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Abstract : For the nonlinear Schrddinger equation

with external field
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the conditions of the existence of soliton solution, the non-
linear eigenvalue problem arising from seeking soliton and

stationary solutions, the stability of soliton, and a method
for seeking soliton solution are discussed. The obtained re-
sults are applied to the NLS equation for harmonic oscillator

ay 3%y

2 — 2
3t wz Tt 219 %y = Kx*y

‘and some facts stmilar to the linear Sehrddinger equation are

shown. A numerical result on the re-emergence of two solitons
after a collision with each other is introduced.

. Résumé : Sur 1'équation de Schrddinger non liné-
aire avec champ externe

.3y 3%y 2Yyyq
AT fOI]2)e = U(x,t)v

on diseute les conditions de 1'existence de solutions soliton,

le probléme non linéaire des valeurs propres suseité par la

s
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recherche de solutions soliton ou stationnaires, la stabilité
des solitons, et une méthode de pecherche des solutions. soli-
ton. Les résultats obtenus sont appliqués 4 1'équation NLS
pour 1'oscillateur harmonique
2

PRI PRYNEHS -
ot on montre quelqués propriétés similaires 4 1'équation de
Sehrddinger linéaire. Un résultat numérique sur la ré-émer-
gence de deux solitons aprés une collision est présenté.

I. Introduction’

Tn his famous book "Nonlinear Wave Mechanics-a
causal interpretation"[l], Louis de Broglie, one of the disco-
vers of the wave-particle dualism, proposed using nonlinear
wave equations for giving a clear and causal interpretation to
the wave-particle dualism -the fundamental myth in the micro-
physics. According to his. idea, the elementary particle is re-
presented as a small region of large amplitude of a nonlinear

wave.

Stimulated by de Broglie's striking idea, T and
some of my colleagues have explored some problems on the non-
linear Schrédinger equation (the NLS equation) with external
field (i.e., with variable coefficients) [2]-{3]

.9 32
(1) 13%’+§X—“§+f(lwlz)v=v(x,t)\b

Our work is concentrated on the following aspects :

(1) Find out the conditions for the existence of
the soliton solutions of the NLS equation (1).

(2) Study the nonlinear eigenvalue problem arising
from seeking the soliton and the stationary solutieons.

(3) Study the stability of the soliton solution.

(4) Develop a method for seeking the soliton solu-
tion.

(5) Study a concrete example : the NLS equation for
harmonic oscillator

.3y 3%y 2 2
(2) 1_3E+_é;(1+2“vl‘v=kxq)
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(6) Study the collision between solitons of the
NLS equation (2).

o In this paper, the complex-valued solution ¥(x,t)
of (1) is frequently, written in the form (just imitating de
Broglie's method)

(3) Wx,t) = o(x,t)ett (X0

where ¢ and 8 are real functions. Much benefit can be gotten
from this method. ' '

' It is well-known that many properties of the so-
lution of the NLS equation (1) are similar to the properties
of the solution of the corresponding linear Schrddinger equa-
tion

, 3 3z
(4) i 5% + g"} = U(x,t)v
i .
e of (1) vanishes rapidly

For instance, if a solution ¢
as x * *»  ye then have

]

(5.1) [ Ppdx = f $2dx = const.
r’ vixpdx 2]‘” o2 .2%x
d d - X
(5.2) —<X> = = —x

—a0 —

dt dt 1=,
J_6¢%wdx f_m¢2dx
® . 8U
q2 _ZL ‘l)""(‘a—i)‘l’dx 3u
(5.3) JErX> = = ~2¢52>

T orvax

(5.3) is just the Ehrenfest theorem.
ié
. S .
. A solution ws = ¢se of (1) is called a2 soli-
ton, if the amplitude function ¢S(x,t) of it satisfies the

following conditions :
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(i) 0 < I ¢;(x,t)dx < 4o

©

(ii) There exists a function s(t), § = gié%l £0,

such that
¢S(§,t) = ¢s(x—3(t)).
Note that this is only a weakened definition of

soliton. Later on, we will strengthen this definition by ta-

king the stability into account.
1 0
i0
CIf WS = ¢Se S js a soliton solution of (1), from

the Fhrenfest theorem (5.3), we see
d2
I X = T

i.e., ¢S(x-s(t)) is a. travelling wave moving according to the

second. Newton's law of motion.

1I. Conditions for Existence of Soliton

Naturally, we can not hope that the equation (1)
always has soliton solution for any nonlinear term f(l¢]? and
for any external field U(x,t). In this connection, we have the

following theorem :

Theorem 1 The NLS equation (1) has a soliton solution, if and
only if the following two conditions are satisfied :

(i) There exists such a function s(t) (%% £ 0) thét

U(x,t) can be rewritten as °

(6) U(x,£) = V(x=s(t)) - & + h(t) = V(&) - Lax 4 n(v),

2
where £ £ x-s(t), § = %ti and h(t) is an arbitrary definite
function of t ; ¢ )

(ii) The following ordinary differential equation
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2
(7) %g$ - V(E)o + £(9%)o + 20 = O

has a solution ¢A(£) for a certain eigenvalue A, such that
Lo

0< f ¢f(€)d£ < e

Wen both (i) and (ii) are satisfied, the soliton
solution of (1) has the following form :

: is_(x,t)
8) { “’sx(x’t) ¢A(X—S(t)~)e A
t
e)‘(x,t) -;- §x - at - fo{h(t') + -}Is'z(t')]dt' + 6,

Proof ~Substituting (8) into (1), and using (6) and (7), we
may veylfy that the conditions (i) and (ii) are sufficient for
the existence of the soliton solution. Here, we prove only the

"necessity of these conditions.

Assume that equation (1) has a soliton solution

(9 ws(x’t) = ¢(X~S(t))eie(xft)

Sgbstituting (9) into (1) and separating the real and the ima-
glnary terms, we obtain

a0 36,2 52
(10.1) ] 3t (D(a—)'c') + 5;% + f(¢2)¢ - U(X,t)¢
(10.2) -—é _8_9. + 2 _@_‘2 2_6_ + 326 -

X 3IX 3X "9x?

We point out that

—

(11) 8 .2

@
o
[S%]

In fact, if %% # % §, from (10.2) we have
-1 2 -
36 22620 _ 1 4y-1

o 3xX2?'ax 2

2
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Integrating the both sides of this equality, we find .

36 1 .1-1
$? = a(t)(sz -3

or , 1
28 - .
(12) "a—)'c' = a(t)¢ + '2' S
where o(t) is an érbitrary function of t. On the other hand,
fm ¢ BOax
- '3
(13) 8 =2 =>—
: ¢2dx

k-]

Inserting (12) into (13), we have
a(t) =0
Hence, from (11), we still get (11).

From (11), we see

(14)  elx,t) = 5 5x + g(t)
and .

36 - N
(15) =3 X+ g(t)

vhere g(t) is an arbitrary function of t.

Substituting (11) and (15) into (10.1), we obtain

2 1o . 1, ~
(16) %;% - (U(x,t) + 5 sx + &+ 7 §2]¢ + £(¢2)e =0
Notice that-
a2 a2¢(x-s(t)) _ d% -
(1) 24 - 2eles(®)) L 8 (5 = xos(e))

From (16) we find that
1. . .. 1.
Ulx,t) + 58+ &+ 7 $

must equal a function of E. Therefore, we may set

191

(18) U(x,t) + % Bx + g + % §2 =V(z) - 2

where * is a real number. (18) can be rewritten as
(19) U(x,t) = V(E) - % sx + h(t)
where h(t) = (2 + & + % §2). Equation (16) becomes

d?e 2
(20)  FEz - V(B)e + £(0%)¢ + 2o =0
Thus, we have seen that if equation (1) has a so-
liton solution {9), then U(x,t) " can be rewritten in the

form (19), and equation (20) must have a solution ¢(&) for a
certain real number A, such that :

0 < f ¢2dE < 4w

—00

‘ These facts have shown the necessity of the condi-
tions (i) and (ii). :

In addition, since g = -x» - [h(t) + % §2],we get
t

(21)  g(t) = e+ [ [h(e)) + F82(e)Jae + o,
0

Inserting (21) into (14), we obtain (8) finally.
Hence, theorem 1 has been proved.

If an external field U(x,t) can be written in the

.form (6), it will be called the harmonious field.

Example 1 For any continuous functions A(t) and B(t),
U,(x,t) = A(t)x + B(t)

is a harmonious field. In fact, we may let

t t!

s, (t) = —Z_J de! f A(t")dt" + ct + d
0 0

hr(t) =

B(t), V(g) = 0
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then
Ly h,(t)
Uu(x, ) = Va(8) - 3 8ax + (),
In the special case,
Ul(x;t) =___2&x

Chen and Liu has obtained the exact soliton solution of the
corresponding NLS equation[lO].

Example 2 For any positive number k and for'any continuous
Teal functions A(t) and B(t), the external field

(22)  U,(x,t) = kx? + A(t)x + B(t)

is harmonious. In fact, let s,(t) be the solution of the dif-
ferential equation

(23) § = -4ks - 2A(t)
then
(24) s,(t) = acos(2/k t + 8) + s,(t)

where s,(t) is a special solution of (23). Besides, set
(25) h,(t) = -ks3(t) + B(t), V,(g) = k&*.

Then we find V

(26) U,(x,t) = V,(€) - % §,x + h,(t)

Unfortunately, in most of more complicated cases,
U(x,t) is not harmonious. For instance,

U(x,t) = kx*

is inharmonious.

Theorem 1 shows that in the non-relativistic case,
only for some harmonious fields, the NLS equation (1) can have
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strict soliton solution, but for the inharmonious field, the

amplitude ¢(x,t) of a nonlinear wave ¥ = ¢ele can not be a
travelling wave, and its shape must change more or less as it
moves in the field. Perhaps the latter case means that the
structure of an elementary particle has to change more or less
while it moves in an inharmonious field.

I1I. Nonlinear Eigenvalue Problem of the NLS Equation

We point out that one can not determine if equa-
tion (1) has a soliton solution (8) only by theorem 1. In
fact, if we have known that U(x,t) is harmonious, we must fur-
ther determine whether equation (7) has a suitable solution.

In addition, there is another interesting fact :
If we look for a bound stationary state solution ¥(x,t) =

cb)\(x)e'-l)‘t of another NLS equation

2
(27) i h e £ = V(x)Y

we can find that ¢. and A must satisfy the following differen-
tial equation

d?¢ V( 2
gz~ Ve + £(e%)e + A6 = 0
(28) -

0 < f ¢2dx < 4w

—

which is just the same as (7).

Therefore, the research on the nonlinear eigenva-
lue problem (28) is important either to the soliton problem or
to the stationary state problem.

Before the exploration of problem (28), let me quo-
te some basic facts on the corresponding linear problem. The
details can be seen in [11]. It is well-known that if ¢(x,t) =

¢(x)e—1ut is the bound stationary state solution of the corres-
ponding linear Schrddinger equation

e
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2
(29) i —g-“ti + g—{“é - V(x)0

then ¢(x) and u must be the solution of the linear eigenvalue
problem

) |
44 - v(x)e + uo =0
(30) -

0 < J $2dx < +e

-—00

R4

1f .the continuous real function V(x) satisfies

(31) 1im V(x) = +=

X+t

problem (30) has a series of eigenvalues {un}, such that

o <y Sy < eee S S el < 4

and
lim = 4=
%)
N+«

the eigenfunction on(x) corresponding to the (n+1)-th eigen-
value '™ has exactly n zeros.

If V(x) satisfies
(32) 1im inf V(x) =0

X+t

problem (30) has a negative discrete spectrum, such that
—m<uo<p1<...<0

The number of the discrete eigenvalues depends only on the func-
tion V(x) and can be either finite or countable infinite. This
number will be denoted by n(V). If n(V) = «, the set {u} has

only one condensation point — O. The eigenfunction ¢n(x) cor-

responding to-the (n+1)-th eigenvalue has also exactly n zeros.
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The nonlinear eigenvalue problem (28) is similar
to the corresponding linear eigenvalue problem (30) in many
aspects. We have proved the following two theorems :

Theorem 2 If the real function f(x) in (28) is continuous on
The interval [0,+%), and if the continuous real function V(x)
satisfies (31), then for any positive number M and any inte-

ger n > 0, the nonlinear eigenvalue problem has (at least) an
eigenvalue Xn(M) and its eigenfunction ¢n(x,M) with exactly n

zeros, such that , ;

(33.1) Ito G, M) |1 = suplle (x,M)]]|xe (-=,=)} =M

(33.2) po- TOO €A ) <~ £0M)

where u is just the (n+1)-th eigenvalue of the corresponding

linear problem (3C), and

(34.1) T(M) = supif(p?)|p € [0,M]}

(34.2) £(M) = inf{f(p?)|p € [O,M]}

Theorem 3 If the real function f(x) in (28) is continuous on

the interval [0,+=) and lim f(x) = £(0) = 0, and if the con-
x+0

tinuous real function V(x) satisfies (32), and if n(V) > 0 for

the corresponding linear problem (30), then for any natural

number m < n(V), there exists a positive number e, such that,

for any positive number M, which is smaller than € the non-
linear problem (28) has an eigenvalue Am(M) and a correspon—
ding eigenfunction ¢m(x,M) with exactly m zeros, which satis-

fy

(35.1) e 11 = supl|o (x,M)||x € (~=,@)} = M

(35.2) .| w - TOO <A 00 < uy - £00

e
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where u is just the (m+1)-th eigenvalue of the corresponding
linear problem (30), and (M) and f£(M) are defined also accor-
ding to (35)-

. Since the proof of these two theorems needs much
pure mathematical-inference and occupies much space, here we

only briefly sketch the idea of the proof of theorem 2. The
proof of theorem 3 is similar to it. The interested reader can

find the details in [3] and {4].

At first, we notice that, if let $(x) be an arbi-
trary function, such that

115(x) 1] = supt]@(x)[lx € (-=,=)} & M

then for the given M > 0 and n » 0, the linear eigenvalue pro-
blem

[oF

48 - V) - FG ())]e + 26 =0

0 < J p2dx < e

-

has an eigenvalue xn($) and its corresponding eigenfunction
¢n(X,$),'such that
Mo (x,8)[] =M
b - T € 2 (8) < wy - £(M)

Therefore we may establish a mapping Qn by
Qn($) = ¢n(xy$)

which maps the closed ball S(M) into its boundary BS(M). The
ball S(M) is defined as

s(M) = (60| 1o € M}

which is a closed and convex subset of the Banach space C,(R).
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Then we can have further estimation on ¢ (x,§) :
n

There exist three positive numbers H(M,n), X(M,n) and V,, which
rely only on M and n, such that for any $(x) € s(M)

I|¢n(X,$)|| + lI¢A(x,$)|| + ||¢R(X,$)|l < H(M,n)
and when [x| > X(M,n)
2V, (X(M,n)-|x}])
l6!'(x,§)| < min{M LN
n * Tx[—=x{M,n)

By these evaluations we know that S(M)) i
compact subset of 3S(M). Q,(s(M)) is a

I¢Il(x,$)| <Me

Furthermore, we can prove that Qn($) is continuous,

i.e.,
1i %) - s =
Lin 11, (3,) - (Bl =0
and
1lim xn(¢m) = kn(a)
m-+o
provided lim ]|$m—63‘ = 0.

Mmoo
Hence, Qn is a compact mapping, which maps the ball

S(M). into 3S(M) C S(M). By the Schauder's fixed point theorem
(12], we know that Q has a fixed point ¢n(x), i.e.,

Q (6,(0)) = ¢,(x)
¢n(x) is just the eigenfunction being sought.

. . By theorem 2, the shaded parts in Fig.l show the
regions in the A-M plane, where the eigenvalues of the nonli-~

near problem (28) may exist under the condition (31).

. By theo?em 3, the shaded parts in Fig.2 show the
regions where the eigenvalues of (28) may exist under condi-
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tion (32).

Theorem 2 and theorem 3 show that if the corres-
ponding linear problem (30) has a discrete spectrum, then the
nonlinear problem (28) has also a discrete spectrum, provided
the norms (33.1) and (35.1) of the eigenfunctions are kept
fixed, and the nimber of zeros of the nonlinear eigenfunction
equals the one of the corresponding linear eigenfunction.

1f the nonlinear eigenvalue problem (28) has so-
Jutions, then it has at least such a kind of eigenfunctions
that the eigenfunction has no zero and is shaped like a bell
(Fig.3). According to theorem 1, the corresponding soliton so-
lution (8) is also bell-shaped.

It is also possible that the eigenfunction has one,
two or more zeros (Fig.4), and the corresponding soliton solu-
tion (8) has also one, two or more zZeros. However, this kind of
itgoliton" solutions has not been seen in the common soliton

theory.

These facts lead to a question : Can we call the
latter solutions "solitons" in a stricter sense ? This question
spures us to study the stability of solution (8). By the stabi-
lity, we may strengthen the definition of soliton.

IV. Stability of Soliton Solution

Generally speaking, a soliton solution should have
two properties : its invariable shape and its stability[13].
But in our weakened definition, only the first property is gua-~
ranteed evidently. In fact, the stability of soliton is more !
concerned in the present theory, since the soliton is to be re-
garded as an elementary particle.

However, since the soliton is a special solution of
the engaged nonlinear evolution equation, it is still a complex
problem to give a suitable definition on its stability. For so-
me well-known nonlinear equations such as the KdV equation, the
sine-Cordon equation, the stability of soliton has caused a va-
riety of interesting discussions[13][14][15][16][17].For the
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nonlinear Schrédinger equation (1), because the soliton so-
lutions are complex-valued, and in most of cases the exact
analytic form of the soliton solution can not be obtained
the problem of the stability looks more complex. ’

Lo In spite of that, by bestowing suitable physics
significance to the solution P(x,t) with the aid of de
Broglle:s idea, we may find a definition of the stability of
the soliton solution (8) in a sense of dynamics.

The functional

<o

= 3y, * '
(36) B = [ (12474 uexe) 101 - R0 Jox
7 (802 36, 2 '
- [_w[(ﬁ) v o2 (E)" 4 ug - Fo?) Jax
X
where F(x) = J f(x')dx', is regarded as the energy of the solu-

0

tion of the NLS equation (1). One can then conjécture that
among the solutions of (1) satisfying certain constraints, the
soll§on solution should make the energy the minimum. From,the
c9n31deration on dynamics, we can naturally think of the follo-
wing constraints : B

-3

(37.1) J PEpdx = j $2dx = M > 0

( ] im¢2xdx
37-2) . <X>‘t=t0= —-—-M——-— t=to_ X(to)
© 38
2 2 dx
d<x> J-—-m¢ X .
(37.3) = t=t°= et $(t,)

Constraint (37.1) requires that all the solutions
to be compared with the soliton must have the same "size'.
Const?aint (37.2) requires that all the solutions to be compa-
ﬁed y1§h the soliton at a given time t = t, must have the same

pos;tlon" in the external field. And constraint (37.3) requi-
res that all the solutions to be compared with the soliton at
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a given time t = t, must have the same "mean velocity".

These constraints seem to be reasonable. In fact,
we can prove the following theorem :

Theorem 4 If the. conditions in theorem 1 are all satisfied,
Then at any given time t,, among all the solutions of (1),
which all satisfy the constraints (37.1), (37.2) and (37.3),
only the soliton solutions can render the energy functional
(36) the extremum (the minimum or the saddle point).

Proof Using the Lagrange multipliers x,(t) and r,(t) to the
oxtreme value problem under the constraints (37.2) and (37.3)

at the given time t,, we obtain the Euler equations

3%¢ 30,2 2 A A, 86 _
(38.1) | w7 - o(55) -~ Uo + floP)o + - &+ jrdgc = 0,

3 yi20) , A 301
(38.2) | -2 Bx(¢ ) T owx T 0

From (38.2) we get

(39) T 0% = 207 + c(t,)

Integrating the both sides of {(39), and using (37.3), we can
find that C = 0, and ‘

(g0)  Aalted =222 §(t,)

i On the other hand, inserting the formal solution
y = ¢e into equation (1), and separating the real and the
imaginary parts, we obtain

20 30,2 | 3% 2y =
(41.1) |6 o5 - o(55) * ezt £(2)6 = Ulx,t)e

2
.3_.‘2.3.9.+¢E__6-=0

3¢
(41.2) + 2 3%2

3t IX 89X
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Comparing (38.2) with (41.2), we find

A, 892,907
42§ =T
And comparing (38.1) with (41.1), we get
LI VU VO T
bt YW T
Tnserting (42) to this equality, we obtain
30298 A, 942 ap? 96

T M ax % T 3t x

Integrating its both sides, we find

a [ “ -
R T L £
Substituting (40) and (43) into (38.1), we get
2 S .
(@) T3 - Ulx,ee) + Xk xye + 26700 + 7 8(e)e = 0

Since U(x,t) can be written in form (6), (44) can be rewritten
as

45 5

o

) ‘
Ef ~V(E)e + £(62)6 + A(t,)o = 0

where 1 -
)\(to) ’—'VZ S(to) - h(to)

N From (40) and (45), we find that if a solution
Y = ¢e satisfies the constraints (37) and the Fuler equa-
tions (38), it must be a soliton solution (8), i.e., only the
soliton solution (8) can render the energy (30) the extremum
under the constraints (37).

On the other hand, it is easy to see that solution
(8) renders

7 2(28°
J_m¢ (5%) &
which is one part of the energy (36), the minimum under the
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constraints (37.1) and (37.3) at the given time t,. This fact
chows that the soliton solution (8) can not render the energy

the minimum.
This proves the theorem.

Theorem 4 shows that the soliton solution (8) is
stable or metastable in the sense of dynamics.

A theorem on the stability of the stationary state
solution can be proved more easily.

Theorem 5 If the NLS equation (27) has bound stationary state
solution, then among all its solutions satisfying the constraint
(37.1), only the stationary solution can render the following

energy

T30y L 20287 . 2
(46)  E(V) = f [(3—) + 0%(52) o+ V(x)e? - F(o¥) jdx
Ll X ox
the extremum (the minimum or the saddle point).

By a comparison between the linear and the nonli-
near cases, we conjecture that the soliton or the stationary
solution, which has no zero, renders the energy the minimum and
is stable, and the soliton or the stationary solution, which
has at least one zero, is the saddle point of the energy func-
tional and is metastable.

Unfortunitely, since the exact analytic solution
can not be obtained in most of cases, and the calculation of
the higher order variations of the energy functional is very
difficult, up to now this conjecture has not been proved strict-
1ly.

: In addition, the above-mentioned definition on sta-
bility is not clear enough, because there is not a definite and
explicit measure to describe this stability in the definition.

In spite of that, we may have a stricter study on
the stability of the soliton solution of the simplest NLS equa-
tion
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2
4 izl =0

The nonlinear stability of the soliton solution of
(47) has been studied with the inverse scattering method[18].
However, this study has not given a clear measure to describe
the stability.

In the study on the nonlinear stability of soliton
solution of the KdV equation, Benjamin[17] has developed a ge-
neralized measure of the;difference between the soliton solu-
tion on and other solution &, which permits ¢ to be translated

along the x axis until the best match with ¢, is obtained. His

generalized measure comes from the following fact. The shape
and the "size" of the soliton solution are stable, while its
"position" is unstable.

Benjamin's idea on the generalized measure can be
used here for the study on the nonlinear stability of the soli-
ton solution (47). The soliton solution of (1) is

is (x,t)
(48) wS(X,t) = ¢S(X,t)e N

where

(48.1) @s(x,t) = A sech[A(x-Bt)]

i

(48.2) es(x,t) g(x—Ct)

and A (# 0) and B are arbitrary real numbers, and
2BC = B? - 4A7

Using the facts revealed in theorem 4, and having
more consideration on the physics significance of the solution
of (47), we may introduce the following generalized measure of
the difference between any two solutions ¥, =»¢lele‘ and

ie
Y, = ¢,€ 2
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© 5 ) 2
(49) e(¥1,¥,) = inf min [j (1 _¢,-9,)2 + {i’r .a_:.;.‘_ - 5_:(2_]
geRR *r, o & 13

37,0 k 3 r2 1/2
o33 -l
4?%"’*(‘5‘{”2— - by - 7)) X

where T is the shift transformation operator defined as

TE¢(x,t) = ¢(x-E,t)

and J” 02xdx
=4 =4
(50) V3 2 g™ * q T7o%ax
LN -
2
2! Ritra
I i=1,2.
I ¢2dx
1

o . }

o

Note that V, and V, are conservative quantities in the case of

(47).

The term
36, vx} [ae2 .VZ]]Z
[“’*{a—;‘z— - e:ix T2

represents the difference between the internal motions of the-
se two solutions. And the terms

30, 3%]‘

(¢1—¢2)2 + (ax 3%

can represent the difference between the shapes of ¢, and ¢, .

" The shift transformation 1y and the operation
inf min in (49) guarantee that the measure is taken through
EETR iTE
translating ¥, along the x axis to the position where the am-
plitude ¢, and the internal motion of ¥, can best match with
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the ones of V,.

Just using the generalized measure (49), we have
proved that the soliton solution (48) is stable with respect
to the small perturbation on the shape of ¢S and on its in~

ternal motion. Here we neglect the proof of this result, since
it includes many careful evaluations which occupies large spa-
ce. The interested reader can find it in [51.

V. Method of Releasing ﬁnergy

We have mentioned that, if all the conditions in
theorem 1 are satisfied, we can not yet hope to obtain the so-
liton solution in exact analytic form for most of the NLS equa-
tions. Therefore, we should find some method for seeking the
soliton solution.

In section III, we have seen that to find the so-

"liton solution of (1) can be reduced to find the stationary

state solution of (27). And in section IV, we have known that
the stationary solution of (27) renders the energy (46) the ex-
tremum (the minimum or the saddle point) under the constraint
(37.1). Besides, it is well-known that for any given solution

vix,t) = ¢e16 of (27), the quantity (37.1) and the energy (46)
are both conservative.

Using the above-mentioned facts, we can develop a
method for seeking the soliton solution of the NLS equation,
which satisfies all the conditions in theorem 1.

Let v,(x,t) = ¢°(x,t)e16°(x’t) be an arbitrary gi-
ven nonstationary state solution of the corresponding NLS
equation (27) with the initial values :

¢o(x;0) ¢0(X)

i

(51)

8,(x,0) 20

Then for almost all t > 0,
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(s2) | o302 ax > 0.

Let ¥,(x,t) = ¢1(x,t)eie‘(x’t) be another solution of (27)
with the initial values :

¢1(X,0) = 4)1()() E ¢0(X:T)
(53)

8,(x,0) = 0.

Let E, and E, be the energies of ¥, and ¥, respectively.

Because of the conservation of the energy for any
solution of (27), from (46) and (52) we obtain

@

(54) E, = E, - j_jz(x,a[?ﬁ—o-g;?—lléx < E,

It is easy to see that ¥, and ¥, satisfy the same
constraint (37.1).

Therefore, we can say that the solution ¥, is ob-
tained from ¥, through releasing its kinetic energy (52) at
t = 1, while the constraint (37.1) is maintained. And we can
also say that ¢, is closer to the stationary state than ¥,. Re-
peating the above procedure of releasing energy successively,
we can obtain

(55.1) 0o (3, t), ¥i(x,t),eeny ¥ (X850
(55.2) 0,(x) -, ¢,(x), ...,¢n(x),...
(55.3) | Eo >eer By >.en E > ...

where all b and o, satisfy the common constraint (37.1).

In many cases, there is a finite limit for the se-
quence (55.3), for example, we have

Theorem 6 There exists a finite lower bound for the sequence
(55.3), if £(|9|?) = Blv}? (B > 0) and if there is a finite
lower bound for V(x).
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1If (55.3) converges, the sequence (55.1) often
converges to a stationary state solution of (27), and (55.2)
converges to an eigenfunction ¢,(x) of the nonlinear eigenva-—
lue problem (28), and the eigenvalue can be obtained from

ie (x,t)
{56) 1lim ¢n(x,t) = lim ¢n(x,t)e

n+® n-+ow

_ -iat
= ¢X(X)e

By theorem 1, we know that, if ¢X(X) and X are

found, the corresponding goliton solution of (1) can also be
obtained according to (8).

The method of releasing energy can be realized nu-
merically through using the computer. Chang Qian-shun has de-
veloped a conservative difference scheme for the initial and
boundary value problem of the NLS equation{8]. This scheme has
been successfully used for the realization of this method[1]

(7].

The method of releasing energy can also be used for
seeking the approximate analytic solutions of the stationary
state or the soliton[6].

Recently the fundamental idea of the method of re-
leasing energy has been generalized to the problem of finding
the stationary solutions for a wider range of equations of mo-
tionl6]. :

V’VI. Harmonic Oscillator

The linear Schrddinger equation for a harmonic
oscillator is

v - 8%y
at X

(57) i, Yok, ko>O.

This equation is carefully discussed in almost every text book
on quantum mechanics, since it is the most important example
on one dimensional motion and it reveals many fundamental pro-
perties on quantum mechanics.

1




A nonlinear generalization of (57) is

.3 % 2y L
and the simplest one is

. 3y 3% 2y L
(2) i+ gz T 21v] 20 = kx*¥

From example 2 in section II, we see that the ex-
ternal field U(x) = kx* is harmonious and the corresponding
functions are

(59.1) s(t) = a cos(2/k t + B)
(59.2) { h(t) = ~ks*(t)
(59.3) v(g) = kg?

where o and B are arbitrary constant real numbers.

The corresponding nonlinear eigenvalue problem is

d?0 _ jx2 2 "
oF - kxte + £(67)6 + 20 = 0

[=%

(60)

0<J¢2dx<m

Since V(x) = kx? satisfies the condition {31), the conclusion
of theorem 2 is applicable to (60), provided f(x) in (60) is
continuous on the interval [0,+=).

For (2), the estimation (33.2) can be written in
an exact form, i.e.,

(61) (2n+1)/k - 2M? < xn(M) < (2n+1)vk

where _
W, o= (2n+1)vk, n=0,1,2,...

is the (n+1)-th eigenvalue of the linear problem
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(62) o
0 < J ¢2dx <+
The shaded parts in Fig.5 show the regions in the
M-\ plane where the eigenvalue xn(M) may exist according to

(61).

We have seen that all the conditions of theorem 1
have been satisfied by (58) and (2). Therefore, we can conclu-
de that the NLS equation (58) (provided f(x) is continuous on
[0,+=)) and (2) have soliton solutions in the form

‘iOXn(X’t)

(63.1) wsn(x,t) ¢An(x—a cos{2vk t + Ble

~avk x sin(2vk t + 8) - At

il

(63.2) 8,,(x,t)

[y

+ = /K o? sin(4vk t + 28) + 8,

&~

where the eigenvalue kn(M) and the corresponding eigenfunction
¢Xn(x) are the solution of (60). wsb(x,t)‘is corresponding to
the soliton solution with no zero and is stable. wsn(x,t)
(n > 1) is corresponding to the soliton solution with exactly

n zeros and is only metastable.

Using the method of releasing energy, we have ob-

tained the numerical soliton solutions ws » by and by under
i [=~] 1 2

0
the parameters k=4, f_w¢2(x,t)dx ='2. Fig.3 and Fig.4 just show
the eigenfunctions ¢, (x), ¢, (x) and ¢, (x) obtained through
1 2

9
releasing energy. Fig.6 shows that the numerical soliton solu-

- tion ws moves just like a harmonic oscillator with a frequency

¢ ——
vk
W =

T

We point out the following interesting fact. The
linedr. Schrddinger equation (57) for the harmonic oscillator

]
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is a special case of f(|¥]?) = 0. So, it has also "soliton"
solutions wsn (n=0,1,2,...), which all move just like harmo-

nic oscillator with the frequency w = vk/m. This fact on the
linear Schrddinger equation (57) had been noted much early
(see [19]).

VII. Collision betﬁeen Solitons

The property of re-emergence of the soliton after
a collision with other soliton is used for the definition of
soliton in [13]. This property reflects the stability of soli-
ton in a certain sense.

For the sine-Gordon equation and the KdV equation,
there-emergence of two solitons after a collision with each
other was found numerically[20],[21] as well as proved theore-
tically[22],[23].

However, since one can not hope to obtain the so-
liton solution in the exact and analytic form for most of the
NLS equations with external field, it is very difficult to
check the re-emergence of two solitons after a collision with

each other in exactly analytic form. Therefore, for the present,

the computer experiment is the main means for the test of this
property.

Using the numerical soliton solutions obtained with
the method of releasing energy, Wang Hung-ying has studied the
collision between two solitons of the NLS equation (2)[9].

Fig.7 shows the process of a collision between two
solitons which have the same "size" and start respectively from
a pair of positions symmetric to the origin.

Fig.8 shows the process of a collision between two
solitons. One of them is bigger and stays at the origin at the
initial time t=0, the other is smaller and starts from the po-
sition x = -4, »

The numerical results show that the solitons of
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the NLS equation (2) do re-emerge after a collision with each
other.
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Figure 5

o
¥

= 0.4

$=0.6 ¢t=0.8

IS 3 =31 0

1

7 3 4 5 6 =%

Figure 6. The amplitude ¢(x,t) of the "genuine solution"

' of (16) are shown at t = 0, 0.2, 0.4, 0.6 and
0.8. They are obtained on computer with the
initial function ¢;(x + 4). ¢x(x) is just the
one in Fig. 3. The amplitude moves like a har-
monic oscillator, while its shape is maintained.
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