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On the quantum-mechanical description
of the Stern-Gerlach experiment

M.F. Barros, J. Andrade e Silva, M.H. Andrade e Silva

Department of Physics, Faculty of Science, Lisbon

ABSTRACT. Although the Stern-Gerlach experiment is very impor-
tant both in atomic physics and as an example of a quantum process of
measurement, we do not find in the literature a convincing theoretical
analysis of this phenomenon. We present here a detailed quantum de-
scription of that experiment for hydrogen atoms or alkali atoms. The
conclusion is that, considering the approach where the spin-orbit cou-
pling is disregarded, the experiment makes in fact possible to determine
the component of atomic magnetic moment along the field direction.
The results obtained can also prove two of the basic postulates of quan-
tum mechanics.

1. Introduction

It is known that the importance of the Stern-Gerlach type experiments is
due to the fact that they have been considered capable of determining the atomic
magnetic moments 1 and more recently these experiments have been often used
as the example of a typical process of measurement in quantum mechanics 2.
However, a bibliographical analysis shows that there exists in fact no satisfactory
quantum description of the interaction between the Stern-Gerlach device and the
atoms which travel through it ; an indirect proof of this is the fact that many
excellent books on quantum mechanics and atomic physics 3 deal with the Stern-
Gerlach experiment and all these approaches raise a serious degree of amazement
or criticism. Therefore, it is not even certain that experiments of this type make
it in fact possible to determine the atomic magnetic moments.

1The first mention of this experiment corresponds to Ref. [1] and [2]. Results of further

experiments of the same type are given mainly in Refs [3-5].
2Cf., for example, Refs [6-13], merely for information.
3Cf. mainly Refs. [6.9.10.14 and 15].
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The purpose of this paper is exactly to demonstrate that the Stern-Gerlach
experiment, at least in the case of hydrogen or alkali atoms, is one of the processes
of measuring a component of the atomic magnetic moment, in case it is possible
to disregard the term of the hamiltonian which represents the spin-orbit coupling.
If this term is also considered, the quantity determined by such an experiment
becomes the component of the ”effective magnetic moment”, as a second paper
will show. On a third paper we finally show that the theory predicts that the
spots resulting from the impact of the atoms on the detectors of the actual
Stern-Gerlach apparatus are spacially separated. This conclusion is obviously
indispensable so that we may consider these apparatus as being measurement
devices. Such are the conclusions of this theoretical analysis, in which we try to
explain the approaches that will be needed along the calculations.

The structure of the Stern-Gerlach device itself led to consider, as usually,
that the space between the collimator appliance C (which is located in front of
the furnace F , that emits the atoms) and the detector D is divided into three
regions, regions I and III having no external field at all, whereas in region II
the hamiltonian HII includes a supplementary term that expresses the presence
of a magnetic field produced by the magnet M .

Figure 1.

Once the general solutions of the evolution equations in any of these regions
are found and then connected on the planes X = A and X = B following the
usual requirements of continuity, it is finally seen that the physical parameters
of the device are such that it is possible to confer to each atom, according to
its impact position in the detector, a well defined value of the component of
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the magnetic moment along the field direction. Furthermore, it can be proved
that the statistic frequency according to which the various quantified values
of the component of the magnetic moment occur is proportional to the squared
modulus of the decomposition coefficient of function ψI along the eigenfunctions
of the operator corresponding to that physical quantity, as required by the usual
postulates of the theory.

2. The state function in region I

Let us consider that the furnace emits hydrogen atoms or alkali atoms, which
we may consider as made up of an electron (coordinate ~r1, mass m1, charge
e1 = −e) interacting with a stable structure (coordinate ~r2, mass m2 � m1,
charge e2 = +e) which is either a proton or a core surrounded by completely
filled electronic shells. In this latter case, the interaction potential is no longer
Coulombic but, as we know, it is still expressed as a function of |~r1 − ~r2| and,
since we decided to disregard here the spin-orbit coupling, the hamiltonian in
region I will simply be

HI (~r1, ~r2, ~p1, ~p2) =
~p2

1

2m1
+

~p2
2

2m2
+ V (|~r1 − ~r2|) (1)

where ~pi represents the linear momentum operator corresponding to ~ri. By
inserting the relative coordinate ~r = ~r1 − ~r2 and the center of mass coordinate
~R = (m1 ~r1 +m2 ~r2)/(m1 +m2) it is immediately seen that this hamiltonian is
now written

HI (~r, ~P , ~p) =
~P 2

2M
+

~p2

2m
+ V (r) (1b)

with ~P = −ih̄~∇~R, ~p = −ih̄~∇~r, M = m1 +m2, m = m1m2/(m1 +m2).

Let us consider that the ”particle” of mass M indicates the global movement
of the atom and describes its evolution in physical space until it reaches detector
D.

Since hamiltonian (1b) may be decomposed to

HI (~r, ~P , ~p) = HI
0 (~P ) +HI

1 (~r, ~p) (2)

and it is supposed that no previous coupling or connection have previously oc-
cured between both ”particles”, the more general solution of the evolution equa-
tion

HI ψI (~R,~r, t) = ih̄
∂

∂t
ψI (~R,~r, t) (3)
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should be written
ψI(~R,~r, t) = ΦI(~R, t)χI(~r, t) (4)

where, by mere replacement, it is seen that ΦI and χI are defined by the equa-
tions

~P 2

2M
ΦI(~R, t) = ih̄

∂

∂t
ΦI(~R, t) ,

(
~p2

2m
+ V

)
χI(~r, t) = ih̄

∂

∂t
χI(~r, t) (5)

the normalization of ψI being assured if we consider that functions ΦI and χI

are both normalized.

Indicating now by Fnlml
(r, θ, φ) = Rnl(r)Y

l
ml

(θ, φ) the orthonormal eigen-
functions of hamiltonian HI

1 and by fσ (σ = ±1) the Pauli elementary spinors[
1
0

]
and

[
0
1

]
, inserted at this stage only thinking of the subsequent transforma-

tions of the atom, we can use this basis to decompose function χI and, instead
of (4), we have the spinorial function

ψI(~R,~r, t) = ΦI(~R, t)
∑
nlmlσ

θInlmlσ
(t)Fnlml

(r, θ, φ) fσ (4b)

It is thus not difficult to realize that this expression can be simplified if we
make it include the eigenvalues Enl of HI

1 , in other words, it can be written

ψI(~R,~r, t) = ΦI(~R, t)
∑
nlmlσ

anlmlσ e
−iEnlt/h̄ Fnlml

(~r) fσ (4c)

By knowing the expression of wave packet ΦI(~R, t) and the numerical values
of coefficients anlmlσ it is possible to completely define the original state of the
system.

3. The atom hamiltonian in region II

If we take the Breit hamiltonian written as in the Pauli approach [16] and
eliminate its relativistic terms and, as we mentionned above, its term of spin-
orbit coupling (which means that we also disregard the spin-spin coupling), we
are led to confer to HII the expression

HII(~r1, ~r2, ~p1, ~p2, ~σ1, ~σ2) =

2∑
i=1

{
1

2mi

[
~p2
i −

ei
c
~A (~ri)

]2
(6)

− eih̄

2mic
~B(~ri) · ~σi

}
+ V (|~r1 − ~r2|)
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this hamiltonian appearing as a natural generalization of (1) for the situation

present in region II, where we have an external magnetic field ~B, whose vector
potential is represented by ~A.

We reach then a first simplification of (6) by imposing the Gauge condition

div ~A = 0 and taking into consideration that the intensity of the external field
is never high enough to confer real meaning to the presence of the diamagnetic
terms. If we then express, as in (1b), operators ~p1 and ~p2 in terms of ~P and ~p
and operator V in terms of ~r, we have

HII =
~P 2

2M
+

~p2

2m
−

2∑
i=1

{
ei
mi c

~A(~ri) · ~pi +
eih̄

2mic
~B(~ri) · ~σi

}
+ V (r) (7)

Furthermore, it is necessary to explicitly consider the physical features of
the magnetic fields that are really used in the Stern-Gerlach type experiments.
It is known that, in these experiments, the fields generated by the magnetic
pole pieces near the symmetry plane OXZ are pratically directed along OZ,
~B = B~eZ , and, besides that, not only the gradient of B has that same direction
but it can be considered as constant. 4 With a field intensity of 104 gauss and
dB/dZ not higher 5 than 105 gauss.cm −1, it is easily seen that B varies slowly
in the same order as the atom dimensions, and it is thus possible to write in the
neighbourhood of the symmetry plane,

~A(~ri) =
1

2
B(~ri)~eZ × ~ri (8)

With such numerical values, an expansion in power series of B(~ri) near the

point ~R gives as a result

B(~ri) ≈ B(~R) +

(
dB

dzi

)
zi=Z

(zi − Z)

where the numerical value of the second term is of the order of 10−3. We then
conclude that we should take

B(~ri) = B(~R) (9)

4It is well known that the field gradient is only approximately constant and this ap-
proach is unsatisfactory mainly near the side edges of the pole pieces, where the field
presents a complicated and scarcely known form (edge effect). To develop the calcu-
lation we have to disregard this effect, which is in fact the stronger restriction of this

analysis of the experiment.
5Cf. mainly Refs. [2-4].
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Due to (8) and (9) and since we have here e2 = −e1 = e, the terms under
the summation sign present in (7) can now be rewritten

−eB(~R)

2c
~eZ .

{
~R× ~p
m

+
~r × ~P

M
+
m2 −m1

m1m2
(~r × ~p)− h̄

m1
~σ1 +

h̄

m2
~σ2

}

As in the usual theory of the Zeeman effect, the two first terms can be
disregarded in the presence of the third one and, since m2 >> m1, the last one
has no value relatively to the last but one. As a consequence of that, if operator
~r × ~p = ~l, is expressed in h̄ units (as was already the case for operators ~σ) and
since (m2 −m1)/m1m2 ≈ 1/m1, we can conclude that HII can be reduced to
the expression

HII =
~P 2

2M
+

~p2

2m
+

eh̄

2m1c
B(~R) (lZ + σZ) + V (r)(10)

=
~P 2

2M
+

~p2

2m
+ µ0B(~R) (lZ + σZ) + V (r)

where µ0 represents the Bohr magneton.

4. The state function in region II

The presence of the term µ0B(~R)(lZ+σZ) in hamiltonian HII prevents ψII

to be expressed as a ΦII(~R, t)χII(~r, t) product. However, since the normalized
eigenfunctions Fnlml

fσ of HI
1 are still defining an orthonormalized basis in the

~r space, it is possible to go on writing the general solution of the evolution
equation in region II using the expression

ψII(~R,~r, t) =
∑
nlmlσ

θIInlmlσ
(~R, t)Fnlml

(~r)fσ (11)

Since functions Fnlml
fσ are also eigenvectors of operator µ0B(~R)(lZ + σZ),

to which correspond eigenvalues µ0B(~R)(ml + σ) and since (11) must satisfy an
equation similar to (3) but where hamiltonian (10) is present, it is not difficult
to conclude that θIInlmlσ

will be governed by the equation

[
HI

0 + Enl + µ0B(~R)(ml + σ)
]
θIInlmlσ

(~R, t) = ih̄
∂

∂t
θIInlmlσ

(~R, t) (12)

and that, therefore,

θIInlmlσ
(~R, t) = bnlmlσe

−iEnlt/h̄ΦIIml+σ
(~R, t)
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with [
HI

0 + µ0B(~R)(ml + σ)
]
ΦIIml+σ

(~R, t) = ih̄
∂

∂t
ΦIIml+σ

(~R, t) (12b)

and, instead of (11), we will write

ψII(~R,~r, t) =
∑
nlmlσ

bnlmlσe
−iEnlt/h̄ΦIIml+σ

(~R, t)Fnlml
(~r)fσ (13)

This general expression of the system state function in region II must how-
ever be connected to a corresponding expression in region I, expressed by (4c),
which mainly causes both functions to coincide on the X = A plane,[

ψII(~R,~r, t)
]
X=A

=
[
ψI(~R,~r, t)

]
X=A

(14)

and, since ψI and ψII are expressed in the same orthonormalized basis, it is easy
to infer that (14) corresponds to the imposition of

bnlmlσ

[
ΦIIml+σ

(~R, t)
]
X=A

= anlmlσ

[
ΦI(~R, t)

]
X=A

(14b)

On the other hand, the requirement of uniqueness of function Φ(~R, t) in the
X = A plane causes [

ΦIIml+σ
(~R, t)

]
X=A

=
[
ΦI(~R, t)

]
X=A

(15)

to be a physically intuitive equality. If we insert it into (14b) , the result will be

bnlmlσ = anlmlσ

and (13) will finally be written

ψII(~R,~r, t) =
∑
nlmlσ

anlmlσe
−iEnlt/h̄ΦIIml+σ

(~R, t)Fnlml
(~r)fσ (13b)

5. The state function in region III

Although in region III the hamiltonian has again the expression (1b) valid

in region I, we can no longer write ψIII(~R,~r, t) = ΦIII(~R, t)χIII(~r, t) because
the correlation established in region II between both particles continues to exist.
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Therefore, the general expression of ψIII must be, as in (11), a summation of
the type

ψIII(~R,~r, t) =
∑
nlmlσ

θIIInlmlσ
(~R, t)Fnlml

(~r)fσ (16)

Since ψIII continues to be the solution of the evolution equation, now again
(3), we have

[HI
0 + Enl]θ

III
nlmlσ

(~R, t) = ih̄
∂

∂t
θIIInlmlσ

(~R, t) (17)

which implies
θIIInlmlσ

(~R, t) = cnlmlσe
−iEnlt/h̄ΦIII(~R, t)

with

HI
0 ΦIII(~R, t) = ih̄

∂

∂t
ΦIII(~R, t) (18)

Since this function ΦIII is not defined as dependent on the quantum num-
bers n, l,ml, σ, we could be led to infer that (16) is after all not formally similar
to (11) but to (4c). That conclusion would however be wrong, since we did
not yet consider the correlation of particles, which is only shown through the
connection to be imposed on plane X = B. In fact, instead of (14), we will have
here [

ψIII(~R,~r, t)
]
X=B

=
[
ψII(~R,~r, t)

]
X=B

(19)

that is to say

cnlmlσ

[
ΦIII(~R, t)

]
X=B

= anlmlσ

[
ΦIIml+σ

(~R, t)
]
X=B

(19b)

and, on the other hand, just as before,[
ΦIII(~R, t)

]
X=B

=
[
ΦIIml+σ

(~R, t)
]
X=B

(20)

The equalities (19) and (20), in the same way as (14) and (15), are direc-
tional equalities, the first term of each having to equal the second one. And, in
the same way we concluded in (15) that functions ΦIIml+σ

(~R, t) on plane X = A

were after all independent of ml and σ, we must admit here that ΦIII(~R, t) on

plane X = B is to represent a whole set of
[
ΦIIIml+σ

(~R, t)
]
X=B

functions. Since,

due to (19), cnlmlσ = anlmlσ, the general expression of ψ in region III will be
written

ψIII(~R,~r, t) =
∑
nlmlσ

anlmlσe
−iEnlt/h̄ΦIIIml+σ

(~R, t)Fnlml
(~r)fσ (16b)
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(16b) being different from (13b) only because it contains function ΦIIIml+σ
instead

of ΦIIml+σ
.

6. A more adequate form of the state function

If we insert functions

gmlσ(~r, t) =
∑
nl

anlmlσe
−iEnlt/h̄Fnlml

(~r) (21)

expressions (4c), (13b) and (16b) will become

ψI(~R,~r, t) = ΦI(~R, t)
∑
mlσ

gmlσ(~r, t)fσ (22)

ψN (~R,~r, t) =
∑
mlσ

ΦNml+σ
(~R, t)gmlσ(~r, t)fσ (N = II, III) (23)

or, considering the well known relations among the possible values of quantum
numbers n, l and ml, and defining k = ml + σ with σ = ±1,

ψI(~R,~r, t) = ΦI(~R, t)

l+1∑
k=−l−1

[
gk−1,1(~r, t)f1 + gk+1,−1(~r, t)f−1

]
(22b)

= ΦI(~R, t)

l+1∑
k=−l−1

Gk(~r, t)

ψN (~R,~r, t) =

l+1∑
k=−l−1

ΦNk (~R, t)
[
gk−1,1(~r, t)f1 + gk+1,−1(~r, t)f−1

]
(23b)

=

l+1∑
k=−l−1

ΦNk (~R, t)Gk(~r, t)

where, according to (21), the gk∓1,±1 mean

gk∓1,±1(~r, t) =
∑
n

n−1∑
l=|k∓1|

anl,k∓1,±1Fnlk∓1(~r)e−iEnlt/h̄ (24)

It is easy to realize that functions

Gk(~r, t) = gk−1,1(~r, t)f1 + gk+1,−1(~r, t)f−1 (25)
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satisfy the eigenvalue equation of operator −µ0(lZ + σZ), the operator of the
component of the atomic magnetic moment along OZ, the corresponding eigen-
values being −µ0k (k = −n,−n+ 1, . . . , n).

For the expressions (22b) and (23b) to be expressed in terms of normalized
functions, we have to insert functions G′k(~r, t) = Gk(~r, t)/ck in the place of
Gk(~r, t) with

ck =

[∑
n

n−1∑
l=|k−1|

|anl,k−1,1|2 +
∑
n

n−1∑
l=|k+1|

|anl,k+1,−1|2
]1/2

(26)

which leads us to write

ψI(~R,~r, t) = ΦI(~R, t)

l+1∑
k=−l−1

ckG
′
k(~r, t)(22c)

ψN (~R,~r, t) =

l+1∑
k=−l−1

ckΦNk (~R, t)G′k(~r, t) (N = II, III)(23c)

Written in these terms, state function ψ expresses the essential part of the
results obtained by this theoretical analysis of the Stern-Gerlach experiment.
First we conferred to the elements of the atomic beam we studied any state
vector, given by (4c) or by (22c), whose expression was only implicitly restricted
by the experimental limitations of the device itself. Then it was possible to
see that, after travelling through the inhomogeneous magnetic field, that state
vector according to (23c), was expressed as a summation of correlated pairs of
functions with very specific features : each pair consisted of a wave packet ΦIIIk

which described the evolution of the system mass center in physical space, and
of a specific eigenfunction of the component operator of the magnetic moment
along the field direction.

7. Conclusions

In order not to interrupt abruptly this subject neither to make this paper too
long, we leave for another paper, as mentioned in the Introduction, the analysis
of the space-time evolution of the ΦNk wave packet. That analysis enables us to
admit here, due to the physical parameters characteristic of the Stern-Gerlach
devices, that the ΦIIIk wave packets will cause the appearing in the detector of
spacially separated spots, each of them corresponding to a well determined value
of k. Therefore, the position of a small spot appearing in the detector shows
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in which of the wave packets the atom was located. Consequently, and due to
the correlation between the ΦIIIk and the G′k expressed in (23c), the position of
the spot enables us to give the component of the atomic magnetic moment its
corresponding −µ0k value. The explanation of the wave function collapse that
corresponds to the appearing of the spot in the context of common quantum
mechanics is a question out of the reach of this article. Anyway, it is certainly
possible to conclude that, according to the approach considered in this paper, the
Stern-Gerlach experiment is the example of a form of measuring the component
of the atomic magnetic moment along the field direction.

But we can proceed further. Since the possible results of such a measure-
ment can only be the −µ0k values, which are the eigenvalues of the operator
corresponding to the quantity here considered, one of the postulates of quantum
mechanics is here justified.

Concerning the probabilities of determining the various values of −µ0k they
ought to be the probabilities of finding the corpuscle in the corresponding ΦIIIk

wave packets or, in other words, the potentialities of presence of the atom in
each of the wave packets. So according to (23c), the position probability density

ρk(~R, t) of the atom in one point of region Dk(t), where the generic wave packet
ΦIIIk is not null, should be written

ρk(~R, t) =

∫
|ΦIIIk (~R, t)ckG

′
k(~r, t)|

2
d3r(27)

= |ck|2|ΦIIIk (~R, t)|
2
∫
|G′k(~r, t)|2d3r = |ck|2|ΦIIIk (~R, t)|

2

and, therefore, the probability Pk of locating the corpuscle in Dk(t) will have
the value 6

Pk = |ck|2
∫
Dk

|ΦIIIk (~R, t)|
2
d3R = |ck|2 (28)

the ck being obviously still given by definition (26).

Now let us try, using the expression of function ψI , to define the probability
P ′k of the result of measuring the component of the atomic magnetic moment
being −µ0k. According to another of the postulates of quantum mechanics, we
must thus calculate P ′k by the squared modulus of the corresponding coefficient
included in the decomposition of ψI along the normalized eigenfunctions G′k of

6Pk is independent of t because each of the ΦIIIk satisfies the Schrödinger equation,

which assures that its norm is kept.
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the respective operator ; 7 therefore, if we use (22c), we will immediately have

P ′k =

∫
|ckΦI(~R, t)|

2
d3R = |ck|2 (29)

the agreement of the values of Pk and P ′k being in fact a justification of this basic
postulate of quantum mechanics. 8 The truthfulness of this postulate depends
only on the truthfulness of the hypothesis that |ψ|2 determines the position
probability density.
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Paris, 1977).

[16] H. A. Bethe, E. E. Salpeter, Quantum Mechanics of one and two-electron
atoms (Springer-Verlag, Berlin, 1957).

7It is easy to conclude that we reach the same result if the decomposition is not made

according to G′k but to the usual normalized functions of operator −µ0(lZ + σZ).
8Note that the above reasoning leads to prove the special form of the quantum postulate
in a case like this, where the eigenfunctions of the operator do not depend on all

variables present in the state vector.

Annales de la Fondation Louis de Broglie, volume 12 no. 3, 1987



On the description of the Stern-Gerlach ... 297

(Manuscrit reçu le 18 mai 1987)

RESUME. Malgré l’importance de l’expérience de Stern-Gerlach soit en physique
atomique, soit comme exemple d’un processus quantique de mesure, on ne trouve
dans la littérature aucune analyse théorique convaincante de ce phénomène. On
présente ici une description quantique détaillée de cette expérience pour l’atome
d’hydrogène ou les atomes alcalins. On montre que, en négligeant l’interaction
spin-orbite, l’expérience conduit effectivement @ la détermination de la com-
posante du moment magnétique atomique selon la direction du champ. Les
résultats obtenus permettent par ailleurs de retrouver deux des postulats fonda-
mentaux de la mécanique quantique.
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