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) Abstract : The properties of the equation of the
unitary quantum theory are studied. The relativistic tnvarian~
ce of the equation is proved and transformation laws of the
wave function and its bilinear combinations are derived.

Résumé : On étudie les propriétés de l'équation de
la théorie quantique unitaire. On démontre 1'invariance rela-
tiviste de 1'équation et on déduit les lois de transformation
de la fonction d'onde et de ses combinaisons bilinéaires.

References [1-3] have suggested a model of the
unitary field theory where a particle of mass m is described
by the equation
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and each component of the wave function satisfies the second
order equation
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+ m?¢ = 0 (2)
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so that the commutation relations for matrices A" have the
form

A A s 2" 1 (3)

where x" = (t,%) ;uf o= (%;%) is the particle velocity ;

w,v =0, 1, 2, 3 ; a metrics with a signature (+,-,-,-) is
used ; ¢ and h are made equal 1 and repeated indices are un-
derstood to be summed.

For equation (1) to be starting point of the theo-
ry, the equation should, first, result in the correct energy-
momentum relation for a free particle and, second, be Lorentz
covariant Eg. (2) insures the former condition in the form

(p¥u )2 = m?. Matrices are functions of the particle velocity
and o the commutation relations (3) alone are insufficient
for proving invariance of eg. (1) under the Lorentz transfor-
mations ; therefore let us first specify the functional de- .
pendence of the matrices on the velocity. Since the trivial

solution AF = u'l is totally uninteresting let us consider
the case of linear dependence on the velocity

A= x““uc + ANt (4)

where A" and M are numerical matrices. The condition (3)
holds identically if

vt VT, uo

SRR AL T S AL
AV LAY gV (5)
xuukv1“+ erxuu =0

Because of the antisymmetry of PLA only ten

out of the twenty matrices are independent quantities. These
matrices mutually anticommute ; the square of four of them is
equal to unity and of six, to minus unity. To put it diffe-
rently, eq. (5) is specified by ten generatrices of the alter-
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nion algebra “4,, which is isomorphous with the algebra of
sixteenth order quaternion matrices [4]. Since they are not

. handy let us replace the quaternion matrices with ten complex,

irreducible, unitary 32 nd order matrices
- + -1
GEYY = G GEYY = M) (6)
This situwation arises in construction of Dirac matrices which'
are usually chosen as complex fourth order matrices even
though the equation yPy¥ + yVy* = 2gH*VI is satisfied by four

second-order quaternion matrices. ‘

From eqs. (5) and {6) it follows that four matri-
ces are Hermitian and six, anti-Hermitian

GO =% )= o b =1,2,3,4 (D)
If a matrix x is introduced '
A ='A12i13X1“12’Xz“l’~ 3 A+ = A = =} . (8)

then the Hermitian conjugation conditions (7) can be rearran-
ged into

(138)* = 4 298 4! o (9)

Represented in the form (5) the commutation rela-
tions are unwieldy. and unhandy in proving the relativistic
invariance ; however, they can be represented in a simpler
form. Let us define a symmetrical tensor gas»v

Boo = =811 = B2z = "853 = 84y = 1,

=0 if (10)
gaB a # 8
henceforth subscripts of initial letters of the Greek alphabet
a, Bs v, & take on values from O to 4 while those of the o
middle of the alphabet from O to 3. The inverse tensor g2
provides a compact restatement ‘of -commutation relations (5)
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SRARMR L 2(8°%5 - eMef41 (11)

Egs. (4), (10), and (11) make it possible to pro-
ve the relativistic invariance of eq. (1) by using a five-
dimensional group of transformations of co-ordinates 0 (4,1).
For this purpose extend eq. (1) to the case of a five-dimen-
sional pseudo-Euclidian space with a metric temsor (10)

Saf . 39, =
W a,~f-moe=0 . (12)
X
(where u® ig the S-velocity, = 0) and then prove inva-

riance of this equation under the group of five-dimensional
transformations 0 (4,1) which contains the Lorentz group as a
subgroup. Under reduction of 0 (4,1) to the Lorentz group,

3 .
assume that x* = const, u® = 1 and 3%+ = 1 we have eq. (1) ,

in other words one can assume that eq. (1) is invariant under
five-dimensional transformations but physical solutions do not
depend on the fifth co-ordinate. Incidentally, eq. (12) can be

interpreted differently but we will not discuss these possibi- -

lities because using the five dimensions is merely a convenient
tool which enables making full use of simplicity of the commu-
tation relations (11).

~ To prove invariance of the equation, it is suffi-
cient to show [5] that for any transformation of co-ordinates
(x®)r = 2% xP®

g X 5 (x%)'x! = inv (13)

there is a linear transformation S(a) of wave functions in
the primed and unprimed reference frame

o' (x') = S(a)e(x) ; o(x) = s~ (a)er (x') (14)

and ¢'(x') is a solﬁtion of the equation which has the form
of eq. (12) in the primed reference frame
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R m]@'(x'} =0 (15)
Yoa(x®)

Substitute (14) into (12) ; multiply the left-hand

side by S(a) ; and use the definition (13) to have
15298571, 7,8 i m}°'(x') =0
a B v B(XG)'

This equation coincides with (15) if the matrix has the pro~
perty

Construct S for the infinitesimal proper transformation of the
group 0 (4,1)

A, = Ga Ty aaB gaB * ap
with.
- (18)
€aB:~ "ga

Expand s in powers of ¢ and keep only linear terms

1 ap : ‘ (19)
S:l—-zd CaB .

where o%® = _o8® by eq. (18). Substitute egs. (17) - (1?) in-
to eq. (16), keep first-order terms in e, use the notation
[B,C] = BC - CB for the commutator brackets and have

s ¥, B8 By ad B8 ay
2[6°B,A70) = g¥BY L gOMBE L B gBY

The antisymmetric solution of this equation

a1 BY a8 (20)
o =g gy AT

<. is, by virtue of diagonality of the metric tensor and anti-

symmetry of AQB, a sum of mutually commutating terms ; in
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particular, o'? has the form

12 = AZD)\IU

p - X23A13 - A2eylw

According to eq. (19), S for an infinitesimal

transformation is given by

_ 1 By ,aé
S-l-ggYSSaBD SA ]

Hence, for rotation through a finite angle w about an axis in
the direction labeled n is represented as

S = exp{} % mcas 728}

where 726 is the generator of rotation about this axis. The

(21)

matrix § is not, generally speaking, unitary but formula (9)

-1 +

easily shows that A" ¢ A = -0 ; consequently, for proper

transformations

(22)

Let us consider unproper transformations of space reflection
and time reversal. For space reflection the matrix a is dia-
gonal, ag=a= -a{= -a}= -al= 1, then eg. (16) for the space
reflection operator P is satisfied by

P o= A01p02)03 08 2038 P+ = P‘l (23)

which insures invariance of both eq. (1) and eq. (12).
Construct a transformation of the time inversion;

for this purpose introduce an interaction of a particle whose

charge is e with an external electromagnetic field A" = (@,Ak)

by means of the gauge invariant substitution i —— + i -2 el
3Ix ax*
and rewrite eq. (1) in the form [5]

H
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a0 - [xk(—i DobeA) +mo+ e$r®]e = He
3t , k k
3x
Detefmine the transformation 7 such that if
tho=-t, o = o'(t') = To(t) ; then the latter equation be-
comes
— J— H t _‘_1;

~(rireT 3£$%$~l = (THT ")e'(t")
When the sense of time is reversed, u} = u,, u& = -up 3
o' = 9, A‘k = —Ak and, before all, it is necessary to change
sign between two terms i ak and eAk ;5 therefore the trans-

ax : '

formation is sought as a complex cohjugation operator multi-~
plied by the matrix T : .

or = To(¢) = Tex(t) (24)
This gives

epor~ly 2k o qfkeely[ g 8
HTATT) 5 (, -1 5 K
+m o+ e¢(T§“T‘})}@‘(t')

and for invariance of the equation it is necessary that

ok -1 ok *kg -1 _ kg
U ML TACHT ™ = A0

" -1
Thence it immediately follows that T% = T =T
though the explicit form of the matrix T depends on the par-

. af -
ticular representation of the matrices A . Note that there

is just one matrix » = 1 A6 which commutes  with both all
a<B
generators o8 for the representation of the group 0 (4,1)

and with operators of discrete transformations P and 7. Under .
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reduction of 0 (4,1) to the Lorentz group two more matrices
Ay = ATEATEARMARY A, = A,

are generated which commute with the generators o"° of the
representation of the Lorentz group and anticommute with P
and 7. Consequently, formulae (21), (23) - (25) specify the

reducible representation of the Lorentz group and this repre-
sentation is double-valued. Indeed, consider a particular ca-

se, rotatlon through and angle w about the Z-axis. In this

case 7 T2 = —7Z, = 1 ; using the explicit form of ¢!? we have
- % ot w m w
= - W 12 ¥ 0
S=ce cos’s + 0% cos’s sin 5+

12y2
. 3 +2(U ) cos % Sinz—g- + )g“)x”l“k”k“).”snl

The half-angle is an expression of the doubleva-
luedness of the wave function transformation. Therefore the
observables in the theory should be bilinear in ®(x). The ma-
trix A makes it possible to determine the adjoint wave func-
tion ® = o*A which is a solution of the adjoint equation

T
i A i nd =
Bxu
An adjoint wave function under an arbitrary transformation of

the co«ordlnates should be transformed by the equation
%' = 3A~1STA which for proper rotations (22) leads to

(pl

1
S © ; for space and time inversions Ob = ~¢P and

P = —3%T—1, respectively. The adjoint wave function and the
matrices X 3 A, and A, make it possible to construct four in-
dependent scalar functions %@ ; A0 ; A, 0 5 and $A,¢ which
under space and time inversions are transformed as

L= 0  (26a)
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Bpaep = ~%re 3&10* = -0 (26b)
ph0p = F0,0 3&A10& = -o00 - (26¢)
OpA,0h = BA,0 3&Az0i = 9A,9 (26d)

Following the classification of Ref.[4], the quan-
tities (26a - d) are a singular and a simple pseudo-scalar and
a singular and a simple scalar, respectively, each of these
functions belng a unique scalar function of the associated ty-
pe, quadratic in ¢(x). To obtain a numerical scalar let us use
a representation of the function ¢{x) as a four-dimensional
Fourier integral. Since each component of #(x) satisfies the
second order equation (2), the general solution represented
entirely in relativistic terms has the form

ik x*

ox) - zz_ﬂ;m.-fm e W sitept)t - miet)  (27)

where s{{k uu)z—m } = ——{G(k U Hom) + G(k ut+m)} is the relati-

vistic S—functlon and the amplltude (k) = ¢(k°;k) satisfies

. the equation

o(k) =

(ku)?=m?

(xuku +m)

Because the integrand includes a'S—function, the
integration is performed over just two Lorentz-invariant hy-

persurfaces kuuu = Im, rather than the entire four-dimensional
k-space. This enables decomposing the integral (27) into two
summands

§(k u"sm)

: . .
s - - 1 u
o(x) = o{x) + o(x) ; o(x) = (2“)3/2 fd k gm (k) (28)
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Using this representation and integrating over

the three-dimensional volume we have

JTS‘U“Q_"_ av _Iu“.ai’_ﬁ r.@! - i [d"k s(k u“r;m)i(k)¢(k)

axt Y xt Y Zm
: _ 2ix°'m
_+ pae¥ qv nass i TR ku+m mﬁm r
f@‘u“—-— . [ LLENPE:: U iifdk e (K)o (2R K)
axh Y axt Y Zm

Combihing %hese relations and using the equality
G(kuu"—m) - a(kuu“+m) = e(kuuu)s{(kuu“)’-m’} we find that

udd HQE dv s las H ‘ Hy2 e
f(ﬁu " u ;;;o);— = 1fd k ok u™)é{(k u™)2-m*10(k)e (k) (29)

where

1, if ku >0
8(ku) =
~1, if ku <0 . The right-hand side

of eq. (29) is explicitly represented in covariant form which
facilitates a study of properties which can be traced to the
space and time inversions. More specifically eq. (29) is a

simple pseudo-scalar because f...d“k and 6{(kuu“)2-m2} are
simple scalars, 6(k uu) is a singular scalar (6 is an odd

function and k" and u" are a simple and a singular vector,
respectively), and ®(k)e(k) is a singular pseudo-scalar,
according to .the definition (27) and eq. (26a). It is easy to
.construct a simple scalar

J(@Aluu kLN ¥ 32 Alw‘.‘.‘l
" u Y
X X

which can, following Refs[2,3] be interpreted as the particle
mass while the nonlinear equation of Refs{2,3] is represented
as :

- 36 3% av
ar 3, j(@mu“ - g — Ay o) = 0
ax* x ax

The authors are sincerely thankful tc G.A. Zaitsev
for useful discussion and valuable remarks.
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