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Interpretation of quantum mechanics by the double solution theory

Louis de BROGLIE

EDITOR’S NOTE. In this issue of the Annales, we are glad to present

an English translation of one of Louis de Broglie’s latest articles, as a

kind of gift to all physicists abroad who are not well acquainted with

the double solution theory, or do not read French. Louis de Broglie

of course wrote the original paper 1 in his mother tongue, which he

mastered with utmost elegance, but perhaps considering it as his last

word on Wave Mechanics, he expressed the wish to see it also published

in English.

The translator, our friend Maurice Surdin, tried to remain as close

as possible to the French text, which was by no means an easy task,

and unavoidably the result will therefore appear a bit awkward in style,

but it surely does convey the precise physical meaning, and most im-

portantly, the spirit of Louis de Broglie’s work. Following this closeness

requirement, the peculiar mathematical notations used by the author

have been kept unaltered, even though somewhat unusual, or slightly

old-fashioned. Our readers will nevertheless appreciate the deep phys-

ical insight expressed in this tentative theory of wave-particle dualism,

a major problem unsolved to everyone’s satisfaction.

Historically, Einstein was the one who started all the trouble in

1905, with the introduction of this wave-particle dualism in radiation

theory. Louis de Broglie did not ease the pressure in theoretical physics

when he later on extended the puzzling dualism to every entity of Uni-

verse, not only photons, but also electrons, atoms, molecules, etc. And

he was right, that is the way things work, and physicists have to accept

facts, however upsetting.

But Louis de Broglie, as he explains in the first lines of his article,

was a realist, and he could not believe observable physical phenomena

1Foundations of Quantum Mechanics - Rendiconti della Scuola Internazionale di Fisica

”Enrico Fermi”, IL Corso, B. d’Espagnat ed. Academic Press N.Y.1972
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400 Louis de Broglie

to only follow from abstract mathematical wave-functions. Somehow,

these latter had to be connected to real waves, at variance with the pre-

vailing Copenhagen interpretation, and with his keen sense for physics,

Louis de Broglie did find a way out of the maze !

So here is a realistic view of Wave Mechanics ... at the highest

level, and by its very discoverer.

I. The origin of Wave Mechanics

When in 1923-1924 I had my first ideas about Wave Mechanics [1] I was

looking for a truly concrete physical image, valid for all particles, of the wave

and particle coexistence discovered by Albert Einstein in his ”Theory of light

quanta”. I had no doubt whatsoever about the physical reality of waves and

particles.

To start with, was the following striking remark : in relativity theory, the

frequency of a plane monochromatic wave is transformed as ν = ν0/
√

1− β2

whereas a clock’s frequency is transformed according to a different formula :

ν = ν0
√

1− β2 (β = v/c). I then noticed that the 4-vector defined by the

phase gradient of the plane monochromatic wave could be linked to the energy-

momentum 4-vector of a particle by introducing h, in accordance with Planck’s

ideas, and by writing :

W = hν p = h/λ (1)

where W is the energy at frequency ν, p the momentum, and λ the wavelength.

I was thus led to represent the particle as constantly localized at a point of the

plane monochromatic wave of energy W , momentum p, and moving along one

of the rectilinear rays of the wave.

However, and this is never recalled in the usual treatises on Wave Mechanics,

I also noticed that if the particle is considered as containing a rest energy M0c
2 =

hν0 it was natural to compare it to a small clock of frequency ν0 so that when

moving with velocity v = βc, its frequency different from that of the wave, is

ν = ν0
√

1− β2. I had then easily shown that while moving in the wave, the

particle had an internal vibration which was constantly in phase with that of

the wave.

The presentation given in my thesis had the drawback of only applying to

the particular case of a plane monochromatic wave, which is never strictly the

case in nature, due to the inevitable existence of some spectral width. I knew

Annales de la Fondation Louis de Broglie, Volume 12, no.4, 1987



Interpretation of quantum mechanics by the double solution theory 401

that if the complex wave is represented by a Fourier integral, i.e. by a super-

position of components, these latter only exist in the theoretician’s mind, and

that as long as they are not separated by a physical process which destroys the

initial superposition, the superposition is the physical reality. Just after submit-

ting my thesis, I therefore had to generalize the guiding ideas by considering, on

one hand, a wave which would not be plane monochromatic, and on the other

hand, by making a distinction between the real physical wave of my theory and

the fictitious ψ wave of statistical significance, which was arbitrarily normed,

and which following Schrödinger and Bohr’s works was starting to be systemat-

ically introduced in the presentation of Wave Mechanics. My arguments were

presented in Journ. de Phys. May 1927 [2], and titled : ”The double solution

theory, a new interpretation of Wave Mechanics”. It contained a generalization

of a particle’s motion law for the case of any wave ; this generalization was not

considered at the start in the particular case of a plane monochromatic wave.

Contemplating the success of Quantum Mechanics as it was developped

with the Copenhagen School’s concepts, I did for some time abandon my 1927

conceptions. During the last twenty years however, I have resumed and greatly

developed the theory.

II. The double solution theory and the guidance rule

I cannot review here in detail the present state of the double solution theory.

A complete presentation may be found in the referenced publications. However

I would like to insist on the two main and basic ideas of this interpretation of

Wave Mechanics. A/- In my view, the wave is a physical one having a very small

amplitude which cannot be arbitrarily normed, and which is distinct from the ψ

wave. The latter is normed and has a statistical significance in the usual quantum

mechanical formalism. Let v denote this physical wave, which will be connected

with the statistical ψ wave by the relation ψ = Cv, where C is a normalizing

factor. The ψ wave has the nature of a subjective probability representation

formulated by means of the objective v wave. This distinction, essential in my

opinion, was the reason for my naming the theory ”Double solution theory”, for

v and ψ are thus the two solutions of the same wave equation. B/- For me,

the particle, precisely located in space at every instant, forms on the v wave

a small region of high energy concentration, which may be likened in a first

approximation, to a moving singularity. Considerations which will be developed

further on, lead to assume the following definition for the particle’s motion : if

the complete solution of the equation representing the v wave (or if prefered,
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the ψ wave, since both waves are equivalent according to the ψ = Cv relation)

is written as :

v = a(x, y, z, t).exp

(
i

h̄
φ(x, y, z, t)

)
h̄ = h/2π (2)

where a and φ are real functions, energy W and momentum p of the particle,

localized at point x, y, z, at time t, are given by :

W =
∂φ

∂t
~p = −−−→gradφ (3)

which in the case of a plane monochromatic wave, where one has

φ = h

(
νt− αx+ βy + γz

λ

)
yields eq. (1) for W and p.

If in eq. (3) W and p are given as

W =
M0c

2√
1− β2

~p =
M0~v√
1− β2

one gets :

~v =
c2~p

W
= −c2

−−→
gradφ

∂φ/∂t
(4)

I called this relation, which determines the particle’s motion in the wave, ”the

guidance formula”. It may easily be generalized to the case of an external field

acting on the particle.

Now, going back to the origin of Wave Mechanics, will be introduced the

idea according to which the particle can be likened to a small clock of frequency

ν0 = M0c
2/h, and to which is given the velocity of eq. (4). For an observer

seeing the particle move on its wave with velocity βc, the internal frequency of

the clock is ν = ν0
√

1− β2 according to the relativistic slowing down of moving

clocks. As will be shown further on, it is easily demonstrated that in the general

case of a wave which is not plane monochromatic, the particle’s internal vibration

is constantly in phase with the wave on which it is carried. This result, including

as a particular case that of the plane monochromatic wave first obtained, can

be considered the main point of the guidance law.
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As will be seen further on, it can easily be shown that the proper mass M0

which enters the relation giving M and p is generally not equal to the proper

mass m0 usually given to the particle. One has :

M0 = m0 +Q0/c
2 (5)

where, in the particle’s rest frame, Q0 is a positive or negative variation of the

rest mass. The quantity Q0 is the ”quantum potential” of the double solution

theory. Its dependence on the variation of the wave function’s amplitude will be

seen.

III. Further study of the double solution theory

Following the sketch of the double solution theory considered above, its

fundamental equations will be hereafter developped starting with Schrödinger

and Klein-Gordon’s wave equations, i.e. without introducing spin. The extension

of what follows to spin 1/2 particles as the electron, and to spin 1 particles as

the photon, may be found in books (3a) and (3b). The study will be limited

to the case of the v wave following the non-relativistic Schrödinger equation, or

the relativistic Klein-Gordon equation, which for the Newtonian approximation

(c→∞) degenerates to the Schrödinger equation.

It is well known that an approximate representation of the wave properties of

the electron is obtained in this way.

First taking Schrödinger’s equation for the v wave, U being the external

potential, one gets :
∂v

∂t
=

h̄

2im
∆v +

i

h̄
U.v (6)

This complex equation implies that the v wave is represented by two real func-

tions linked by the two real equations, which leads to :

v = a. exp(iφ/h̄) (7)

where a the wave’s amplitude, and φ its phase, are real. Taking this value into

eq. (6), readily gives :

∂φ

∂t
− U − 1

2m
(
−−→
gradφ)

2
= − h̄2

2m
.
∆a

a
(J)

∂(a2)

∂t
− 1

m
.div(a2

−−→
gradφ) = 0 (C)
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For reasons which will further on become clear, equation (J) will be called ”Ja-

cobi’s generalized equation”, and equation (C) the ”continuity equation”.

In order to get a relativistic form of the theory, Klein-Gordon’s equation is

used for the v wave, which instead of eq. (6) gives :

t̄v − 2i

h̄
.
eV

c2
.
∂v

∂t
+

2i

h̄

e

c

∑
xyz

Ax
∂v

∂x
+

1

h̄2

(
m2

0c
2 − e2

c2
(V 2 −A2)

)
v = 0 (8)

where it is assumed that the particle has electric charge e and is acted upon

by an external electromagnetic field with scalar potential V (x, y, z, t) and vector

potential ~A(x, y, z, t).

Insertion of eq. (7) into eq. (8) gives a generalized Jacobi equation (J ′) and

a continuity equation (C ′) as follows :

1

c2

(
∂φ

∂t
− eV

)2

−
∑
xyz

(
∂φ

∂x
+
e

c
Ax

)2

= m2
0c

2 + h̄2
t̄a
a

= M2
0 c

2 (J’)

1

c2

(
∂φ

∂t
− eV

)
∂a

∂t
−
∑
xyz

(
∂φ

∂x
+
e

c
Ax

)
∂a

∂x
+
a

2
t̄φ = 0 (C’)

where on the right hand side of (J ′) was introduced a variable proper mass M0

which is defined by :

M0 =

(
m2

0 + (h̄2/c2)
t̄a
a

)1/2

(9)

this quantity, as will be seen further, is of great importance.

IV. The guidance formula and the quantum potential

Let us now consider equations (J) and (J ′) corresponding to the non-

relativistic Schrödinger, and relativistic Klein-Gordon equations.

First taking Schrödinger’s equation and eq. (J), if terms involving Planck’s

constant h are neglected on the right hand side, which amounts to disregard

quanta, and if φ is set as φ = S, then eq. (J) becomes :

∂S

∂t
− U =

1

2m
(
−−→
gradS)

2
(10)

As S is the Jacobi function, eq. (10) is the Jacobi equation of classical

mechanics. This means that only the term with h̄2 is responsible for the particle’s
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motion being different from the classical motion. What is the significance of this

term ? It may be interpreted as another potential Q, distinct from the classical

U potential, Q being given as :

Q = − h̄2

2m
.
∆a

a
(11)

By analogy with the classical formulae ∂S/∂t = E, and ~p = −−−→gradS, E and

p being the classical energy and momentum, one may write :

∂φ

∂t
= E −−−→gradφ = ~p (12)

As in non-relativistic mechanics, where p is expressed as a function of ve-

locity by the relation ~p = m.~v, the following is obtained :

~v = ~p/m = − 1

m

−−→
gradφ (13)

This equation is called the ”guidance formula” ; it gives the particle’s ve-

locity, at position x, y, z, and time t, as a function of the local phase variation

at this point.

It should be stressed that a and φ, the amplitude and phase of the v wave,

would exist if a minute region of very high amplitude, which is the particle,

did not itself exist. At one’s preference, it may be said that a and φ are the

amplitude and phase of the v wave, in direct proximity of the pointlike region

u0, of a wave defined by u = u0+v. I gave justifications of the guidance formula,

based on this idea. This problem will be reconsidered further on.

The quantum force ~F = −−−→gradQ acting on the particle, bends its trajectory.

However, in the important albeit schematic case of a plane monochromatic wave,

Q is constantly zero, and there is no quantum force ; the particle moves with

constant velocity along a rectilinear trajectory. This latter is one of the plane

monochromatic wave’s rays ; the image I had in mind while writing my thesis is

thus found again.

However, when the wave’s propagation is subject to boundary conditions,

interference or diffraction phenomena do appear ; owing to the quantum force,

the motion defined by the guidance formula is not rectilinear any more. It

then happens that the obstacles hindering the propagation of the wave act on

the particle through the quantum potential, in this way producing a deflection.
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Supporters of the ancient ”emission theory” thought that light was exclusively

formed of particles, and as they already knew that light may skirt around the

edge of a screen, they considered this edge as exerting a force on the light

particles which happened to pass in its neighbourhood. Under a more elaborate

form, here again we find a similar idea.

Let us now consider Klein-Gordon’s equation and eq. (J ′).

It may first be noticed, that neglecting terms in h̄2 in eq. (J ′) gives :

1

c2

(
∂S

∂t
− eV

)2

−
∑
xyz

(
∂S

∂x
+ eAx

)2

= m2
0c

2 (14)

As should be expected in relativistic mechanics without quanta, this equa-

tion is Jacobi’s equation for a particle of proper mass m0 and electric charge e,

moving in an electromagnetic field with scalar and vector potentials respectively

V and ~A. Keeping the terms in h̄2 and considering the proper mass M0 as

defined in eq. (9) naturally leads to :

M0c
2√

1− β2
=
∂φ

∂t
− eV M0~v√

1− β2
= −(

−−→
gradφ+ e ~A) (15)

with β = v/c, which in turn leads to the relativistic guidance formula :

~v = −c2
−−→
gradφ+ e ~A

∂φ/∂t− eV
(16)

For the Newtonian approximation, with A = 0 and ∂φ
∂t − eV ∼= m0c

2, eq.

(13) is obtained as it should.

Here, the quantum force results from the variation of the M0c
2 quantity, as

the particle moves in its wave. In the case of a plane monochromatic wave, for

the quantum potential to be constantly zero, one writes :

Q = M0c
2 −m0c

2 (17)

For the non-relativistic approximation, with c → ∞ and t̄a ∼= −∆a, the

following value is reached :

Q =

√
m2

0c
4 + c2h̄2 t̄a

a
−m0c

2 ∼= −
h̄2

2m0
.
∆a

a
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The above relativistic relations are most important for what follows, be-

cause Wave Mechanics is an essentially relativistic theory, as I perceived at its

beginning ; Schrödinger’s equation, being non-relativistic, is improper to reveal

its true nature.

V. Interpretation of the motion guidance

Two important characteristics of the motion guidance will now be stressed.

The first one is that the particle moving on its wave, is essentially in phase with

it. To prove this, suppose first that no other than the quantum force acts on

the particle, which is equivalent to making V = A = 0 in the Klein-Gordon

equation. If one moves along the guiding trajectory by a distance dl in time dt,

the corresponding phase variation of the wave is :

dφ =
∂φ

∂t
dt+

∂φ

∂l
dl =

(
∂φ

∂t
+ ~v.
−−→
gradφ

)
dt

dφ =

(
M0c

2√
1− β2

− M0v
2√

1− β2

)
dt = (M0c

2
√

1− β2)dt (18)

When the particle of internal frequency ν0 = M0c
2/h, has moved a distance

dl during dt, its internal phase φi has changed by :

dφi = M0c
2
√

1− β2.dt = dφ (19)

The particle when in motion on its wave, thus has its vibration 2 constantly

in phase with that of the wave.

This result may be interpreted by noticing that, in the present theory, the

particle is defined as a very small region of the wave where the amplitude is very

large, and it therefore seems quite natural that the internal motion rythm of the

particle should always be the same as that of the wave at the point where the

particle is located.

A very important point must be underlined here. For this interpretation

of the guidance to be acceptable, the dimensions of the minute singular region

constituting the particle ought to be very small compared to the wavelength

of the v wave. It might be considered that the whole theory has its validity

2defined by ai exp(i.φi/h̄) with ai and φi real.
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limited to very short wavelengths, i.e. very high energies. This remark has little

importance for usually considered cases, but may become of primary importance

for very high energies.

The foregoing demonstration may be extended to the case in which V and

A are not zero in Klein-Gordon’s equation. The phase concordance of wave and

particle is still expressed by :(
∂φ

∂t
+ ~v.
−−→
gradφ

)
dt =

dφi
dt
.dt (20)

Let hν0 = ∂φ/∂t0 = M0c
2 + eV0 = M ′0c

2, and thus, M ′0c
2 = M0c

2 + eV0 in

the particle’s proper frame, where it is momentarily at rest. On the other hand

:
dφ

dt
= hν =

hν0√
1− β2

=
M ′0c

2√
1− β2

∂φ

∂t
= hνi = hν0

√
1− β2 = M ′0c

2
√

1− β2 (21)

eq. (20) is therefore obtained.

There is another characteristic of the guided motion. The motion is per-

formed according to relativistic dynamics of a variable proper mass. To prove

this, in absence of classical fields, the following Lagrange function is considered

L = −M0c
2
√

1− β2 (22)

The least action principle δ
∫
L dt = 0 yields the Lagrange equations :

d

dt

(
∂L
∂q̇i

)
=
∂L
∂qi

(23)

which in the present case is :

d~p

dt
= −c2

√
1− β2−−→gradM0 (24)

This shows that the particle obeys relativistic dynamics of a variable proper

mass. With the relativistic symmetry between space and time, eq. (24) may be

complemented by :
dW

dt
= c2

√
1− β2.

∂M0

∂t
(25)
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and as dM0/dt = ∂M0/∂t+ ~v.
−−→
gradM0, the preceding equations give :

dW

dt
− ~v.∂~p

dt
= c2

√
1− β2.

dM0

dt
(26)

Keeping in mind that :

~v.
d~p

dt
=
d(~v.~p

dt
− ~p.d~v

dt
=

d

dt
(~v.~p)− M0~v√

1− β2
.
d~v

dt

c2
√

1− β2
dM0

dt
=

d

dt
(M0c

2
√

1− β2) +
M0~v√
1− β2

.
d~v

dt
(27)

one obtains :
d

dt
(W − ~v.~p−M0c

2
√

1− β2) = 0 (28)

and as it was assumed that when the particle is at rest, β = 0, and W = M0c
2,

there comes :

W = M0c
2
√

1− β2 + ~v.~p = M0c
2
√

1− β2 +
M0v

2√
1− β2

(29)

This relation, obtained from the guidance dynamics of variable proper mass,

is verified since W = M0c
2/
√

1− β2, and as will be seen, has a remarkable

thermodynamical significance.

The preceding argument may be generalized for the case where there is an

external electromagnetic field, by using the following Lagrange function :

L = −M0c
2
√

1− β2 + e(V − ~A.~v/c) = M ′0c
2
√

1− β2 (30)

where the relativistic transformation V0 = V−~v. ~A/c√
1−β2

was used.

VI. Interpretation of the continuity equations (C) and (C ′)

Let us consider the significance of equations (C) and (C ′), formely derived

in §III, and respectively corresponding to the non-relativistic Schrödinger, and

relativistic Klein-Gordon equations.

First considering eq. (C)

∂a2

∂t
− 1

m
.div(a2

−−→
gradφ) = 0 (C)
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using the guidance formula (4), and setting ρ = Ka2, where K is a constant, eq.

(C) becomes :

∂ρ

∂t
+ div(ρ~v) = 0 (31)

In hydrodynamics, this equation is called the continuity equation. ρdτ is the

number of the fluid’s molecules in the volume element dτ , and ~v is the velocity.

This equation may be written as D(ρdτ)/Dt = 0, where the D/Dt derivative is

taken along the motion of the molecules ; it expresses the conservation of the

fluid. In the present case however, there is a single particule, and it seems quite

natural to consider the quantity ρdτ as proportional to the probability of finding

the particle in the elementary volume dτ . As will be shown further on, this

interpretation raises a problem if one assumes that the particle regularly follows

its guided trajectory, and this difficulty leads to complementing the guidance

theory, as it was developed above, by introducing a random element, which will

open up new vistas.

Without further insisting on this point, it is assumed that ρ = a2(x, y, z, t)

multiplied by dτ gives, with a normalizing factor, the probability of finding the

particle at time t, in the volume element dτ , located at x, y, z. We will have to

define the statistical function ψ as a function of the real v wave by the relation

ψ = Cv, with C a normalizing factor, and such that
∫
| ψ |2dτ = 1, so we are

led to saying that | ψ |2dτ represents the considered probability’s absolute value

of finding the particle in dτ .

Let us now examine eq. (C ′) which corresponds to the relativistic Klein-

Gordon equation. Multiplication by 2a yields :

1

c2

(
∂φ

∂t
− eV

)
∂a2

∂t
− (
−−→
gradφ+ e.A/c)

−−→
grada2 + a2 + a2t̄φ = 0 (C’)

ρ will here be defined by :

ρ = Ka2
(
∂φ

∂t
− eV

)
(32)

With this definition, and by use of eq. (16), which gives the guiding ve-

locity, and of the Lorentzian relation between potentials 1
c
∂V
∂t + div ~A = 0, the

continuity relation (31) is found again.
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It may be assumed, with the same meaning as before, that whenever the

relativistic Klein-Gordon wave equation is used, the quantity

ρdτ = Ka2
(
∂φ

∂t
− eV

)
dτ

gives the probability of finding the particle in the volume element dτ at time t.

VII. Introduction of the statistical ψ wave

Above, was only introduced the v wave, containing a very small singular

region, generally in motion, which constitutes the particle. This very small

amplitude v wave, which is spread out over almost all the domain occupied by

the u wave, u = u0 + v, u0 here representing the high amplitude wave in this

minute region, may be quite complex.

It defines the particle’s internal structure. We will not insist on this point

the study of which at the time being seems premature. It looks quite natural that

the propagation in space and time of the truly physical v wave should determine,

as was assumed in the guidance theory, the particle’s motion, as it is integrated

into the wave. Just as well, the stationary states of the v wave, in systems such

as the Hydrogen atom, could determine the quantum states of that system.

However, since the publication of Schrödinger’s works in 1926, it became

customary to only consider the ψ wave, of arbitrarily normed amplitude. But this

wave cannot be considered as a physical wave, first because the amplitude of a

physical wave has a well determined value, and cannot be arbitrarily normed, and

because if ψ1 and ψ2 are two particular normed solutions of the linear ψ wave,

the ψ1 +ψ2 sum of these two solutions is not a normed solution. In other words,

the normed ψ wave is not endowed with the superposition property characteristic

of the physical wave solutions of a linear propagation equation. One is therefore

led to consider the ψ wave as a probability representation, a simple prediction

instrument, permitting a forecast of the possible measurement results of physical

quantities belonging to a particle or to an ensemble of particles. It is however

impossible for a simple probability representation to create physical phenomena

such as the local observation of a particle, or to impose definite values to energies

of atomic stationary states. Objective reality only, may give such effects, and a

probability representation has no such character.

It is nevertheless unquestionable that use of the ψ wave and its generaliza-

tion did lead to accurate prediction and fruitful theories. This is an indisputable
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fact. The situation is clarified by introducing together with the statistical ψ

wave, the v wave, which being an objective physical reality, may give rise to

phenomena the statistical aspect of which is given by the ψ wave. It becomes

important to establish the relationship between the ψ and v waves.

By means of a constant C, which may be complex, the required relation is

introduced as :

ψ = C.v = C.a. exp(iφ/h̄) (33)

C is a normalizing factor such that
∫
V
| ψ |2 dτ = 1, V denoting the volume

occupied by the v wave. As seen in the preceding section, where in Schrödinger’s

theory, | ψ |2 dτ gave the probability of finding the particle in the volume element

dτ , the quantity | ψ |2 dτ gives the absolute value of the probability, and this is

the reason for introducing the normed statistical ψ function in relation with the

real v wave of eq. (33).

One first remark about eq. (33) is the following : as | ψ |=| C | a, and as the

phase of ψ cannot be different from that of v but for an additive constant, the

guidance formulae and the expression giving the quantum potential previously

considered are indifferent to the substitution of v by ψ.

Another remark is that | C | ought to be much larger than 1. Consider

a quantity related to the particle whose value g is known. The current theory

which only uses the ψ function, assumes this quantity to be spread out over the

whole wave with density | ψ |2 dτ so that
∫
| ψ |2 dτ = g. In the double solution

theory however, the quantity g is certainly concentrated in a very small region

occupied by the particle, and the integral of a2g dτ taken over the v wave in the

volume V is much smaller than g, so that :∫
V

a2gdτ �
∫
V

| ψ |2 gdτ (34)

which by use of eq. (33) gives :

| C |� 1 (35)

This result may be interpretated by stating that the current statistical the-

ory considers as spread out in the entire wave, devoid of singularity, that which

in reality is totally concentrated in the singularity. It is on account of the forego-

ing interpretation that I simultaneously considered two distinct solutions of the

wave propagation equation connected by eq. (33), one, v, having physical reality,
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and the other, ψ, normed, and of statistical character. I therefore named this

reinterpretation of wave mechanics the double solution theory. By distinction

of the two waves v and ψ, the mystery of the double character, subjective and

objective, of the wave in the usual theory, vanishes, and one no longer has to give

a simple probability representation the strange property of creating observable

phenomena.

Moreover, the distinction between the v and ψ waves leads to a new out-

look on a large number of important problems such as the interpretation of

interference phenomena, measurement theory, distant correlations, definition of

pure and mixed states, reduction of a probability wave packet, etc. The results

obtained during the last few years by Mr. Andrade e Silva and myself, show im-

proved clarity and accuracy compared to the presently used theories. Without

further insistence, it should be noted that Mr. Andrade e Silva has recently con-

sidered pure and mixed states, so defining the corresponding statistical function

ψ = Cv, which in some cases differs from the usual ψ function.

VIII. Localization of the particle in the wave and the guidance law

Thusfar, the insertion of the particle in its wave was restrictively defined

by stating that the real physical wave must include a small region of very high

amplitude, which is the particle. Apart from this singular region, the physical

wave is the v wave, of very limited amplitude, and satisfying the usual linear

equation. As previously stated, it seems premature to try and describe the

internal structure of this singular region, i.e. the particle. This description will

probably involve complicated non-linear equations.

The problem that may be considered with some confidence, is the justifi-

cation of the guidance law, by examining how the singular region should move

in the regular wave surrounding it. Some years ago, I did present arguments

justifying the guidance law 3. These are essentially based on the way in which

quantities respectively characterizing the regular v wave and the internal u0 wave

of the particle connect with the neighbourhood of the singular region. u0 would

have to increase very sharply as one penetrates the singular region.

These arguments present great similarity with those used by Einstein and

his co-workers to justify in General Relativity the statement that a material

particle moves along a space-time geodesic. This problem, which concerned Ein-

stein, has received a thorough solution from Darmois and Lichnerowicz. Their

3See Ref. (3a) Chap. IX p. 101 and appendix p. 287.
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demonstration is based on the consideration of a slender tube of Universe which

in space-time represents the particle’s motion. They further say that there is a

continuous link at the periphery of the tube between the inside and the outside

geodesics. Transposing this method to the double solution theory, it may be said

that the particle moves in the internal space of a very slender tube, the walls

of which are made up by an ensemble of the v wave’s stream lines, so defining

a hydrodynamical flow. As these stream lines follow from the velocity v of the

guidance theory, the particle remains inside the tube during its motion, and the

guidance law of the particle by the v wave results. In spite of the fact that the

physical nature of the problems in general relativity and double solution theory

are different, the methods of demonstration are the same.

Another more schematic way of approaching the problem exists however.

The particle is represented as a mathematical singularity inside the wave, and

a solution to the wave equation, with moving singularity, is looked for. I gave

an outline of this method in my Journ. de Phys. 1927 article [2]. I then showed

that using Klein-Gordon’s equation, solutions might be found, having the phase

of a plane monochromatic wave and a mobile singularity. It was important to

generalize this result beyond the particular case I have considered. The problem

was studied by Francis Fer in his doctorate thesis, and further extended by

Thiounn in a series of articles [4]. Thiounn has shown that in the case of Klein-

Gordon’s equation applying to 0 spin particles, as well as in the case of Dirac’s

equation applying to spin h̄/2 particles (electrons in particular), and also in the

case of Maxwell’s equation with terms representing mass and applying to spin

h̄ particles (photons particularly), solutions exist having a pointlike singularity

moving according to the guidance law. Representation of a particle by a simple

singularity moving along the wave is surely not a true picture of the particle’s

structure, but only a very schematic one. However, I consider Thiounn’s work

as very important, and as a remarkable confirmation of the guidance theory.

IX. The hidden thermodynamics of particles

I will now present the main ideas of the hidden thermodynamics of particles,

which I developed since 1960 [5] as an extension of the double solution theory.

The idea of considering the particle as a small clock naturally leads to look

at the self energy M0c
2 as the hidden heat of the particle. From this point

of view, a small clock has in its proper system an internal periodic energy of

agitation which does not contribute to momentum of the whole. This energy is

similar to that of a heat-containing body in an internal state of equilibrium.
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The relativistic transformation formula for heat, known since Planck and

von Laue’s works circa 1908, will be used here. If the heat content of a body,

in internal homogeneous equilibrium, is Q0 in its rest frame, in another frame

where the body has an ensemble velocity βc, the contained heat becomes :

Q = Q0

√
1− β2 (36)

Although this formula, unquestioned for a long time, was recently chal-

lenged, I have, in recent years, become firmly convinced that it is accurate 4,

and certainly applies to the case of a small body such as a particle. Therefore, if

a particle contains in its proper frame, a quantity of heat Q0 = M0c
2, the heat

quantity it carries in a frame in which it has velocity βc will be :

Q = Q0

√
1− β2 = M0c

2
√

1− β2 = hν0
√

1− β2 (37)

The particle thus appears as being at the same time both a small clock

of frequency ν = ν0
√

1− β2 and the small reservoir of heat Q = Q0

√
1− β2,

moving with velocity βc. This identity of relativistic transformation formulae

for a clock’s frequency and for heat, does make the double aspect possible.

When the particle moves according to the guidance law, if the wave is not

plane monochromatic, the proper mass M0 varies according to eq. (9), if the

expression for the wave is known. As previously seen, the particle’s motion is

governed by relativistic dynamics of a body with variable proper mass, and this

suggests a close relation between the fundamental formula of relativistic ther-

modynamics and the guidance formula. It results from the following argument.

If φ is the wave’s phase, given by a. exp(iφ/h̄), where a and φ are real, the

guidance theory states that :
∂φ

∂t = M0c2√
1−β2

−−−→gradφ =
M0~v√
1− β2

(38)

On the other hand the Planck-Laue eq. (37) may be written :

Q = M0c
2
√

1− β2 =
M0c

2√
1− β2

− ~v.~p (39)

4See ref. (5b), (5c), and (5d).
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Combination of (38) and (39) then gives :

M0c
2
√

1− β2 =
∂φ

∂t
+ ~v.
−−→
gradφ =

dφ

dt
(40)

but since the particle is likened to a clock of proper frequency M0c
2/h, the phase

of its internal vibration, written as ai exp(i.φi/h̄), with ai and φi real, is :

φi = hν0
√

1− β2.t = M0c
2
√

1− β2.t (41)

and therefore :

d(φi − φ) = 0 (42)

This agrees with the fundamental assumption according to which the par-

ticle as it moves in its wave, remains constantly in phase with it 5. Thus, there

exists a close relation between the guidance theory and relativistic thermody-

namics. This fact is even more remarkable when one thinks that eq. (36), the

Planck and Laue result, dates back many decades before the emergence of Wave

mechanics and the double solution theory.

X. The relation between action and entropy

Following the above arguments, another one seems natural. Relativistic

dynamics states that the Lagrangian of a free particle with proper mass M0,

and velocity βc is L = −M0c
2
√

1− β2, and that :∫
Ldt = −

∫
M0c

2
√

1− β2.dt (43)

is the action integral, an invariant quantity since M0c
2
√

1− β2.dt = M0c
2.dt0,

where dt0 is the particle’s proper time element. In agreement with an idea of

Eddington’s some fifty years back, it is tempting to try and establish a relation

between the two major ”invariants” of physics, Action and Entropy. This how-

ever is only possible by giving the action integral of eq. (43) a well defined value

by a proper choice of the integration interval. Following the preceding ideas, it is

natural to choose as this integration interval the period Ti of internal vibration

5This assumption is only valid for a fairly massive particle, so that it would not undergo
a Brownian motion due to energy exchange with the sub-quantum medium. It is not

valid in the case of an electron on account of its too low mass.
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of the particle with proper mass m0, in the reference frame where its velocity

is βc. Since 1/Ti = (mOc
2/h)

√
1− β2, a ”cyclic” action integral is defined by

noticing that the Ti period is always very short, and therefore M0 and β may be

considered as practically constant during the integration interval. Then defining

action A by

A/h = −
∫ Ti

0

M0c
2
√

1− β2.dt = −M0c
2

m0c2
(44)

and denoting the hidden thermostat’s entropy by S, there comes :

S/k = A/h (45)

where k and h are respectively the Boltzmann and Planck constants. Since

δQ0 = δM0c
2, it follows that :

δS = −kδQ0/(m0c
2) (46)

An entropy has thus been given to the particle’s motion, and also a proba-

bility P which by Boltzmann formula reads P = exp(S/k). From this I was able

to derive a number a of results which may be found in reference [5].

The most important results are to me the following :

1) The Least Action Principle is only a particular case of the Second Principle

of Thermodynamics.

2) The privilege, which Schrödinger has underlined as paradoxical, that the

present Quantum mechanics grants to plane monochromatic waves and to

stationary states of quantized systems is explained by the fact that these

correspond to entropy maxima ; the other states do exist, but have much

reduced probability.

XI. On the necessary introduction of a random element in the double

solution theory. The hidden thermostat and the Brownian motion of

the particle in its wave

In the above arguments, it was assumed that the particle’s motion in its

wave was entirely determined by the guidance law. Hereafter will be shown why

this standpoint cannot be wholly conserved.

To start with, Schrödinger’s equation will be used as a good non-relativistic

approximation. In §VI it was observed as a result of the continuity equation
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(C), that the probability of finding the particle in a volume dτ is proportional

to a2dτ , a being the v wave’s amplitude. Introducing the normed statistical

wave, namely ψ = C.v, means that the considered probability’s absolute value is

| ψ |2, a well known result. Difficulties arise however, when such considerations

are made within the presently developed theory. This can be seen by examining

a hydrogen atom in one of its S type stationary states. The guidance formula

~v = −(
−−→
gradφ)/m gives v = 0. The electron is then at rest in one point of

the atom, and one fails to see how the continuity relation (C) may justify the

probability as | φ |2 dτ . This leads to complementing the relation by introduction

of a random element.

This difficulty looks the same as that encountered in classical statistical

mechanics where Liouville’s theorem, which yields a continuity formula in phase

space, is not sufficient to establish that the probability for a representative point,

a molecule in a gas, to be present in a volume element of its phase space, is pro-

portional to this volume element. To justify this statement, one has to introduce

in the molecule’s motion, a random element which constantly perturbs the mo-

tion. Considering that this random element resulted from the collisions that

each molecule undergoes with all the others in the gas, Boltzmann called it

“molecular chaos”.

By analogy, in the frame of double-solution theory, and in view of the well

known fact that the probability for a particle to be in volume dτ is | ψ |2
dτ , a random element of hidden origin has to be admitted. This implies that

the particle’s regular motion, governed by the guidance law, is continuously

submitted to random perturbations, with the result that the particle all the

time switches from one guided trajectory to another. Taking these random

perturbations into consideration, the continuity equation ∂ρ/∂t + div ρv = 0

where ρ = a2, and v is the guidance velocity, justifies the probability law | ψ |2=

a2.

Finally, the particle’s motion is the combination of a regular motion defined

by the guidance formula, with a random motion of Brownian character. A simple

comparison explains the possibility of such a superposition of motions. Consider

a fluid’s hydrodynamical flow. If placed on the surface of the fluid, a granule

will move along with it. If this granule is massive enough, so that the action of

collisions with the fluid’s individual molecules has no visible effects, it will follow

the lines of the hydrodynamical current flow, which may be compared with the

guidance trajectories. But if the granule’s mass is small enough, its motion will

constantly be perturbed by individual collisions with the fluid’s molecules. It
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will move according to both the regular motion following a current line of the

general flow, and the Brownian motion, which will force it to switch constantly

from one current line to another. An image is thus obtained of a random motion’s

superposition over the regular motion, similar to the one advanced for a particle.

In the above hydrodynamical comparison, the ensemble of all invisible

molecules does play the part of the hidden thermostat. This latter by its contin-

ued interaction with the granule gives it a Brownian motion according to a well

known concept of statistical thermodynamics. However, in the case of a par-

ticle which does not appear as subjected to perturbations, such as an electron

in a hydrogen atom, what could be the origin of these assumed perturbations ?

To answer this question, any particle, even isolated, has to be imagined as in

continuous “energetic contact” with a hidden medium, which constitutes a con-

cealed thermostat. This hypothesis was brought forward some fifteen years ago

by Bohm and Vigier [6], who named this invisible thermostat the “sub-quantum

medium”. As a further assumption, the particle is considered as continuously

exchanging energy and momentum with such a hidden thermostat. These ex-

changes would happen regularly, in a well defined manner, if the guided motion

existed alone, but a random energy exchange is superposed, which has a fluctu-

ation character of well known kind in statistical thermodynamics.

If a hidden sub-quantum medium is assumed, knowledge of its nature would

seem desirable. It certainly is of quite complex character. It could not serve as

a universal reference medium, as this would be contrary to relativity theory.

Moreover, it does not behave as a unique thermostat, but rather as an ensemble

of thermostats, the temperatures of which are related to the proper energies

M0c
2 of various kinds of molecules. Although interesting explanations have

been proposed for this sub-quantum medium’s nature, it seems premature to

discuss the problem in the present paper.

XII. Conclusion

Such is, in its main lines, the present state of the Wave mechanics inter-

pretation by the double-solution theory, and its thermodynamical extension. I

think that when this interpretation is further elaborated, extended, and eventu-

ally modified in some of its aspects, it will lead to a better understanding of the

true coexistence of waves and particles about which actual Quantum mechanics

only gives statistical information, often correct, but in my opinion incomplete.
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d) Ondes électromagnétiques et photons. Gauthier-Villars Paris (1968).

e) Journ. de Phys. 20, 963, (1959).

f) Journ. de Phys. 28, 481, (1967).

g) Certitudes et incertitudes de la science. Albin Michel Paris (1966).

[4] a) F. Fer, Doctorate Thesis, Bureau de Documentation Minière, Paris

(1957).

b) M. Thiounn, Doctorate Thesis, Cahiers de Physique, n 174, (1965). C.R.

Acad. Sciences Paris, B 262, 657, (1966). Portugaliae Phys. 4, 208, (1966).

[5] a) La thermodynamique de la particule isolée (ou la thermodynamique

cachée des particules). Gauthier-Villars Paris (1964).

b) Int. Journ. Theor. Phys. 1, 1, (1968).

c) Ann. Inst. Henri Poincaré, 1, 1, (1964).
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