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Abstract : The analogy between Bloch walls, soli-
tons and particles is studied in the framework of the sine-
Gordon equation. The breather solution of this equation can
be wiewed to be an extended oscillator moving as a whole with
constant veloeity. The fundamental insights of L. de Broglie
(1924) leading to quantum mechanics were based on the study
of extended moving oscillators. In this context we investiga—
te the properties of the breather solution and show that a
"de Broglie wavelength" can be attributed to the breather. In
this simple, entirely classical case the momentum of the brea-
ther is proportional to its wave vector, and the total energy
i8 proportional to the oscillator frequency. We distinguish
between the periodic, but locally anharmonic oscillations of
the breather and a harmonic plane wave of equal wave vector
but constant amplitude, a distinction similar to that made by
de  Broglie between the classical, localised u-wave and the
probabilistic V-wave of quantwn mechanics. The present exam-

> ple opens the way to identify classical (three dimensional)
solitons with particles.

Résumé : L'analogie entre les parois de Bloch, les
solitons et les particules est étudiée dans le cadre de 1'é-
“quation Sinus-Gordon. La solution oscillante (breather solu-
tion) de cette équation peut étre considérée comme un oscilla-
teur étendu se déplagant en bloc a vitesse constante. Les vues
fondamentales de L. de Broglie (1924) qui conduisirent a la
mécanique quantique étaient basées sur l'étude d'oscillateurs
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Stendus en mouvement. Dans ce contexte, nous étudions les
propriétés de la solution oscillante et montrons qu'une '"lon-
gueur d'onde de de Broglie" peut Stre attribuée a la solution
oscillante. Dans ce cas, entiérement classique, l'impulsion
de la solution oscillante est proportionnelle a son vecteur
d'onde et 1'énergie totale est proportionnelle d la fréquence
d'oscillateur. Nous faisons la distinction entre les oscilla-
tions de la solution oscillante, périodiques mais localement
anharmoniques, et une onde plane harmonique de méme vecteur
d'onde matis avec une amplitude constante, une distinction si-
milaire & celle faite par de Broglie entre 1'onde classique
u, localisée, et l'onde probabiliste V¥ de la méeanique quan—
tique. L'exemple présenté ici ouvre la vote 4 1'identifica-
tion de solitons classiques (4 3 dimemsions) avec des parti-
cules.

1. Introduction

The present paper deals with the analogy between
the statics and dynamics of Bloch walls or solitons on the
one hand and particles or masspoints on the other hand. This
analogy was perceived early, but is still incompletely reco-’
gnized and exploited [1]. The analogy has several aspects,
including properties like inertia and kinetic energy, the exis-
tence of a limiting velocity, creation or annihilation of a
pair of Bloch walls or particles, and, as pointed out recent-
1y [2], also wave aspects. The latter will receive special
emphasis in this paper.

The common base for the description of the above
phenomena is a scalar field governed by a non-linear field
equation. Bloch walls are described, in the simplest case
(K/27M? << 1), by the sine-Gordon equation. We will restrict
ourselves to this equation because it has solutions describa~
ble in closed form by elementary functions, which is very sui-
table to illustrate the essential aspects of the analogy.
Among these solutions are the sine-Gordon soliton solution and
the breather solution, which describes an oscillating field
structure. In the following, we will first recall some preper-
ties of the sine-Gordon equation and its application to Bloch
walls, and then treat the breather solution as a moving oscil-

“tion [3]
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lator.

We then recall de Broglie's concept of "moving oscillator”
which was the starting point of quantum mechanics, and his
postulate of a localized function u(x,t). Finally, the brea-
ther solution is associated with de Broglie's u-wave, which
leads to some rather remarkable results.

2. The sine-Gordon equation'

We write the sine-Gordon equation in the dimensionless form

(1) u, - u, =sinu

The scalar u(x,t) is a function of a coordinate X and the ti-
me t. The well-known static soliton solution u(x) of eq.(1)
is

(2) u = 2 arc sin[cosh{(x-x,)]
The "site" of the soliton is the position x, on the x-axis.

Solution (2) describes two distinct field structures, a left-
handed and a right-handed one. They are also called 2« kinks.
Each single soliton of one kind is topologically stable, but
a pair with opposite sign can annihilate.

Another solution of eq.(1) is the breather solu-

s sin rt ]

(3) u=4 arc'tan[;—ssgﬁgrgzi—j

>

which is ‘governed by a single parameter q, with s = sinqand

r = cos q. The parameter q is considered to be a constant. Whi-
le performing an internal oscillation with frequency r the
field structure described by (3) remains localized around the
position x=x,. For small values of r eq.(3) can be viewed to
describe a coupled, oscillating soliton-antisoliton pair. The
oscillation is strongly anharmonic. Fig. 1 shows an example

of this oscillation for r = 0.02 (s = 1). The maximum value

of u(t) at x=x, is about 6.20, reached at the time t where

sin r%1= 1. The soliton-antisoliton separation, as measured
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by the distance b of the two points u = 7, reaches also a maxi-
mum at t = tm' .

Both field configurations discussed remain perma-
nently localized at a ceértain position on the x-axis. To des-
cribe moving structures, we execute transformations according
to j

(4) x —— B

and /1 -8

(5) t L Lo B
, T

The Lorentz-invariance of the sine-Gordon equation assures that
the expressions obtained from (2) and (3) by the transformations
(4) and (5) are solutions of (1).

3. Dynamics of Bloch walls

In this section we recall some aspects of domain
wall dynamics, concentrating on infinite planar Bloch walls in
magnetically "soft" uniaxial crystals. A complete treatment of
domain wall and bubble dynamics has been given by Malozemoff
and Slonczewski [4] and by de Leeuw et al [5]. We depart from
a material having a uniaxial magnetic anisotropy energy densi-
ty L given by

(6) w, =K sin’e,

with K > 0. The (polar) angle @ between the c-axis of the crys-
tal and the magnetization vector is assumed to depend on x and
t only. The ‘exchange energy w_ is then given, in the continuous,
classical limit, by ©

(7). w =A6_,

and the resulting total energy E is
(8) E = J(wa + we)dx.

The principle of minimum energy 6E = 0 governs the static struc-

ture of the Bloch wall.
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Instead of -departing from a minimum energy princi-
ple we may assume a least action principle §W=0, which yields,
as a Fuler equation, the sine-Gordon equation

1 K .
(9) O = 53 O+ = 7% sin2e,
identical with eq.(1) for u = 2. Equation (9) can also be de-
rived directly [6] from the Landau-Lifshitz equation, under
the conditions that the damping constant vanishes and K/2nM?
<< 1. The limiting velocity ¢, turns out to be

(10) c, = 2Y/2TA,

where Y is the gyromagnetic ratio. The velocity <, is of the

order of 100 m s—1 for practical materials. The relevant solu-
tion of eq.(9) describing a moving 180° Bloch wall is given by

-1
(11) 6 = arc sin[cosh —E—:—ZE] .
o : /1 - 8

For static walls (v=0) the structure (11) is identical with the
structure resulting from the minimum energy principle $8). The

moving wall shows a contraction by a factor of (1-82)72, An in-
tegration analogous to eq.(8) delivers the energy of the moving
wall :

(12) E(v) = 4/AR (1-82)72

The wall mass m, is given by 6]

(13) My = 4JKK Cw—Z’

which turns out to yield a value of the order of 10710 g cm 2.
For low velocities, B << 1, eq. (12) takes the form

(14) E(v) = 4/AK + % m,v 2,

The second term of (14) can be interpreted asikinetic energy of
the wall. Inertia and kinetic energy of single walls have been
both, observed [5].

.




92

Bloch walls behave like massive particles or mass
points in classical, relativistic mechanics. For low veloci-
ties (B << 1) they represent Newtonian particles [7]. They :
exhibit inertia, kinetic energy and a limiting velocity .

In addition to these particle properties Bloch walls have an
internal structure which has two consequences : Firstly the
structure represents a spatially extended, stable energy dis-
tribution which is free from singularities and has a finite
total energy, the rest energy, and secondly the structure go-
verns directly the interaction between two walls, without the

introduction of an additional interaction constant. This built-

in interaction, which is of .the exponentially decaying type,
has been described elsewhere [7,8] and is not further discus—
sed here.

Summarizing, we have reviewed the structure of sta-

tic as well as moving Bloch walls, and the energies associated
with these structures. The energy (or rest mass) has a discre-
te character because it follows from a minimum principle of
energy or action. Clearly the Bloch wall represents a physical
realization of a sine-Gordon soliton.

4. The breather solution as a moving oscillator

In this section we treat the breather as a solution of a field
" theory describing particles. We rewrite the sine-Gordon equa-
tion in the form
(15) u - %T u o= éy sinu.
The function u(x,t) is now interpreted as a scalar physical
field similar to the electric potential. Eq. (15) governs the
evolution of this field in space and time. Twe physical cons-
tants are introduced : the velocity of light ¢ and a fundamen-
tal length d. We focus on the breather solution, which is now
considered to be a physical object or particle moving with ve-
locity v/c (8=v/c). The breather solution reads in general
form
1
z)"2]

]

s sinf{(r/d)(c(t-t,)-px)(1-B
r cosh[(s/d)(x-x,-vt)(1-82)

(16) u = 4 arc tan T s
—-2
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again with a single parameter ¢ (s=sinq, r=cosq). This solu-
tion follows directly from eq.(3) and the transformations (4)
and (5). The parameter q determines both the oscillation fre- .
quency of the breather and its spatial extension. The cons-
tants x, and t, define the position of the breather and its
phase at time t=0. Fig. 2 shows schematically the oscillation
of the breather and its rectilinear motion during one period

¢ of the oscillation. As seen from eq. (16) the oscillation

frequency wy is
1
o FCrq_q2)72
(17) wy = $2(1-82)
The oscillation is highly anharmonic near the center of the
breather, but harmonic far from it.
The period t is given by

(18) T = 21T/mb.

During the time 1 the breather travels a distance equal to vt
along the x-axis. Eq. (16) also yields a wave vector ki equal
to
1
LIV a2y"2
(19) kb = dc(l B‘)

In the non-relativistic limit, this expression reduces to a
wavelength

2red 1
(20) T

fepresenting, at a fixed time, the distance between positions
of equal phase on the x-axis.

If we define the "size" of the breather as the ma-
ximum separation b of the soliton-antisoliton pair, i.e. the
maximum separation of the two points on the x-axis where u =,

. we find from eq. (16)

1
-2

).

Eq. (21) defines b in terms of r and d. The size b is small

(21) r = 2 exp(- —g-& (1-8)
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compared with the wavelength (20) (d < b<<Ab).

We now turn to the energy of the breather. The
energy density [9] of the sine-Gordon system is given by

(22)  wix,t) = l G(dz(u 24 %; u,?) + 4 31n2—)

A constant G with the dimension of a force is 1ntroduced in
(22), so that the space-like integral, taken oven the entire
x-axis, yields the total energy of the breather. For the
(oscillating) breather at rest (g=0), the total energy resul-
ting from the integration [9] is

(23) E, = 16 sGd.

Most of this energy is localized in a space region of the or-
der of the breather size b.
The energy (23) is equivalent to a rest mass mb=Eo/C2, the

mass of the breather. The energy of the moving breather is

(24) B, = E,(1-8%)72

corresponding to a momentum Py = Ebv/c2. In the non-relativis-
tic limit (0 < 8 << 1) we therefore find a kinetic energy e-

qual to —;—mbv2 for the moving breather.

We now return to the wave aspects of the breather.

We have seen that the moving oscillator is governed by a fre- =

quency o, and a wave vector k, . If we define a constant

16sGd 2
b~ rc

b

(25) i = E,d/rc

with the aid of constants introduced earlier, we find, from
eq. (17), (19),and (24) the following relations

(26) Eb = 'ﬁbwb e
and
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These relations constitute a perfect analogy to the correspon-
ding quantum mechanical relations ; they emerge, however, from
the entirely classical field solution u{(x,t). The constant hb

introduced here can therefore be viewed as "Planck's constant
of the breather"

5. De Broglie's u-wave

The results obtained up till now follow in a
straightforward way from the exact solutions (2) and (3) of
the sine-Gordon equatlon, which contains elementary functions
only. The close analogy between the dynamics of a Bloch wall
and a masspoint is evident. The breather solution reveals,
apart from aspects as inertia and kinetic energy, also wave
properties in striking analogy to quantum-mechanical proper-
ties. Beyond establishing a formal analogy only, we now as—
cribe physical significance to the results obtained by re-

‘turning to the origins of quantum mechanics.

The point of departure leading to wave mechanics

‘was de Broglie's idea of ascribing an -internal oscillation to

a particle [10]. De Broglie did not specify the nature of the
oscillation, which he described, in the rest frame of the par-
ticle, simply by

(28) ¥ = a exp(iut),

but assumed that ¢ reflects some internal periodic element of
the particle. Here we use ¢ in this restricted sense. The fre-
quency was assumed to be

(29) w = mc?/h,

where mc? is the rest energy of the particle, e.g. the elec-
tron. In the first instance, the amplitude a was chosen to be
a constant independent of the coordinates x,y,z. De Broglie's
original "Ansatz" leads, via transformations similar to eq.
(4) and (5) directly to the basic wave propertles of matter
i.e. the wave

(30) Vo= a exp,% (Et-px),
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where E and p are the energy and the momentum of the electron.

In the non-relativistic limit, the wavelength of
this wave reduces to A = h/mv, the familiar de Broglie wave-
length. It is important to realize that it is the phase only
of the wave (30) that contains physical parameters, viz. ener-
gy and momentum, whereas the amplitude a is just an arbitrary
constant. ‘

Already in his original work, but also later [11],
de Broglie postulated that to every ¥-wave of the type des-
cribed there should correspond a u-wave having the same phase,
but an amplitude varying in space. The amplitude should be
large near the particle but small far away. De Broglie attri-
butes a profound physical meaning to the u-wave, while conside-
ring the Y-wave to be incomplete. Concerning the phase, both
waves are equivalent, but the u-wave is thought to contain
additional information on the constitution or structure of the
particle. Moreover this idea of a '"double solution" was expec-
ted to open the way to a realistic, classical (or causal)
theory of particles on a deeper level. De Broglie also postu-
lated that the u-wave should be the solution of some non-linear
differential equation. However, he did not give an explicit
example of a u-wave meeting his postulates, nor has, to the
knowledge of the author, such an example emerged in the mean-
time. We think that the breather solution (16) represents the
first explicite example of a u-wave in the sense of de Broglie.

6. Discussion

We may construct a plane wave ¢b of constant am-
plitude of the form

(31) Y, = a exp % (Ebt—pbx),

with the aid of the energy (26) and the momentum (27) of the
breather. The wave (31) can be seen as a solution of the cor-
responding linear "Schrddinger" equation (with "Compton wave"
length d/r !). It is clear that the wave (31) describes only
a partial aspect of the phenomenon (16), i.e. the wave aspect,
whereas the structural and the particle properties are neglec-
ted. As in quantum mechanics, the particle aspect can be re-
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covered by adopting a statistical interpretation for the wa-
ve (31). For a breather moving in a square potential well, to
give an example, eigenvalues of the energy will result in a
completely analogous way.

We come to the conclusion that the most fundamen-
tal description of the phenomenon "breather" or "particle" is
one including the following elements : 1. a non-linear lorentz-
invariant equation. 2. extended, stable, oscillating solutions
i.e. an internal structure. 3. no singularities, yet high ener-
gy concentration in a small space region. 4. discrete energy as
a consequence of a least action principle. 5. a classical inter-
pretation. (However, the incomplete "linearized" wave (or theo-
ry) leads necessarily to a statistical interpretation, as will
be discussed elsewhere [12]).

We think that the above elements will turn out to
be essential ingredients of a satisfactory theory of particles.
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(3)) is represented by plotting u{x)

for some fixed times (phases between 0 and 90°) during the

first quarter of the oscillation (r

The breather solution (eq.

Figure 1 :
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