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VII. EXTENSION OF POINT MECHANICS

(1) Generalized Hamilton-Jacobi Equation

» From our postulate T, eq(9), we note that the ge-
neralized four-momentum p is connected with the phase of the

wave function which obeys the generalized Hamilton-Jacobi (H.J.)
equation (35)

(35)  (ZW - p)* + mic? = n22d

Here we have used the relations (18) and (6). Eq.(35) in the
case of -point-mechanics, i.e. for[Ja = 0 (8), reduces to the
well known relativistic H.J. eq. (30), [cf. eqs.(2,3,10)1,

(36) (3w -3 - A0’ L ger -0

It is to be specially noted here that we could have derived
eq.(36) from (35) by putting h = 0. But contrary to the connec-
tion between quantum mechanics and classical mechanics, this
theory does not need this inadmissible condition to arrive at
classical mechanics. As stated before, classical mechanics and

geometrical optics can be derived from this theory by the re-
quiremént of eq.(8).
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Eq.(36) shows that W(X,t) is Hamilton's principal
function, which can be expressed as

(37 W(X,t) = S(X) - Ht

if the Hamiltonian H = E + m;éz is a system constant.

Using this conditibn, we get the familiar non-rela-

tivistic Hamilton-Jacobi equation (38)
(Vs - p)*
+ U=E

(38)

2my,

for the particular case

<< 1

m_—
Ja = 0 ; E = constant ; !————mﬂ

It should be noted carefully that contrary to the
case of classical mechanics, in order to obtain the trajectory
of the quantum particle from the generalized H.J. eq.(35) one
must determine the amplitude of the wave as a function of space
and time from the relevant partial differential equation. Conse~
quently, the initial value problems of classical mechanics has
been changed to the boundary value problems of PDE of the micro-
physics.

It is obvious that the eq.(35 or 36) is a differen-
tial equation of the first order and cannot represent a wave
equation. But in the hands of Schroedinger this was changed in-
to a second order PDE by using the recipes of operator forma-
lisms. Consequently, it will be worth while to investigate the
physical meaning of the quantum mechanical operator formalisms.

As we have noted before, in order to be consistent,
we have to define operator formalism by
4
(24a) © Pon T T

v

= iR

-+
f
=

<+
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or,
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op op
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Consequently, one can write
2 — 2 _
(39) Eop =-h%(V.9) =420

But the thsical momentum, for the subsidiary condition (22)
or (23), is given by

poef 1

p=7 7

and consequently
(40)  p? = (p.p) = -B%Ve)? # -A20e¢

Bela{ions (39) ‘and (40) can be reconciled mathematically only
}f .the quantum mechanical momentum in the coordinate language
is identified as hb by Einstein-de Broglie relations. (b is
the vector reciprocal to x in Fourier space). Thus, if

+> bl -
‘Eop(X,t) =7 9x,t) ;

(BypBop) = B¥E.9) = 200

their Fourier transforms are given by

3,(2nib)=hb
(41) T =

and -h?.4n%b? = ;hz b2

' Thus we clearly see that quantum mechanical ex-
pression for the momentum in the coordinate language is not
?he physical generalized momentum of the particle p(X,t) but
its mathematical representation in the Fourier space {n terms
of its associated wave field.

o Hence, Heisenberg's Uncertainty relation is not
a ir;n01pl? of Natgre, but is the consequence of wave mechani-
cal orma}lsm. It is thg price of representation of the physi-
cal quantity p(x,t) by its Fourier transform, as shown in the
next sub-section.
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Although this fact about the physical nature of
quantum mechanical momentum has never been explicitly reco-
gnized and discussed, it has been implicit is the fundamental
physical postulates of quantum mechanics. For example,

fl

W(q,t) = ¥ (q,t).%q,t)
and i

W(p,t) = ¢ (p,t).0(p,t)

give the probability densities for finding particular values
of g and p respectively at time t. But the amplitudes ¢ and ¢
are related by Fourier integrals (see Tolman [12] p. 187-193).

(ii) Heisenberg's Uncertainty Relation

In actual experiments involving a collection of
particles, we get the Uncertainty Relation connecting the in-
tegral widths of the centroid of the collection and its avera-
ge momentum, the latter being expressed as a function of
Fourier space. Obviously, this does not mean that the position
and momentum, both considered as functions of space and time,
cannot be determined simultaneously without errors, at least
conceptually and in principle.

' First, let us define the mean values and the inte-
gral widths in conventional ways, namely,

3% * *
B [ee de5 B Jee ﬁdvi _ €e p dv—)S
P=r—g—— X=-—x—; p'=—g—"
(ee dv Jee dv fee dv
J X x X
f EE""Edvb j EE b*dv, f A*bdv
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b
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H
]
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[

€ * 2 - 52)
(8p.)* f © (8] - B
p.] = 3%

.lee dv
X

[

EE (b? - T2
[ (J' bJ)dvg

(<sbj)2 =

Here, dvx, dvb are 4-dimensional volume elements in physical-

and Fourier spaces respectively. E(b) and A(b) are 4-dimensio~ .

nal Fourier transforms of e(x) and F(x)., °

Using the mathematical relations

E(b) = Fe(i) z fﬁ(gg)exp - Zni(g.ﬁ)dvx
A(b) = Fa(i)‘5 [ a(x)exp - 2"i(E°§)de
F(9) =:21ri b, F(D) = —4r2p2

j eewdvx = f EEwdvb

e
3

f (ee%g)dvE =h f (EE E)djé

one can derive the following relations
§x. b, =
J b

3

(for Gaussian distributions .
: B =13 for oth reas ig~
tributiong ot trS ; 3 er reasonable dis

= h

o |
fory

[ 8. = - IN 2 2
j 6P gh /1 (bj)/(abj)
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232 and ‘the quantities ;e’ U and u are functions of X and t, we
: 7 at »
/W v [(28%.p 5 = 6py) V/AZ . get from (42a,b, 44 and 2)
8, %py. =8h /1 - 7 5L i ]
TN (‘Sbi) (45) HJ— f‘umokvj * Py =Py (xj =V J= 1,2,3)
< gh, if lu - 1| << 15 [p_.| <<Ip:| ' ! , dp. v
’ ’ ®J ) ‘ (46) ) =L _ 3 (= Ee) _mec? 3y 1,2.3)
dt X . x. k 15

xl
[=>]
d
e
o
it

for detailed calculations, see ref [5b].
Differenting (45) with respect to time along the world line
of the particle we get the Lagrangian equations of motion

d 3L aL .
(47) I g;; - 3;; =0, (i =1,2,3)

(1ii) Lagrangian Mechanics

| ‘By virtue of the eq.(9), the gegeralized 4-momen-

tum p(i,t) of the particle is a field quantle and copsequent-
. 1ly, its rate of change is given by

dp | (iv) Hamiltonian Mechanics
(42) , a% = Z(XC'B) 7 Using eqs.(2-7,43) we get
‘ ! ) > = 2 . 21
or ; ! (48) He=(pv)-L=0Ur+c[(umec) + (W - p,) 12
’ : .
dp : ; It can be directl d that H gi by (48) is
4P _ sradl(v .p)/k ] | ¢ e y prove at H given by (48) is
(42a) it = 8 [ Yo B/ ¥ | a function of xj, pj, t, it.e., ‘
) § - aH’
dH 3 s : L P =
(42b) T = - sellvep)/k ] (49) o3 0, (i=1,2,3)
(The index ¢ implies that in the differentiation the veloci- ! and it also satisfies the usual canonical equations of Hamilton,
ty of the particle v is to remain constant). : | namely, A A _
z 9ap. dx.
. . 3H A aH , .
Now, regaﬁding the Lagrangian-as a function of . i (50) ST T 8 N = azi s (3 =1,2,3)
Xyo Vi t, let us define it by (43) ; j , j |
v.p e L, 3 Finally, it should be noted that both the Lagran-
o hmeCn - . Y 0 e Lagran
(423) L(xj,vj,t) = (—E—) = P (V°Pe) U gian, eq.(43), and the Hamiltonian, eq.(48), .contain u, i.e.
: . ) i the amplitude of the wave function and for y = 1 reduce to the
For u = 1, eq.(43) represents Schwartschild's Lagrangian. E well known expressions for point mechanics.
Noting Z
3 1 kvj |
(44) Fra e i

v .
J
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{v) Diffraction Force and the Total Force Acting on the Par-
ticle '

From the preceeding sections it would be obvious
that if we redefine the kinetic momentum of the particle Py

by eqs.(4-6) we can study the trajectory of a quantum parti-
cle deterministically following the methodology of analyti-
cal point mechanics. Of course, we have to introduce the mass
factor M in relevant expressions. So really speaking, we have
to determine the amplitude of the wave function, i.e., solve
the relevant PDE, to obtain the trajectory of the particle.
Now, it is well known that classical and relativistic point
‘mechanics cannot explain diffraction phenomena. So it is per-
tinent to enquire how the generalized analytical mechanics

can account for the diffraction phenomena of a quantum parti-
cle. The answer is that contrary to usual point mechanics
which does not take the amplitude of the particle into consi-
deration; in this new analytical mechanics the amplitude of
the wave field is incorporated in the formalism through the
mass factor u. We shall now show that this factor u produces

a new type of force, the diffraction force, which deviates the
trajectory of the particle, even in the absence of an external
field, when it passes through a slit (and also in nonstationa-
ry processes) always deterministically according to the pilot
principle. Also in the absence of diffraction force D’ the

force acting on the particle depends on u, even if u is a
constant different from unity.
The four-force F is defined by
(51) CF =S (M)
— drt oz

Note that this definition is the customary one, except for the
fact that the rest mass m, is replaced by the effective rest
mass Mo = Umo.

Since the kinetic 4-momentum Py is given by the
difference of two field quantities p and Po» (cf. eq.2) it can

itself be looked upon as a field quantity. Consequently, one
can express (51) in the form

i
1
¥
i
I
1
i
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(52) §‘=k(XE)EN

F?om this, using the formalism of 4-dimensional vector analy-
sis, we get . .

- (53) F =’_ (v -py) - Iy 1]

Further, from egs.(Q&Z), it follows

[vp] =0

or,

(54)  [vpyl = -[vp,]

—=-g

So we can express the 4-force given by (51) as the sum of two
types of forces, (cf. eq.53), namely,

(55) F=Fp+F

where

- E = [ulze
is the wgll known Lorentz force due to the external electroma-
gnetic field. ED is called the diffraction 4-force where

(~56) Fp= 9y -py) = -mec? Vo

. Let us first note that in relativistic physics
the spatial component of Minkowski force is k times the New-

tonian force and (v.F) = 0, unless the rest mass changes. In
the latter case,

Y = o2 dmy
(X'E) ="C 37

) According to this theory, however, the total four-
force is not pseudo-orthogonal to the four-velocity even if

the.restmass m, remains unchanged, but u changes. It can be
easily verified from (51) that
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(57) Q{>=—%;Ww”

Writiﬁg the diffraction 4-force ED in an analo-
gous fashion of the Minkowski 4-force, namely,

.-
(58) Fpo=k(Fy + 2 W §,)
we get from (56)
2-?
(59) fpo=- 5T
and
2 244 .
(60) Wy = Mt 2 . M ﬁ-(mwﬂ
+ 2 m,c? d
NG Sl Rl e ko=
= ({’.F{)) + -Sé %%-3' 3 (E:) = pmocz = MOCZ).

From eq.(60) we see that the work done per un?t
of time on the corpuscle by the diffraction force ED consists
of two parts :

(i) Work done per unit of time by the spatial change of y,
proportional to the gradient of y and

(ii) due to the rate of change of its "effective internal
energy" redefined by E} = M c?. '

Thus there is an interchange of energy between the extended
wave field of the particle and its "corpuscular" domain. The
total energy-momentum, however, remains conserved [cf.'(l4)},
The total force experienced by the particle, however, is
affected by p even if it remains constant but differs from
unity. In order to see this let us consider the total four-
force F given by (52)

ticle by the total force depends on both p and du
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(52)  F = (v.Dpy = kD (kn,d) + Slukned) )

+ i§o{(;.$)(ukmoc) + %E(pk m,c)}

cord »> . d
= k[ag(pmokv) + 18, ag(umokc)]
~ d . s du, i dE du
= k{u EE(km°V) + km,v EF] + 2 §ok[p-5€ + E —?]‘
o > dy, i dE . dy
(61) F = k[uFN + kmgv 5?] + = Sok[u T E EE]

where E = mc?, m = km,.

We thus see that not only the Newtonian force FN acting on the
particle is multiplied by the factor M, the effective force on
the particle depends on %% as well. Further, even if p remains

constant but differs from unity so that its gradient vanishes,
the force experienced by the particle depends on u. Consequent-
ly, in spite of the relation (59) it would be misleading to
characterise ¥ as the "quantum potential". In view of (61) it
would be more appropriate to designate u as the mass factor.

Also,ctherwork per unit of time done on the par-

dt’

As expected, everything returns to the familiar
expressions of point mechanics for u = 1.

Finally, from the above discussions of the section
VII, we can conclude that the limitation of the methodology of
the conventional point mechanics is solely due to the fact
that it did not take into account the amplitude of the wave
field associated with a particle although its phase became a
powerful tool in the hands of Hamilton and Jacobi. Previously,
the .phase was only a mathematical artifice for calculations
withqﬁt any physical significance. But microphysics changed
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this situyation. Post quantum physics must take into account
both the amplitude and the phase of the wave field associated
with a particle as real physically meaningful quantities.

VIII. ENSEMBLE DESCRIPTION, NORMALIZATION, CURRENT DENSITY

. {1i) Ensemble of Particles and the Normalization of the Wave

function

In classical physics usually we deal with a collec-
tion of particles or photons. Since we have set up a theory
only for a single particle, in order to discuss the properties
of the collective we have tou consider only incoherent collec-
tion of similar particles. The pilot wave associated with each
particle must therefore be the same except for statistically

;independent phase differences. In order to follow the trajec-

tory of each corpuscle we can utilise the physical intgrpreta-
tion of classical H.J. formalism. Knowing the phase W(X,t),

the trajectory of each (classical) particle is determined as
soon as one fixes its initial position and draw its worldline
perpendicular to the surfaces of constant phases at different
times. The different particles follow their world lines star-
ting from their different initial positions. Here also we fol-
low the world tube containing the corpuscle, i.e., the "singu-
lar domain" of its wave function. The observed properties of

such an incoherent cloud of particles can be determined more
conveniently if we normalize the wave function in the appro-

priate way. That is, instead of a single partlcle we deal with
an initially fixed den31ty distribution p(X) proportional to
the square of the amplitude of the wave function within a 3-
dimensional time-like hypersurface, the physical volume V.
Thus, we set at t = tD

(62) _D(;) = Y 66\, (v? = normalization constant)

In order to choose Y? and ¢ for different cases
of interest, we have first to study the energy-momentum cur-
rent density both for the generalized 4-momentum p and for
the kinetic 4-momentum Py of the "corpuscle".

From postulate IT, eq.(14) and eq.(2), we have

3%
3¢

(63) T.(ec'p) = V(e py) + a*(V.p,) + 2a(Va.p,) =
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Obviously, the current density of the energy-momentum of the
"corpuscle" Py is conserved only when the quantum mechanical

operator formalism, eq.(23), is applicable, (provided the ex-
ternal field potential is chosen to satisfy the Lorentz gauge
condition). Otherwise, eq.(64)

(64) To(ep) = 0

remains valid either when the external field is zero, (i.e.

3 . '
Pe = 0) or when 5% = 0 and Ee = 0. That means, in the presen-
ce of an external field the energy-momentum of the "corpuscle"
is conserved only in stationary states and in the particular
rest system in which the sources generating the field lie at
rest.

Hence, in physically interpreting the usual quan-
tum mechanical equations and the corresponding y-functions
one should be very careful if one de31res to avoid confusions,
{see below section VIII(ii)).

It should be noted that in the general case the
invalidity of eq.(64) does not mean that the energy-momentum
of the "corpuscle” is lost. It only shows that there is an
interchange of energy-momentum between the "singular domain®
of the wave field and its extended part lying outside it. One
should not forget that in investigating the properties of a
quantum particle, the physical reality is the entire wave
field and, as postulated, the generalized energy-momentum is
always conserved, (see eq.(14)).

Before investigating the properties of an ensemble,
we first note that the general continuity condition, eq.(14},
can be transformed, by Gauss theorem, into an integral over
a closed 3-dimensional hypersurface, e

v
G

[

J ge pdS =0
Now, let us choose this 3~dimensional hypersurface S as a 3-
dimensional physical volume V and a world tube parallel to p.
Then, 1t follows
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3 3* \
(65) f ee H dv = [ eec H dv = C,, (a constant for all time).

to T,

This means that the same amount of energy entering the volu-
me V at time t, is also 1eav1ng it at time t,.

For a collection of N particles we can choose

the normalization constant y? = g— (66) so that from eq.
(65) we get o

(67) f v2 ec Hdv = N

which means that the total energy of the system as well as
the number of particles remains constant for.all time.

If the function H remains constant for all time,
we can choose

N
(68a) Y? = C.H
and defime
(68b) p =N ec
so that
(68c) ' f pdv =N

p is the density of the collection of N particles. For a
single particle, one can choose

1
(69a) - ¥? o= TH
and '
(69b) p = ee
so that ’
(69¢c) j odv =1

It should be particularly noted that we have
used the condition H = constant in deriving the eqs.(68
and 69). Thus in general ec” cannot be taken as a measure
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of density of particles.

Consequently, this not only points out the limita-
tions of wave mechanical formalism, but also shows, as we ha-
ve noted before, that e cannot be identified with wave mecha-
nical ¥-function. The correct interpretation of ¥ for a sin-
gle particle has been inferred from the study of the Kepler
problem as the resultant of the pilot waves guldlng the parti-
cle (cf.VI).

(11) Wave Mechanical Current Density

Consider a collection of particles, (m, £ 0),
with the normalization constant (68a). [Fér a single particle
we have to choose (69a)]. Set

(70) ' Ye =
and »
Y?ee.p
=N
{(71). < J

The expression (71) obviously represents the current density
of the corpuscles flowing through a world tube lying parallel
to EN field.

From egs.(2,3 and 9),‘we then get
: h 3 3t e 3

(72) -J = Z;IE:(X Ix - X% ) - e Xxx &

This expréssion is nothing but the usual quantum mechanical

expression for four-current den51ty provided we identify
with wave mechanical .

Using eqs.(2,9 and 14) as well as the Lorentz
condltlon for ¢, we obtain

2|x|e

(73) v.J = (0-%(x1)

Consequently, we see that it vanishes only if any one of the
following conditions is satisfied :

a) There is no external field i.e. ¢ =0
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b) There exists an 1nert1a1 system for which sa/ast = 0 ;
. grad a = 0 for all X and t. Note that this is the condi-
tion (23) for the validity of the wave mechanical operator
formalisms.

c) There exists an inertial Lsystem for which either ¢, = 0
or |grad x| = O for all X and t.
In the presence of an external field, only when
the condition (b) is fulfilled we can expressthe intensity I
registered by the beam of particles as, (cf. eq.86)

(74) I = constant x.xWI§IEN = constant x.xwlgrad W - e$|

In the general case for ensemble normalization

3%

we have J xx dv = N = constant but yy represents neither

the density of the particles nor the intensity registered by
them on a measuring instrument. The intensity as seen from
(74) depends not merely on the square of the amplitude but
also on the phase of the wave field.

The nonvanishing of (73) in the general case does
not mean that some of the particles are lost. It means, as we
have noted before, that in such cases there is an exchange of
energy and momentum between the "corpuscle" and its extended
wave outside the singular domain. The current density of the
generalized energy-momentum and the number of particles in a
world tube lying parallel to p field remain constant since

2

(75 vJ' = Z(.%_ EE*P_ =0, (cf. eq(14))

0

IX. PHOTONS AND THEIR PILOT WAVES

(i) Corpuscular Properties of Photon in Terms of its Pilot
Wave

For my, = e = 0, we have already deduced from the
generally valid equation for a scalar field, eq.(19), the
equation valid for the pilot wave of the photon, namely, the
{scalar) equation of wave optics (21) Oe =0

e et et e e
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But as yet we have not investigated the corpuscular properties
of the photon and their relations with its pilot wave.

First, we note that the momentum and energy of the
photon are given by

It

(76) By = wme kv £ 0

Ey = ¥ M ke? # 0

i

although m, = 0.

From the definition of M,, egs.(5 and 0), it is
easily shown that its "effective rest mass"

(77) -SSR

Hamilton—Jacobi equation (35), (because e = 0}, becomes

2 W 2012
(78) (w2 - L w2

As expected, for{Ja = 0 it gives the classical "eikonal equa-
tion" used to study geometrical opties.

Using (78), we can also verify from eqs.(12 & 13)

1 /Ua
m, = 0 and M, =z /Z . A
From eqs.(43 & 6) we get the Lagrangian for a photon as

/ R
L.t /O
c a

that

(79

Its gradient gives the diffraction ﬁD acting on the
photon when it passes through the slit. '

. > ? Oa
(80) Fp=- ( )

- >
The same expression (80) is also obtained from Fy given by eq.

(59). ~
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The Hamiltonian is given by (cf. egqs.(48 & 4)

(81) H =c/AWW)? - n? % = Mc?

(ii) Einstein-de Broglie Relations"

De Broglie had sgbwn that the phase velocity of
. "matter wave" is a space-like vector and the particle veloci-
ty v is the group velocity.
The phase velocity u is determined by
dw

or,
/(83) (1.p) - H = 0, (cf. eq.(10))

Since 5 is orthogonal to momentary,surfaces of constant phase,
we have ‘

H umg kc? + U
(B4 g = = Rt
[Pl lumekv + p_|

Eq.(84) is known as de Broglie's reciprocal relation.

For photons eq.(84) gives
2
(85) u =
P
Just as in the case of a free particle of non vanishing mass.
v is the velocity of the photon which as we shall se below is
not always equal to c.

N Remembering egs.(2-6 & 10) we can express the ve-
locity v of any particle by the expression

Czp + >

+ I\ v -
(36) V] = EVzucz 3%%_?4’_
N —aT + ed,

which for the case of photons reduces to
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N
, W

(87) [;I = -C 'a—m

Eq.(86) is known as the "formule du guidage" cf. de Broglie.

" For any particle, expanding the phase W of its

" associated wave at any world point X, up to the first order

of approximation, its wave function ¢ in the neighbourhood X,
can be represented by

elx, + dx) = alx,Jexp z[W(x,) + (dx.p(x,))]

This means that we can express the wave field of the particle
around the point X, approximately as a plane wave with the
wave lentgh Aa and frequency vy given by the famous Einstein-
de Broglie relations, namely

(88) v = iz, h

3 X
h > a

Ip(x,) |
Therefore, strictly speaking, these relations hold exactly
for a monochromatic plane wave. Of course, these relations
hold also fotr the pilot wave of a photon.

(iii) Diffraction of the Pilot Wave of a Photon

It is well known that in Fraunhofer diffraction,
in contrast to Fresnel diffraction, the.relative intensity dis-
tribution depends only on the scattering angle and not on the
distance of the screen from the scatterer. Consequently, pho-
tons after being diffracted by the slit and after crossing
the Fresnel zone completely travel in straight lines in the
Fraunhofer domain. It is therefore obvious that in this do-
main photons do not experience diffraction force, (cf. eq.80).
Consequently, we shall characterize the Fraunhofer zone, as in
geometrical optics, by the relation

(8) Oa =0

As a result, M, also vanishes (cf,<eq.77) and the velocity of
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the photon corpuscle i?l = Cc ; otherwise EN and EN would also

vanish for photons (cf. eq. 76) contrary to experimental re-
sults.

Hence, from egs.(9 & 13) we get

’1‘ —VW‘;:O
C — i

(89) Mo =
Consequently, VYW is a light-like vector.

: From eq.(12) we can alse corroborate that the rest
mass of the photon corpuscle expressed in terms of its pilot
wave 1s zero :

: _ L fa g Ve o
(90) my = o/= h? - (W) = 0

Evidently, in the Fresnel zone Ua cannot be zero. From (77)
we see that in this domain[Ja must be negative, i.e.

(91) Oa <o,

otherewise M; would be imaginary. Therefore for a real posi-
tive My, as seen from eg.(89) YW must be a time-like vector.
Consequently, the velocity of the photon "corpuscle" in the
Fresnel zone must be less than ¢ and the phase velocity of
the pilot wave is greater than ¢, just like the case of the
particle of rest mass m, # 0, (cf. eq.85).

(92) IVl <c 5 |4l >c, in the Fresnel zone.

It will be shown below that in the Fresnel zone
the intensity of the light beam is not proportional to the
square of the amplitude of the wave function but is- given by

3
(93) I = constant ece [VW]

It would be worth while to verify thesebrelations, (92 & 93)
experimentally.
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(iv) Photons and Classical Electromagnetic Radiation

For phctbns the generalized 4-momentum p is the
same as the kinetic 4-momentum Py (cf. eqs.(2-6)). Conse-

quently, the postulate II, eq.(14) becomes
o e 1 a(ee*En)

Since classical electromagnetic radiation is now supposed to
consist of a collection of photons, let us first utilize the
ensemble normalization eq.(66) which in this case becomes,

(cf. eq.(65)),

(95) :. N

YT = E:

The continuity condition for a collection of photons given by
eq.(94) can then be expressed as, (cf. eqs.(76)),

, where C, = f eewENdv

+ -+ ap_
(96) ‘ vV.(pv) + 3= 0,
where
(97) - 0 =ko, 5.0y = Yice um,c?

p denotes the number density of photons in the volume element
dv 5 0, the proper density and f pdv = N, the total number of
photons in the ensemble lying within a world tube parallel to
BN—field. o ‘

If we use instead the normalization constant v? and
the density p given by eqs.(68a,b) we can reformulate the conti-
nuity condition (94) as

+ 1 dE
(98) V’S+E—?d—€=0
where
{99) § = P EN 5 E = DEN ;P o= Nee

Eq.(98) can then be interpreted as the continuity condition for
the electromagnetic radiation where S represents the Poynting's
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vector.

, However, it must be noted that since eq.(98) is
obtained by using the normalization constant given by (68a),
it is valid oply in the inertial system in which E is a cons-
tant for all x and t, contrary to the continuity condition
(94) which is valid generally. The restriction E = constant
means that we are dealing either with a monochromatic radia-
tion or with a polychromatic radiation in which the number of
photons of each frequency remains constant. Hence this res-
triction is practically of no significance for the validity
of eq.(98). The real restriction for its general validity,
contrary to.eq.{94), is due to the subsidiary condition
p = Nee™ (cf. 99), which signifies that the intensity of ra-
diation is proportional to the square of the amplitude of the
pilot wave of photons. But we have remarked before that this
; is not quite true in the Fresnel zone, (cf. eq.(93)), which

W& now prove.

Evidently, YZEEAEN is a measure of the energy-

momentum density of a collection of photons registered by the
instrument placed normal to the world tube lying parallel to
Py- The intensity I of a beam of photons is given by (cf. eq.

(87)) ‘
(93) I = constant EE*I;IEN

®o4
constant ee |YW|

i

Thus, contrary to the Fraunhofer zone¥*, in the Fresnel zone,
the intensity of radiation is not proportiocnal to the square
of the amplitude of the wave field but also depends on the
gradient of the phase of the pilot wave function of the pho-
tons.,

T ——r 3
“Note that in Fraunhofer zone, }3] =C §W T

(cf. eq.(89), eq.(93) becomes T = constant ee (93a).
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It has been proved that the algebra of physically obser-
vable functions is mathematically equivalent to Schwartz-
Temple approach of generalized functions see the appen-
dix of the monograph. Nevertheless, the former is more
useful for physics.




