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Résumé : Nous insistons sur.le fait que l'hypothé-
se que la vitesse de la lumiére est.la méme dans tous les sys—
témes de référence inertiels (Postulat (B}), n'est pas une
conséquence immédiate du princive de relativitd et de 1 "hypo~
thése que la lumiére se propage avec une et seulement une vi-

‘tesse dans chaque systéme inertiel (Postulat (B')). Nous pous—

sons les conséquences du prinecipe de relativité aussi loin
que possible, nous déterminons complétement la transformation
de Lorentz et nous démontrons que la vitesse de la lumiére

est une constante universelle.

Abstract : It is emphasized that the assumption
that the speed of light is the same in all itnertial systems
(postulate (B)) does not follow trivially from the rvelativi~
ty principle and the assumption that in each inertial system
light propagates with one and only one speed (postulate (B')).
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We bequ the consequences of the ﬁelativity'prinéiple as far

Ziaigﬁszblji we uge (B') to specify completely the Lorentz
yormation and we demonstrate that . A

a universal constant, Fhe speed of Pigne do

1. Introduction
\“

i

We describe below the two ’ i
. : postulates on which i i
vity is conventionally based : " Special Relati-

7;0 each other w?th constant Velocity, which are equivalent as
ar as the physical laws are concerned i.e, the physical laws

25 we shal If we assume that’the law of inertia holds, then
€ shall see later the transformation between two inerti i

systems 23 I' is linear. That is, if x gt H=1,2,3,4 :

the coordinates of an event in I, s reépecéivel}"tﬁenare

4
x! = E a X +b - (1)

where the matrix A = (4 i i i v

 relatyye iniX A - é “v) 1s a function of the velocity v of

o an u are.constants. A moment's reflection
persuade one that™a has the following pProperties :

(i) a is ihvér&ible andfv
AU = (0,0.0 «i~—j A 1V<= (0,0 b‘ v
o A ASA ) > - 5 Y

+* Ny
. ’ N T
t?:ze U,.V_are_the'4—veppprs (v, 1), (—;,l),; (consider a sta-
ary p01nF n' ' or % and differentiate the transformation
—€quations with respect to x} or Xy=-'We reject the case

> dx '
Y(v) = a;fy: 0 as physicglly impossible?.
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Because of postulate (A) :

(i) NS = A ()

. - .-
that is interchanging v with —v and x! with x, in the homo-

geneous transformation £ + I' we must‘obtain the inverse
transformation %' + I,

(iii) if 2" is a third inertial system moving with velocity
v' relative to &' and if A', A" are the matrices of the
transformations I' + £", I + " then ‘

AT = AAT , . R (4)

i.e. the set of transformations between inertial systems is a
group.

We will show in paragraph 2 that (i), (ii1) toge-
ther with homogeneity ‘of time and isotropy of space suffice
Lo express the 16 unknown a in terms of a single parameter.
In order to determine this 8fe completely a second postulate
is necessary ; traditionally it is taken to be the following:

(B) The speed of light in vacuum is a universal constant, i.e.
it is the same in all inertial Systems.

Actually (B) together with eqs(1), the isotropy
of space and homogeneity of time, completely specify the
transformation (cf. [6],(7]). The disadvantage of this deri-
vation, (common also to Einstein's original one) is that it
obscures the fact, that as we shall see, essentially postula-
te (A) alone, suffices to specify the transformation to within
a constant. In addition checking (B) experimentally is much
harder than it is for the following weaker statement.

(B') In each inertial system light propagates in vacuum with
only one speed irrespective of direction and state of motion
of the source, i.e. each inertial system has its own vacuum
light speed.

Indeed on considering the earth as a typical



Mlchelsgn-Morley experiment ® or the absence of the de Sitter
§ffect in douple stars, [1], one can very safely assert that
in each inertial systenm light prdpagates in vacuum with onl
one speed, (postulate (B')). On the other hand, the direct y
experimental verification of (B) requires the éeasurement of
the spee§ of light at different times of the year* evidentl
a more difficult task to accomplish. ’ N

' Therefore it would be instructive to show ’
E?:eﬁizli of §A) an@ th? a priori weaker postulate (B';h:;eon
poren : rgns ormation is completely specified and the vacuum
bel. peed comes to be 4 universal constant. Ip the majority

iterature (e.g. (21,131,05]) it is usually taken for
granted or at least considered as self evident that the Pprj
glple.of Relativity, (1), together with the fact that ea gln-
inertial system has its own light-speed, (B'), imply imm:dia~

: It is the purpose of this
) paper to show that th
5:; sst; of postulate§ {(A),(B')}, {(4),(B)} are indeed equi«
ent but the proof ig mathematical rather than verbal
(hence more doubtful). ’ :

for a time interval small compared with one year.

where a comﬁarison of the ligh i i i
; gnt speed in two differe -
rections is made. (- P erent 41

Ea'Ch tl”le the ear th be}'ng ldentlfIEd lth a dlffal ent iner

This is also true for Einstein's original paper ([4], p.45)
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2. Consequences of the relativity principle

We make the fundamental assumption that events in .
the physical world form a space-time continuum which is a
4~dimensional manifold, an assumption which according to
H. Weyl, (8], is the most certain fact of our empirical know-
ledge. Assuming that the law of inertia holds globally on
this manifold we see that the transformation between inertial
systems maps straight lines to straight lines so that it is
projective ; however rejecting the possibility of mapping -
infinite points to finite ones and vice versa we are left
with a linear transformation (cf. eq(1)). Assuming that space
is isotropic about every point -hence homogeneous~ and that
time is homogeneous as well we may say that coordinate Sys-
tems with arbitrary axes-orientations and/or space-time loca-
tions are equivalent in the sense of postulate (A). Therefore
without loss of generality we may restrict ourselves to the
study of the transformation between systems I, £', such that
the velocity v of I' relative to I is along the x,-axis while
the other two axes of I' remain parallel to those of Z, and
the origins 0, 0' of £, I' at t = O coincide®. These imply
that in (1) b ‘—'O, U=1,2,3,4 and Az T Agy = 231 ¥ Ay, =
a3 = a3y = a1, = ayy =0 ; (we simply notice : i) for any t
the x, x,,x, x,~planes and for t = O the X ,X;-plane of I
coincide with those of ' ii) we consider the transformation
of the events (x,,0,0,t), (0,x,,0,t), (0,0,x;5,t), (0,x,,x5,0)).
Therefore the transformation takes the form

X! Gy 0 0 %1y X,
X5 0 Qa2 0 0 X2
x}i = 0 0 g 0 X (5) |
t! Gy Gy Gy 3 uu t

From this special case the general one is recovered by in-.
cluding space-time translations, space-rotations, space-
inversions, and time reversal.



X, Ga2053Q%y, Xpa@330ys QpaQ,,0,5 =0 Wp a0y, ] X3
o T
= Z : —1 v
X, » 0 0 Y- DN 0 x4
t TO220g 30y 00y 30, ~0y [0, ,0, SISCPPL PSR A
: (6)
with A = det(a,,) = azza,a(allahk—aulélb) # 0. But by (A),
(5), (6) must have the same form so that Qs = a4y =0
furthermore from-(2) we easily see that i = oy, e oy
so that %11 Ouy
dyy = -va,, -, Ayy = A, =y (7)

Space isotropy can now be used to simplify (5), (6) ; we

immediately have

a2 = a3y =

b (8)

In addition upon considering a rod of length 1 moving first

with velocity v (along the

isotropy implies that?
y(v) =
Similarly
b(v) =

Finally (3) together with
among the coefficients :

X,-axis) and then with -V, space

y(=v) (9)

b(-v) (10)

(7), (8) provide further relations

1

Y(fY) TYW v e (v (11)

7

of its motion,:

i.e.: the léngth of the'rq@*déesn?t dependtpnvthe diféctiohf
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1 | 12)
b(-v) = 5y (
In view of (9), (10) we have®
’ 1 - YZ(V) (13)

b(v) = 1, a,, = B OR

We have now expressed all the a v in terms of one parameter
(compare with eq(2)) so that (5?, (6) take the form

x|, Yy 00 -wlfx,) Ix, vy 0 0 (x{
x4 0 10 O ||x,f| |x,f | 0 1 0 Ofx}
= ) —1 .
x4 00 01 0 |Ixs]| 1x, 0 0 1 Of|x} (14)
l—th ) V ‘ Yz"l 0 .tl
t! vy 0 Q Y [tt ||t 77 Y

One may proceed further by using (4) togethgr w?th (A) (A"
must have the same form as A, A') which easily imply (cf. [2])
that

' 1 31 1 ]'1_1

1= woterfe = [ - sty - 4
where k is a universal constant with dimensions of a square
velocity.

Therefore \

A Lt )

Eq.(15) shows that the Relétivity Principle together with
space-time isotropy determine the transformation un}quely to
within a constant. But in order to interpret k physically we

8We need n't consider the case b = -1 since it can be_inclu—
ded in the general case as a space inversion ; this is also
tacitly done in what follows.




need a second postulate?.

3. Complete specification of the transformation

The procedure leading. to (13), (14) is given in
a slightly different way in'[2] ; however instead of follo-
wing the argument leading to (14) we proceed directly as
follows : we accept postulate (B') and suppose that in I the
light-speed is ¢. Two signals of light are sent at the same
time from I, one along the X,-axis, the other along the x,-
axis ; in & the signals. are the world-points (ct,0,0,t),
(0,ct,0,t) and in z° they are (x1{,x},0,t'), (x1,x4,0,t")
where by (14) we have .

3

X} = yct - yvt, X! = -yvt
Xy =0 : x4 = ct (16)
1-v?
[ — "o
t - ct + vt t Yt

By (B') the two signals have the same speed in It

x;}z _ {XT}Z {Ei}zk Y2 (c-v)? _ ..  c?
(_t_I R + T = (1-Y2)C 7 = VS o+ _Y—!'

After a straightforward calculation we obtain :

(28°-82-28+1)¥* + (B2+28-2)y%+1 = O (17)

"The ad hoc identification of k with the square of the light~
speed, [2], can be done only because we already know what
the Lorentz transformation is, but is not otherwise justi-

fied ; in fact we cannot even say if k is positive or nega-
tive.
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where g = %.'Then H

, _ -B2-28+2+]g(g=2)| (18)
YT T3(g-1)(2g~1) ‘

which implies

a) B(8-2) > 0 = y? =1—f§T>o -1 <8 <0
y? = T%fg =0 8 <0

b)s(s-2)<0=v2=£-§-z>o ) 0<g <1
Y2=-i%§>0 - 0<8 <3

The solution Y = 1128 is rejected since it is not an even
function ofvv, S0 we are/left with

M— vl <c (19)
v_ig
1—6-2'
Now we assume that the speed of light in Z' is c¢'. Then in
k v2 -2 ‘ . _
the same way we obtain v' = (1 - ETTJ .But from (14) v = v

since the transformation Z' + I is the inverse of E'* Z':
Then it follows that ¢ = c'. That is the speed of llgbt'ln
vacuum is a universal constant and by (19) an upper limit to
the speed of any object. Going back to (15) we see that k must
be necessarily identified with c?. .
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4. Conclusion

The above derivation although less geometrical
than the usual one, shows clearly the strength of the Rela-
tivity Principle, rests on postulate (B') which is easier to
verify experimentally than .(B) and proves that the sets of
postulates {(A),(B')}, {(A)?(B)} are equivalent instead of
Justifying it verbally as is usually the case.

ACKNOWLEDGEMENT |

We are indebted to Professor A. Grecos for his
valuable comments and for his friendly attitude as well.

REFERENCES

1. Aharoni J., The special theory of relativity, Oxford Uni-
versity Press, Oxford 1965, Appendix

2. Aharoni J., The special theory of relativity, Oxford Uni-
versity Press, 1965, ch. 1

3. Bergmann P.G., Theory of relativity, Dover publications
Inc., New York 1976, ch. 3,4

4. Einstein A., The principle of relativity, Dover publica-
tions Inc., 1952, ch. 2

5. Landau L., Lifchitz E., Théorie des champs, Editions MIR,
Moscou 1970, ch. 1

6. Rindler W., The special theory of relativity, Oliver &
Boyd Ltd, Edinburgh 1960, ch. 1

7. Weinberg S., Gravitation and Cosmology, John Wiley Inc.,
New York 1972, ch. 2

8. Weyl H., Space Time Matter, Dover Publications Inc., N.Y.
1952, p. 178.




