221

Annales de la Fondation Louis de Broglie,
Vol. 11, n® 3, 1986

Contributions to the theories of electromagnetism
and gravitation II
See Part I in vol. 11, n® 2, p.125-167, 1986
by John CARSTOIU

International Consultant Scientists Corporation
44 Winslow Road, Brookline, Massachussetts 02146

IV. Gravitational analogies and relationship between electro-
" magnetism and gravitation

1. The two fields of gravitation and gravity waves.

The second gravitational field a (gravitational
vortex) marks the beginning of this writer research in gravi-
tation. It aroused surprize. Ph. Le Corbeiller told Brillouin
that Bridgman [22, pp. 159-160] wondered about the role of the
inertial H, assuming the inertial E to correspond to gravita-
tion. After writing my two "Comptes Rendus" notes [23] on the
subject, I discovered that Heaviside [6, pp. 115-118] suggests
for gravitation a set of equations very similar to Maxwell's
equations for electromagnetism and my formulas. L. de Broglie
{16, p. 187] gives a set of Maxwellian equations for the par-
ticle graviton and establishes a wnitary theory for the Light
and for the Gravitation. A few scientists resented my simple
and fecund ideas. They obviously did not read the books quoted
above (and others) and their discussion of experimental facts
was, as Brillouin put it, "disgraceful".

My equations for gravity waves are discussed by
Brillouin [1, pp. 101-103]. To complete my analogy with the
Maxwel%lequations, I shall write
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> 1 a8 4
curl - 2= =2 = - 21V § div & = -
(137) ‘et P e 4veg;
+
5 90 gmy o -
curl G + o= = == J , div 8 = - _gZY by

+ y g
. . . Y . : -‘ .
Zgzﬁe g is §h§wNewton1an.f}eld, 2 is Fhe ?grav1tat10na1 vor-
< g and J - are densities of gravitational currents, p

and p, are densities of matter (pg, the only density of mat-

ter, defined so.far? in physics, is usually denoted by p), and
Y is the Newtonlan inductive capacity of matter ; in vacuum :

Y =y, = 6.17x107 1 M.K.5.

The velocity of propagation ¢ = C f i
ves is given by P g o gravity va-

(138 CZ = 2 =
) egug . enC 1,
where
i
1 = - ot _ _ 4my
(139) ‘g doy ’ Mg =07 -

The relation for € is due to Brillouin and Lucas [24]. In

vacuum : C = c, the velocity of light.

We define the vectors D and H of i
the relations . g & of the gravity by

1 6 > 1 - Cc2 5
o H = e— = -
4y 77 g a 4y .

(140) Bg = sgé - -
‘ g

' The gravitational energy density is
1 x> 1
(141) E(é.ﬁg +H D) = - g(62 + o202,

wh?ch,.characteristic to gravitation, is a negative quanti;y.
This yields new mass density, hence additional ¢ 4q term :
a :
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1
(142)  egq = - gryes
and we end up with nonlinear equations for gravity propaga-
tion.

(G% + C2%q?),

Let us note that in vacuum, and omitting the term
in 9%, we obtain Brillouin's fundamental nonlinear law for
gravistatics :

21y,

R 2
(143) div Dg = - o7 Dg'

The reader is refered to Brillouin's book [1, pp. 87-95] for
a new approach to the famous Schwartzschild problem and a
brilliant discussion of equation (143).

A somewhat similar equation is obtained if one
takes p = Cpgtane (see, for comparison equation (7)) and

omitts the term in G? in (142) ; one has

(144) div & = 220 a2,

a problem open for discussion.

Brillouin [1, pp. 102-103] notes that electromagne-
tic fields create an energy density, according to a classical
formula

= _]_‘_ 2 2 2
(145) EEM - Z(EOE + UoH )pEM,addc .

This electromagnetic energy density EEM represents a positive
mass—density pEM,add to be added to our previous negative °.dd

of equation (142), and this mass-density distribution in any
type of electromagnetic field must generate new gravitational
fields. Thus, we have a very clear indication of a simple cou-
pling between electromagnetism and gravitation.

We shall subject the densities of currents jg’ jw

and densities of matter pg, G to the equations :
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1 3

curl J - = % _ w

(146) Crae TR ey gy rdivd, -0,
]
curl J g _ _ e
+Bt ngradp, ét_nglej =0,

wh. : T L » Vk ‘
quzﬁzitgzier 1n1§1aliand boundary conditions, determine the
s g Ty 0, and p . The equations (137) determine

then, G, §. ALl iti
o , G, these quantities propagate with the velocity

We now introduce th‘ i i
Kg and Km by writing ° sravitypotentials ¢g’ ¢w’
3k

5_—___g_ - 1 .a._g =
3 grad ¢ C2curl 3 =5 + div
(e » BT 3 div & 0,
x - 8(» 3¢”
Q= - 2 _ d 1 - =
3 grad ¢ + curl X s T3 + div & 0.

i In the presence of ; '
tions (146) by the following° gravitons, we replace the equa-

curl J 17 QJ“ d c? >
- — =grad p '+ 2
(148) g o ot Iwy KO
3 aJ
curl + ng = -C? grad p - K 5,

h = 3

where k = (1/h)mg,C is L. de Broglie's constant and my, is th

proper mass of gravi : ~ -69 Ee °
; g ton : Ng, = 10 kg.

i de Broglic. (16, . 136] sascrooms for ot bt icld che
; s P equations. for th ; 5
ton. These are the equations (137), Wgére e particle gravi-

3 = 92__. kzx i
4ny ) p_ = +— k?¢
(149) & g dwy
c* 2
= c?2
® 4"Y k Km’ pm = 4ﬂY ¢w-
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Finally, the singular gravitational field :

(150) & = cd,
with
(151) by = CPy)

lead to a non-Maxwellian system of equations analog of equa-
tions (72)-(75) and (77). All the quantities involved obey

the Klein-Gordon equation.

2. The analog of the Larmor precession in gravity and the ad-
vance of planetary perihelia. The Larmor precession in magne-
Tism is well studied especially by Brillouin [25, p. 124 passim]
and Bates [26, p. 11 passim]. We here replace the electron by

a massive particle of mass m moving in a fixed frame of refe- |
rence (x,y,2z) in the two fields of gravitation : G = ~(Y M/T¥)r
and which is a function of time only and is perpendicular to
T. The equation of motion¥* is

. + °

(152) f=-§#?+%%x?+fx5.
We have

(153) - LEh =g orid, .5 =0,
that is

d =+ 3 1,y
(124) dt(r x T + 35T ) = 0.
Hence
(155) FoxT o+ % r?8 = const. = L.

—

: *At the surface of the Earth : (YDM/r3)§ = gﬁ, k being the ver-
tical upwards. Assuming 3 = const. = —(1/2) (Earth's angular
velocity), equation (152) gives the motion of a free particle
relative to the Earth's surface.
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In polar coordinates (r,6), we have
(156) ri(e +20) = L.

Thus, the angular momentum per unit mass - r?le+(1/2)2] 4s
preserved during the motion (in Kepler's second law : r26 =
const.). ’ ‘ ‘

The trajectory described by equation (152) is in
the plane

(157) L.t =0,

as shown by the equation (155). In this plane, along and per-

pendicular to the radius vector r, the equation (152) yields
YoM

P -re?=- 7+ req,

(158)

]

d , L= 1 _, 9@ .
ag(r 9) _(§ r? o= + rie),
the latter equation being the equation (154). The first equa-—
tion in (158) by virtue of (156), reduces to

. L2 M
(159) B -t
if we neglect the term -(1/4)azr, assuming 2 very small. This
is the differential equation of the orbit and has the same form
as if Q=0.

~ Let T, V, E be respectively the kinetic energy, po-
tential energy and constant total energy, all per unit mass.
Then :

(160) - ' T+V=E
3 Now, scalar multiplication of equation (152) with
r gives
V2 oy M 1 ~
(161) —2~———F~+§LQ—E,
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where the relation (155) has been used and the term in 9% has
been neglected.

We have

. 2.2 i 2(L 19)2
V2 =72 4+ r28% = ¢% +r )

(162) ”
=f‘2 +F-—LQ.
Thus
2 M
(163) £ = - Zp v 2 Xe8 . o,

which is precisely the integral of equation (159). We rewrite
it as follows

2
. YoMy 2 2EL? _ YoM
(164) v+ = -2 (" (1 + ) - 0+ 1
Let us put
‘ YoM . 2EL?
(165) a=—ﬁ°3—', e? =1 +'(Y—0M—57.

Equation (164) becomes
(166) r2f? = -2E[a’e? - (r-a)?].
Writing
(167) r = a(l - e cose),
equation (166) reduces to
(168) a?(1 - e cos$)26? = -2E,

which in1pl7les E <Q; the orbit described by the particle is the
ellipse {167). Equation (168) gives at once -

V-2E
$ - e sin¢g = = t,
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which is Kepler's equation. Kepler's third law follows at on-
ce :

a / a?’
(169) T = 2 = 2w m.

V-2E

Let us verify the relations (165). The maximum
and minimum values of riare obtained from equation (163) where
we put = 0. We then have
(170) 2Er? + 2y Mr - L? = 0,

Let r, and r, be the roots of the equation (170) ; we have

(171) r, =a(l - e), r, = a(l +e),

where a is the semi-major axis of the ellipse and e is its
eccentricity. Hence

YoM L
(172) ry +r, =2a=- —%—, rr, = az(l—ez)‘= - SR
L? = y,Ma(1-e?), C.Q.F.D.

In search for the motion of the perihelion of a
planet we found necessary to serutinize the equation (159) and
its consequences, which are known in astronomy except for the
definition of L. The independent variable we used was the time
t. The motion in question hides in the equation (152). We, the-
refore, return to the equation (152) and rewrite it in a rota—
ting frame (x',y') about the z-axis. We have

X = x' cosa - y' sina,

(172)
Yy = x' sina + y' cosa.
Hence
X = (X' - y'd)cosa - (§¥' + x'd)sina,
(173) .
¥ = (X' - y'd)sina + (¥ + x'd)cosa,
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% = (%' - y'& - 2§'& - x'6*)cosa - (¥ + x'a + 2X'a-y'a?)sina,
(174) . . ce e,
§ = (X' -y'd - 2y'a - x'&%)sina + (¥ +x'a + 2X'a-y'a?)cosa.

Substitution of relations (172)-(174) in equation
(152) yields

M 1 aQ . .
il_yl'd_zj"&_x‘&2= - :—f—gx' + éy' 3t + (Y' + X'a)ﬂak

(175) 50

M 1 . .
Frax' 642k 6oyt a2= - %g?y- -t ot - (R - yra)e.

We shall take

(176) &=z o

' Assuming @ small enough as to neglect the terms
in 9%, we obtain the equations :

%' = - %%g x!',
(177) §1 = = %42 ',
2t = -~ %%g z',
that is
(178). I L

which is the Newtonian equation for planetary orbits written
in the rotating frame of reference (x',y',z'). An astronomer g
in the rotating frame knows the integrals of the equation (178)

namely

i
£

(179) rox T

(180) rx i

|
<
=
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which give
rt2g = Ly’
(181) .
ox 1= %%M o dr,

where 0! is the angle'between+;'+and the x'-axis, and i' is a
constant vector in the ‘plane L'.r' = 0 of motion.

, If we dot-multiply both members of the equation
(181) by r', we find

(182) L'2 - ygM ' = d'.7! = d'p! cosot,
if we take the x'-axis in the direction of the vectof dr. Thus

(183) oo L2/ M)

T 1+e' cose' ’

where e' = d'/(y,M) is the eccentricity and L'2/(y,M) is the
semi-latus rectum of our ellipse. ’

If we cross-multiply bgth members of the equation
(181) by 1!, we find the velocity v
y

(184) O -~ AR (G B Ry I

We stop here to make a very important remark, which
we do not find in the literature : the planet experiences a ro-
tation ' about the z'-axis, namely

(185) w! = (curl'v')z' =/ XML 1 ,

1 1
a r /1-et?

which is maximum at the perihelion and is minimum at the aphe-
lion. The time average of w is

- M, 1, 1
s —
Jl-et?

(186)
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T' = T being the periodic time of our plane?, glvgn by (169).
This result will please, we believe, our primed astronomerl'

who, so far, ignored it ! In his pos1t}on,'he does notlreafl—
ze either the small advance of the perlhellon.of the p ane ;-
whose motion he observes. It does not appear in the equations

above.

 Let us now see the reactions and observations of
his colleague in the fixed frame (x,y,z): He computes thi an-
gular momentum {per unit mass) x'y' - y'x'. Using the rela-
tions (172)-(173), one has

. T
(187) xX'§' - y'k' = xy - yk - r’é = xy - yx‘+ 5 T Q.

Hence
(188) L' = L.
Now
(189) di, = dx cosa + dy sina,
d!, =0-= —dx sina + dy cosa.

Thus d'=d and one, therefore, has e'=e, and a'=a.

The mapping of the ellipse (183) onto the plane
(x,y) reads

L2/ (y,M)
(190) r = ASTLL )

i1+e cos(e + %I Q dt)
0

which for @ = const., reduces to
12/(y,M) o_aleen)
1+e cos(6 + %Qt) 1+e cos(e + int)

ﬂ1915 T =

The motion of the perihelion is described by the
equations [see, formulas (172) where a = -(1/2)at, x'=a(l-e),
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y'=0] :
xper = a(l—e)cos(%ﬂt),
(192) 1
Yoer. = —a(l—e)sin(ﬁﬂt),

which represent a circle with center at the sun and radius
a(l-e). Perihelion's advance requires <0. It will return to

its initial position at the time t=47/q.. The planet, itself,
finds then its old position.

The velocity v of the planet is

> Y Mr » 1 ,» l + >
(193) vV = FI-: Lxr + ?(an) - ) Qxr.,

Its rotation w is

(194) w=/%4-11; 1.

This is the manner in which we represent the mo-

tion of the perihelion of a planet, the so-called "advgnce of
perihelion”. It is caused by the gravitational vortex 8. This
is to be comp

ared with the genial computation of Einstein. g,
if constant, has to be determined by observation. If we take
the time t=T, the period of revolution, we may write

1 £Y _ by M
(195) §I9!(2n /§:ﬁ) = EET(%:E?Y’

using Einstein's formula. Hence

3/2
(196) la] = —S0x.)

a very small quantity, indeed. This, surely, is the new physi-
cal effect that Bridgman [22, p. 159] was looking for. He wro-
te : "Something analogous to the electromagnetic field equa-
tions, but applicable to inertiql matter, seems demanded here,
but there is nothing in sight that meets the requirements. In

fact, the need for something analogous appears so imperative
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that one is strongly tempted to ?elieze Zhgt Zgigirm:§tegia—
e ,
ical effect so small as to have / ;
;ded2i20€zgi"x Our equations (137) and relation (196) fill

up his guest.

Much has beeh written about Einstelg's fz;g:ia%o
the second member of equation (195). We refer §18i1§6] er
the book by Misner, Thorne and Wheeler {3, ﬁ.b o110 an

To this, we add the elegant.boo A Ch s
references.SS and 184-187] and the cautious bgoks by Chazy .
128 pp.dsls;'llcuin [1, p. 99]. We also note with con51de?ab.e
{28] o El new deri;ation of Einstein's result by Schwinger
el g e85] He is concerned with the interaction betyeen
[11’bp§: s3T thé nSun" and a second test body : a "pl%net .
BWO "go;eteé Rendus" Note [29] of Decembe{ 3, 1969 : -SZZe
Zggnergiz potentielle de deux paqtacules electgtzuisléte © e
correction d la relativitélilaisgqui",ngﬁizgzd ig joase b

i i ! nt boo ) . It

qu:t:grlgaiihyégigzez giggusﬁ note cémmunicated by Henri Villat
was .

to the French Academy of Sciences.

On the Bode's law. The distances of the planets g?zwughgoign
g' 7ot seem to be arranged randomly. In 1776, J.D. 'l'ted for-
01 d empirically a relation which closely appr9x1ﬂa o
s SF:tancgs. This is known as Bode's lgw, named in 1onortates
:ﬁe %amous astronomer who published it in i73iitTEesé;¥—;ajor

in ical units (1 astronomica = s -

thét, %ntﬁ:tgzizﬁl= 149.4%10° km) the planetary seml—m?%oi
ax}z Zre : 0.4 for Mercury, 0.4+0.3 for Venus ;.thereg 6e s
2§$ays adding twice the previous value to 0.4, i.e., 0.0, 1.2,
2.4, etc. Clearly, one has

(197) a = 0.4 + 0.3x2",

where n = O for Venus, n = 1 for Earth, n = 2 for Mars, etc.
The planet Mercury corresponds to n = -,

: At the time, only six planets were kqowg. ?ggldls—

covery of Uranus in 1781 and of tbe firséeiztigogdaig o ent
onding closely to the missing num .

zgzgiggrablegsupport to the law. However, the more recently
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discovered planets Neptune and Pluto deviate widely from the
positions (38.8 and 77.2) predicted by Bode's law, and since
there is no theoretical explanation for the law, astronomers
now believe that the relationship may be incidental. Is it so ?

Without going into details, we replace Bode's law
by the relation , '

(198) a=0.4+0.3x 2%+ 5(20.1 - 28.9 x 2"),

where s is a step function : s = 0, for n

52,...,6, and
S 1, for n .

L

For the planet Neptune, we take : n
and obtain a = 30. For the planet Pluto, we take : 8, m=1
and obtain a = 39.5, value which fitsthe observation. This is
not surprising. But, what is surprising, indeed, is that if we
take : n=9, m=2, our formula (198) gives : a = 58.5 A.U.This is
basically the same value as that predicted for the presumed mis—
sing planet based on the observed perturbations in the orbits
of Uranus and Neptunme. This was confirmed to us by astronomer

R.S. Harrington of the U.$. WNaval Observatory, who finds here
our thanks. :

>

Our formula (198) restores, therefore, the power of
prediction of Bode's law. It carries information which we are,
unfortunately, unable as yet to read out. Kepler's laws led
Newton to the formulation of universal gravitation. Who will
now discover the physics behind our law (198) ? It is a challen—
ging problem which involves the theory of information and quan-—
tum mechanics. It is of importance in a theory of the origin of
the solar system, such as discussed by Jeffreys [30] but, where
the Bode lav and our formulation (198) are missing. Let us re-
member that Brillouin [31, pp. 162-183] identified Maxwell's
demon, that "a being whose faculties are so sharpened that he
can follow every molecule in his course, and would be able to
do what is at present impossible to us", by application of the
theory of information. We believe that the latter is the key of
our problem ! But, there is research to be done about this.

The period of revolution of the 10th planet in our

dF a
: where Fe an g
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)
SO]—a-I Sy stem 1S gl ven by ( 169 a'n-d th~e time aver age Of tlle
SquaI (< Of its Speed 1S V =Y oM/a. 5 we do not 1!151S(; °

is itation
4. Relationship between electromagnetism and gravi

. in
The ponderomotive electromagnetic forces acting

i 2, pp. 50-51]
i luated by Goldstein [32,
on & Lluid have 2T See Penfield, Jr. and Hermann [33,
when Jm =0, p = 0. See, also Pen ,

p. 201 passim]. We write
1
> 3 g ————-j E‘
(199) o=k o B+ F b - g I

The ponderomotive gravitational forces, to be

added to the former, are

1
f B R R s o8
(200) fgm = ng + o+ Jx a7 J,

Let us assume that

>

v ’ ]
(201) peE = F, o,b pmﬁ =F_ o 8

i hem
re dimensionless constants. To determine them,

. : (L at
we use the divergence equations in (2) and (137). We obtain

ce ,
- ‘ Pe 1 . B
(202) F, == Ez Ty . F ey
‘ We anticipate the relation
P p
m m_ _£ - const.
0 —=

(203) S
for a particle of fluid. Henge

: Pe 1
(204) F,=F =F=- ;z e

We shall call the ratio F the WFaraday number" .

i ]
s British physicist undertook numerous experiment

T oove e were fruitless. He conclu-

to discover such a ratio, but thes
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|
:
E
.
.
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ded in his laboratory diary : "Here end my trials for the pre-
sent. The results are negative. They do not shake my strong
feeling of the existence of a relation between gravity and

electricity, though they give no proof that such a relation
exists",

The formulas (201)-(204) imply that

2 e 1+ Pe 1
(205) E=--% Ty G B=-22 ey o

O

o
e}

For a massive particle of mass M and electric
charge Q_, we have
€ Q Q
+ e 1 , r- o e
E=-5 =& B -7

(206) 4ﬂ€Y 7

1 -+
4rey 2,

which, surely, constitute the relations that Faraday was see-
king !

Comparing the Maxwell equations (2) and our equa-

tions (137) we obtain, by virtue of relations (206), ’
P P

(207) je = EE jg’ m - ES w
& g

Finally, inserting the values (207) in the equa~—
tions C(4) we have, in view of our equations (146),

pg pg .
- d = d — d = d .
(208) b grad p = grad o , 5. grad o = gra Py

The first relation yields

P P
(209) £ 2_y

2
pe pw

which proves our anticipated relation (203). The second rela-
tion in (208) is an identity.

The relation (203) is of fundamental importance.
It gives the subtle intercoupling between electromagnetism and
gravitation. It can be rewritten as
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=
o

w m
(210) H‘ = 6;:

i "second mass" (we have
where M = fpwdr, dt = dx dy dz, is a

i i i onds to the magnetic
no better word for it), which corresp ‘ e -
charge in electromagnetism ; its dimensions are : = ,

i.e those of a momentum (or quantity gf motion). Man§2§e334]
t&ré; of paragraphs 3-8 and 3-9 by S(:h'v»r:mg,er'[11,1:ppc.z7:S t; our,
including "charge quantization", apply mutatis m@'ag fo ou
theory, but much remains to be done. We gondﬁy whic twizader
rcti i f Harold, this aler
the reaction to our suggestions o old, s alert reader
icati times critically inter
imitless dedication, who so many ; -
gipizméchwinger in the presentation of his work [11, See In

dex].

We now proceed to discuss frozen—in fields. The
equation of linear momentum 1S

v 53 8- LT
(211) Pe %% = —grad p + (1+F)(pgﬁ+pmﬂ+jgx9 57 J,xE),
where v is the velocity of a fluid particle, p is the pressure,
and D/Dt is the mobile operator

D 3 >
(212) : =t (v.y).

We shall assume that
+ >
(213) I =0 v, J, =0,V

Equation (211) becomes

(glr—&
°

w*)}’

p
o rad(fég + Y-i)+2$><:;+(1+14‘) 3+ B3vx(n - 5
(214) 'B"E = ~§ pg 2 pg o

where w = (1/2)cur1 v is the velocity and p is assumed to be a
function of pg only.
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Taking the curl of both sides of the last equa~-

tion, we obtain, by vi
. , by virtue of ¢ ; .
we omit the right sides, url equations in (137) where

3 -+ [4
215) —_| 20+ z 1 N
(215) 4%(2 (14F)(2 - & ~Gp“f )] = curl{vx[zw(lwxa_é om)]}
u' g ) 7o )

Observing that, in view of divergence equations (137)
2

(216) div(d - 1, 43¢
1V(Q ¢ ;- b) = O,
g
and because of the h i i
( S ¢ hydrodynamic equation of continuity
21 =& 4 aj
7) 50 dlv(pg V) = 0,

the equation (215) can be rewritten

oy

(218) D1 192 + 1 ° R
) ¢ pg[2w+(1+F)(Q - & p—;’(‘?)]} = (20 (Lm) (- L 28 191,

@

The quantity

(219) (28 + (P (H - & % )

g €% g

is, therefore, preserved duri
" uring the ) .
{?o;§n+znto fhe material., If wg callmitzﬁ:’q§:f fzefeby 18
+F) [a-(1/C )(Dw/p )5], then, Zf a time t=0 2E _YK
g s s “we==A, for any

g%gt?cg%e_qfxfluid,.we ghaZZ have at all time, for that A
: = -A. Applications follow, but we do not insistpg2:2~

: Let u h
the Earth. s check our formulas (206) for our planet,

We use the data

M = 5.977x10% k _ te10d “
(220) P g Qe = 5x10 ?0“10mbsa in fine weather,
G| =g = 9.81 m/sec?, ¢, = 8.854><10_12 farad/m,

-11

Yo 6.67x10 M.K.S.
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We shall assume that

(221) i & %
where ¥ is Einstein's constant. Taking u = u,, we have
(222) ey = euve = 5.9x1072% M.K.5.Q.
We obtain
(223) |El = 100 volt/m.

The field £ ¢s directed downwards as it should : Q, is found

to be negative, hence £ has the same direction as g. The re-
sult (223) is in excellent agreement with the fine-weather
electric field observed in the air above the Earth. It was
first found by Lemonnier in the year 1752.

The second formula in (206) does not admit an easy
geophysical interpretation. Professor Dale M. Grimes wrote_ to
this+auth0r, and I quote : "Now if your equation relating
and Q have substance on a geophysical scale then would one not
expect that the reversal in direction of the magnetic field
occurs together with a reversal in direction of rotation ? If
so, the resultant drastic change in local climate during the
reversing period should, it appears obvious, produce drastic
change in both plant and animal life as is observed". We leave
up the answer to reader's competence. '

Conclusion. We come to an end of this mémoire. We enumerate our
new contributions. The equations ¢ which complement the Maxwell
gqu§tiogs together with which they determine the quantities E,

B, Je’ J, Po and P of an electromagnetic theory. The equations

for electromagnetic potentials and the modified equations C
yield the L. de Broglie equations for the particle photon. Our
retarded potentials lead to the definition of the two gravita-
* tional fields G and © and show that these propagate in vacuum
with the velocity c of light. Monochromatic waves contain the

fundamental relations of s ecial relativity to which we add the
new relation M = Mo/1-vZ/ g. A reformulation of the Doppler
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principle is given which takes into account the L. de Broglie
wave length,

The magnetic potentials Am and o for a dipole

lead to the oscillations of the Earth's magnetic field. The
generalized L. de Broglie density~flux (which takes into
account the potentials Am and ¢m) gives the probability of

presence of photons in the Earth's magnetic field and a new
thoery of the aurora is contemplated. The non-Maxwellian equa-—

tions of L. de Broglie appear as a. singular case of the Maxwell
equations and the modified equations C,

An entire chapter is devoted to a theory of rota-
ting bodies, which iseonspicuously'missing in relativity and
electromagnetism. The invariance of the Maxwell equations in
a rotating frame of reference is subject to a new system of
equations for the field vectors, which determine the latter.
They. are dipole fields. The Earth's magnetic field appear to
be the same in both rotating and fixed frames of reference. If
there are currents and charges, they will modify our magnetic
and electric fields, but all quantities have the same repre-

sentation in both frames. This is an introduction to planetary
magnetism.,

Brillouin [1, p. 71] emphasizes that the Lopents
transformation is a mathematical, unobservable tool, -very

useful, but definetely not physical. We agree. Brillouin would
its use in the first principle of dynamics.

sense the two fields of gravitation which, interesting enough,
propagate in the direction of motion with the velocity v. It
is a simple, but major contribution of ours, which may serve
as an introduction to the theory of the double solution of L.
de Broglie [4]. We obtained this result by correcting an error

of Sommerfeld [12, pp. 239-241] found in "the intrinsec field
of an electron in uniform motion".

We conceive the gravitation in a simple fashion,
not because gravitation is simple (look at the voluminous book
by Misner, Thorne and Wheeler [3] and references on the subject)
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APPENDIX II - On planetary orbits

Here, we give a brief study on the advance of
planetary perihelia. This advance, computed by Einstein and
observed, so far, for the four inner planets, is exceedingly
small. It represents an infinitesimally small fraction of a
revolution of the planet. The trajectory of the perihelion is
not known and will take centuries of observation to actually
determine. :

Subject to observation, our formulas (192) show
s a circle with its center at the Sun

and radius a(l-e) ; the speed of the perihelion is (@/2)a(l-e).
Clearly, the aphelion describes a concentric circle of radius

a(1+e) ; its speed is (9/2)a(1+e). The orbit rotates very
slowly around the Sun between these two circles sweeping the
entire area bounded by them. We desire to show that the circles
in question constitute the envelope of our family of orbits
‘which depends on one parameter, the time t. :

that this trajectory i

In doing so, we shall give various formulas which

are new and useful in astronomy.

We begin with the equation
. ' 2 12
(AII.1) .(2‘—%%-"'—)—}%-2—: 1,
which represents the orbit in the rotating frame of reference
(x',y') with origin O at the Sun.

We have

x' = a(cos ¢' - e),

(AI11.2)
~ y' = b sin ¢',
where ¢' is the eccentric anomaly of the planet. Hence :

(ATT.3) r' o= /X%y 2 = a(l - e cos 9').

In the fixed frame of reference (x,y,), we write
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x = a (cos¢ - e) + b_ sing,
(AIT.4) X x

y = ay(cos¢ -e) + by sing,
wvhere

. a_, =a cos(lﬂt) b, =b cos(int)

X 2772 X T2 ’
(AII.5) 4 1

a, = -a sin(gnt), by =b sin(EQt),

are the components of semi-major and semi-minor axes a and b
of the orbit along the Ox, Oy axes.

We have
(AII.6) r = /X%y ? = a(l-e cos¢).

On comparing this with equation (AI1.3) we see that
$' = o, i.e., the eccentric anomaly is the same in both frames
of reference, Kepler's third law is, therefore, fulfilled re-
gardless of rotation. This confirms our result in the text.

We now map the ellipse (AII.1) onto the plane (x,y),
using the formulas (172). We have

4 2 — . 2
(ATI.7) (x cosaat Yy sina + ae) . (-x sing t y cosa) -1,
where o« = -(1/2)at, @ = const. The advance of perihelia requi-
res <0,

To find the envelope of the family of ellipses
(AII.7) we take the derivative with respect to o of this equa-
tion and put 3/8a = C. ‘

We have

(AII-S) (—X sina-&y Cosa)(x COS;!-:Y Slno+ae _ X cosg:y 31na)

= 0.

We, first, study the solution (pencil of straight
lines through the origin) :
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(AII.9) -x sina + y cosa = 0.
By virtue of the latter, equation (AII.7) reduces
to
(AII.10) x cosa + y sina = a(%l-e),

vhich represents straight lines perpendicular to‘the former.

Solving the equations (AII.Q) and (AII.10), we

obtain
1
x = a(l-e)cosa = a(l—e)cos(int),
ATIT.11) 1
( y = a(l-e)sine = -a(l-e )51n(iﬂt),
and
1
x = -a(l+e)cosa = —a(1+e)cos(iﬂt),
(AII.12) 2
y = -a(l+e)sina = a(1+e)31n(§nt).
The solution
1 1 ( + sina) ; - £
(AII.13) (57 - ET) X cosa + ¥ =

is impossible, for it leads to imaginary values for x and y.

Indeed, we have
2

(AII.14) X cosa + y sine = e

Equation (AIT.7) becomes

—x cosa + ¥y sina)? _ 1
(AIZ.15) ( bzy =1 -7,

which does not have a real solution because its right side is
negative (e<l).

The formulas (AI1.11) and (AII:12) give the cir-
cles described respectively by the perihelion and the aphe-
lion., C.Q.F.D.
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A few lines about the hodograph of the motion are
in order. In the rotating frame, we have [see, formula (184)]:
d' 2 2
x! YoM
(AII1.16) V§2 + (v! - E%f)

y T) = ( (d;(' T_:d' =d).

The normalized Form of this eqﬁation is

(AT1.17)

xﬁz+ (yﬁ - ae)? = a?,

where we put

d!,
(AII.18) o= TV;(, 'yI_'l = 'rv)',, T f, = ae, 1 {—f—M = a,
(AIT.19) T = o /157,

T being the periodic time of the planet.

Equation (AII.17) represents the hodograph of the
motion, which is a circle having its center on the latus rec-
tum at a distance ae from the focus and radius a.

Let us observe that if we put

(ATI.20) X, =X+ x, Yy =¥+ ¥,

the locus of the point (x&,yé) is the ellipse
1 2 | B 2
(xv + ae) (yv ae)

(AIT.21) prY * ey = 1.

The area Av of the latter is : AV = 2ma(a+b), and we have

(AII.22) A, = 2(AC + AH),

where Aq = mab is the area of the ellipse (AIT.1), and AH = 7ma?
is the area of the circle (AII.17). Our formula (ATI.22) is re-
miniscent of the elegant expression given by Dimitrie Pompeiu

(our "maitre" in Bucharest) as a geometrical interpretation of
the continuity equation for plane motion of an incompressible

—

N —

we obtain
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fluid. Pompeiu's formula is

(ATI.23) A, = Ag+ Ay

Whele AC 1S the area bourlded b& a f-l-uld curve C (area whlch
b b ded by e
1S a const t a]l(l are t}le areas oun
stan ) 3 and AH A th

-
t the
i nd the vector r+v_ put a
aced by the velocity v ar ' he
ggigiz g; the cZ—ordinates (the time T, facfor of v is as
to be 1). Beautiful remembrance of our youth.

In the fixed frame, we have [see, formula (193)] :
Yo

), v - 37 L (M
(ATT.24) e+ + Oy -1 L
where
1 v v+—1~S2X
— — = 3
(AIT.25) Ve =V — 3%, Yy =Vt 3

f the total veloci-
are_ the components along the Ox, Oy axes of .
ty V= v + (1/2)(2xr), and

(ATTI.26) d, =d cosa, dy =4 §1na.

Thus, the terminus of the velocity V laiddofi)f;gg
he origin O lie; on a circle with center gtf(—dy/P, 1x L
Eagias'%Y M)/L. This center, itself, describes a circle
o ° N 03
center at the origin and radius a.

To find the envelope of the family of 9ir01§s elas
(AII.24) we follow the pattern discussed above. Using the
tibns (173), equation (AII.17) reads

i i ~ ae)?2=a?
(AIX.27) (XH cosa + Yy sina)? + (—XH sina + Y, cosa ,

where XH = TVX, YH = TVy.
Taking 3/3a of this equation and putting 3/9a = 0,

(ATI.28) .XH cosa + ¥, sina = 0.
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Hence, equation (AII.27) reduces to
(AI1.29) ~X;; sina + Y, cosa = a(etl).
The solution of the last two equations is
XH = -a(l—e)sin(%ﬁt),
(AT1.30) 1
Y, = —a(l—e)cos(iﬂt),
and
Xy = a(1+e)sin(%ﬂt),
(AIT1.31) 1
YH = a(1+8)cos(§ﬂt),

which describe the envelope in question. Equations (AIL.30) and
(A11.31)represent the same cirecles (AII.11) and (AII.12). We
have, in each case, ’

(ATI.32) X X +¥ Y =0,

which shows that the vectors (x,y) and (XH,YH) are perpendicu—

lar. This is not surprizing in view of the definitions of en-
velope and hodograph.

It is significant to note here that Newton's cons-
tant v, (usually denoted by G) is really not a constant ; it
does depend on the distribution of matter in the neighborhood
of the Sun. This is particularly felt by the inner planets at
their perihelion. We propose to replace Yy, by v given by

_ y 1 - Apg
(AII.33) . Yo = T_:—EKE;’

where A is a constant and p_denotes the density of the solar
atmosphere. &

The formula (AI1.33) constitutes the gravitational
analog of the Clausius-Mossotti law (for the latter see,
Stratton [8 p. 140]).

Ememeinds s ol

249

In vacuum, y=Y,. For a body of very high density,
we have

(AII.34) Y = —%Yo-

The body will desintegrate due to the repulsive forces bet~
ween its particles. This corresponds to gravitational collap-

e,

The singular relation (AII.34) can occur only lo-
cally inside the body and in a time-interval of the order of
a second or less. We then have a quake, such as an earthquake.
We do not go further. An editor might say : "I wish the author
would take fewer bulls by the horns. One at a time is enough,
because a lot of back-ground reading is required".

Astronomers may be able to tell to what extent our
theory predicts the motion of the node of Venus. Einstein's
theory throws no light on the latter. Neither does his theory
explains the advance of the Moon's perigee and node.® (For the
Earth, one may expect a slow precession of the seasons). —-And
seismologists may be intrigued by our new approach to a theory
of earthquakes. Well, this is the drama of science : it never

ends.

“our célleague Victor M. Waage informs us that he found in the

quarterly journal of the "British-American Scientific Research

Association", June 1986 (XI:2); p. 40, this statement :
1. .. Just recently two scientists (E.F. Guinan and F.P.
Maloney of Villanova University, Pa., U.S.A.) report in the
August 1985 Astronomical Journal that the precession of the
periastron of the binary star DI Herculis is about seven
times smaller than it should be according to the special
theory of relativity. Not a small discrepancy ! This sug-
gests that both Einstein's theories are wrong..."

_ Brillouin saw clearly the need for a critical reappraisal of

Einstein's relativity, based on actual experimental conditions.




