solution as the correct
one. This is however because they have a wrong intuitive image
of what separated systems are. When two systems are separated
this does not mean that there .is no interaction between the
two systems. No, in general there is an interaction and by
means of this interaction the dynamical change of the state of
one system is influenced by the dynamical change of the state
of the other system. In classical mechanics for example, al-
most all two body problems are problems of separated bodies
(e.g. the Keplerproblem). It are the analogies of these pro-
blems for quantum systems that can not be treated in quantum
mechanics. Two systems are non separated, when a measurement

, on one system disturbs the other system. Or we would even say,

two systems are non separated, when it is possible to define a
property (element of reality) of one system that can be tested
by means of a measurement on the other system. For two classi-
cal bodies this is for example the case when they are connec-
ted by a rigid rod. But we know that in this case the two bo-
dies connected by a rigid rod are treated as a one body pro-
blem. To give still a better intuitive feeling of what are
separated systems we could say, that one system is separated
from the rest of the universe but one system is not separated
from the measuring apparatus during a measurement.

Si it is this whole range of interesting situations of two se-
parated systems with interaction between them that can not be
treated in gquantum mechanics.
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