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On the quantum mechanical description

of the Stern-Gerlach experiment with spin-orbit coupling

M.F. Barros and M.H. Andrade E Silva

Physics Department, Faculty of Sciences

Lisbon

ABSTRACT. In a previous paper we verified that, ignoring in the hamilto-
nian the spin-orbit interaction, the Stern-Gerlach experiment could be con-
sidered as a measuring operation of the magnetic moment component along
the field direction.

In this paper we retake the same subject but also considering now the spin-
orbit interaction. Using certain approximations, which seem justified, we
came to the conclusion that the experiment leads to the determination of the
“effective” magnetic moment along the field direction.

I - Introduction

In a recent paper 1 was presented the theoretical analysis of the interaction

of a beam of hydrogen or alkali atoms with the Stern-Gerlach device in the ap-

proximation in which are ignored in the Breit hamiltonian, either the relativistic

terms or the spin-orbit and spin-spin interactions. Then we concluded that such

experiment could be considered as a measuring operation of the component of

the atomic magnetic moment along the field direction.

In this paper we retake the theoretical analysis of that same experiment,

but now we will consider the additional difficulties which result from considering

in the hamiltonian the spin-orbit coupling term, that is the most significative

term that had been ignored in the approach considered on the previous paper.

Such as in Paper I, the space between the colimator and the detector will be

divided into three regions 2, being region II characterized by the presence of a

magnetic-field ~B, which is null in regions I and III.

1See Ref [1]. This paper will be named “Paper I“ for simplicity reasons.
2See Fig. 1, Paper I.
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2 - The state function in region I

Being formally limited to the case in which a furnace emits hydrogen atoms

and considering the spin-orbit coupling, the hamiltonian in region I, expressed

in terms of the center of mass coordinate ~R and the relative coordinate ~r, is

written

HI =
~P 2

2M
+

~p2

2m
− e2

r
+ α(r)~l · ~σ = HI

0 (~P ) +HI
1 (~r, ~p) (1)

with α(r) = (eh̄/2mc)2r−3, M = m1 + m2, m = m1m2/(m1 + m2) and where,

as usually, ~P , ~p, ~l and ~s = ~σ/2 represent respectively the linear momentum, the

orbital angular momentum and the angular spin momentum operators. As done

in Paper I the global atom movement is associated with the movement of the

“particle” of mass M and not having any reasons to admit that this “particle”

has been correlated in the beginning with the “particle” of mass m the form of

the hamiltonian HI allows to write the most general solution of the evolution

equation in region I

HIψI(~R,~r, t) = ih̄
∂

∂t
ψI(~R,~r, t) (2)

through the expression

ψI(~R,~r, t) = φI(~R, t)χI(~r, t) (3)

which implies

HI
0 (~P )φI(~R, t) = ih̄

∂

∂t
φI(~R, t) (4)

HI
1 (~r, ~p)χI(~r, t) = ih̄

∂

∂t
χI(~r, t) (5)

Just as in Paper I it is convenient to expand the spinor χI(~r, t) in a complete

set of eigenfunctions of HI
1 , and the presence in this operator of the spin-orbit

term, α(r)~l · ~σ, justifies that we here use the representation {HI
1 , l

2, s2, j2, jZ}
(where ~j = ~l + ~s is the total angular momentum operator), obtaining, in this

way, for ψI

ψI(~R,~r, t) = φI(~R, t)
∑

nljmj

θInljmj
(t)Qnljmj

(~r) (6)

We won’t express here, for the reason of so well known [2], the eigenfunctions

Qnljmj (~r) and the correspondent eigenvalues Enlj expressions ; however, it seems
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that, it is worthy to remind that mj represents the eigenvalues of the jZ operator,

in h̄ units and that, in the case here considered, j can only have the values l+1/2

or l − 1/2.

Since that the function ψI satisfies the evolution equation (2), we shall have

then

Enljθ
I
nljmj

(t) = ih̄
d

dt
θInljmj

(t) (7)

and, consequently,

θInljmj
(t) = anljmje

−iEnljt/h̄ (8)

where anljmj
are constants. The expression (6) is now written

ψI(~R,~r, t) = φI(~R, t)
∑

nll±1/2mj

anljmj
e−iEnljt/h̄Qnljmj

(~r)

3 - The eigenfunctions and eigenvalues of the hamiltonian in region II

The adduced reasons in Paper I make us now to impute to the hamiltonian

in region II the expression

HII =
~P 2

2M
+

~p2

2m
− e2

r
+ α(r)~l · ~σ + µ0B(~R)(lZ + σZ)

= HI
0 +HII

1 = HI
0 +HI

1 + µ0B(~R)(lZ + σZ)

(10)

where µ0 is the Bohr magneton, B(~R) the intensity of the magnetic field and lZ
and sZ = 2σZ , respectively, the operators corresponding to the orbital angular

momentum and to the spin angular momentum components in the OZ direction

imputed to the field.

As the operators HI
1 and HII

1 = HI
1 + µ0B(~R)(lZ + σZ) don’t commute,

to determine the eigenvalues and the eigenfunctions of HII
1 , it is convenient

to consider the matrix which represents this operator in the basis defined by

the eigenfunctions Qnljmj
of HI

1 . One can verify easily that the determination

of the eigenvectors and eigenvalues of this matrix, demands only the previous

computation of the following matrix elements

A1 = 〈n l l + 1/2m′j | lZ + σZ | n l l + 1/2mj〉
A2 = 〈n l l + 1/2m′j | lZ + σZ | n l l − 1/2mj〉
A3 = 〈n l l − 1/2m′j | lZ + σZ | n l l − 1/2mj〉
A4 = 〈n l l − 1/2m′j | lZ + σZ | n l l + 1/2mj〉 = A∗2

(11)
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because all the matrix elements of lZ + σZ not diagonal in n and l are zero.

The computation of the elements (11), though extensive, do not present any

difficulty and gives us

A1 = 2(2l + 1)−1(l + 1)mjδmjm′j

A2 = A4 = −(2l + 1)−1[(l + 1/2)2 −m2
j ]1/2δmjm′j

A3 = 2(2l + 1)−1lmjδmjm′j

(12)

The matrix representation of the operator HII
1 has consequently a form

schematically represented on Table I and the determination of the eigenvalues

and eigenfunctions of this matrix is reduced to the determination of the eigen-

values and eigenfunctions of a second order generic matrix[
〈n, l, l + 1/2,mj | HII

1 | n, l, l + 1/2,mj〉
〈n, l, l − 1/2,mj | HII

1 | n, l, l + 1/2,mj〉
〈n, l, l + 1/2,mj | HII

1 | n, l, l − 1/2,mj〉
〈n, l, l − 1/2,mj | HII

1 | n, l, l − 1/2,mj〉

] (13)

So, owing to (12) and since the eigenvalues of HI
1 are Enlj , it is[

Enll+1/2 + µ0B(~R)A1 µ0B(~R)A2

µ0B(~R)A2 Enll−1/2 + µ0B(~R)A3

]
(13’)

and the usual technique of diagonalization gives us the eigenvalues,

E±nlmj
(~R) =Enll±1/2 ∓

∆Enl

2
+ ∆Enl

[
mjξnl(~R)±

± 1

2

√
1 +

4mj

2l + 1
ξnl(~R) + ξ2

nl(
~R)

] (14)

where

∆Enl = Enll+1/2 − Enll−1/2 (15)

ξnl(~R) = µ0B(~R)/∆Enl (16)

and the orthonormalized eigenfunctions

Q±nlmj
(~r, ~R) = a±nlmj

(~R)Qnll+1/2mj
(~r) + b±nlmj

(~R)Qnll−1/2mj
(~r) (17)
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with

a±nlmj
(~R) =

{
1

2
[1± γnlmj (~R)]

}1/2

(18)

b±nlmj
(~R) = ∓

{
1

2
[1∓ γnlmj

(~R)]

}1/2

(19)

with the definition

γnlmj (~R) =
1 + 2mj(2l + 1)−1ξnl(~R)

[1 + 4mj(2l + 1)−1ξnl(~R) + ξ2
nl(

~R)]1/2
(20)

Table 1

(In this table were only mentioned the matrix elements different from zero)
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4 - The state function in region II

The presence of the additional term µ0B(~R)(lZ + σZ) in the expression of

the hamiltonian HII prevents the state function ψII from being written (such as

it had already appeared on Paper I) in a similar form as (3). But this function

can be expanded in the basis defined by the functions Q±nlmj
(~r, ~R) taking then

the form

ψII(~R,~r, t) =
∑
nlmj

[θII+
nlmj

(~R, t)Q+
nlmj

(~r, ~R) + θII−nlmj
(~R, t)Q−nlmj

(~r, ~R)] (21)

As ψII has to satisfy the evolution equation

HIIψII(~R,~r, t) = ih̄
∂

∂t
ψII(~R,~r, t) (22)

we have

− h̄2

2M

∑
nlmj

[
θII+
nlmj
∇2

~R
Q+

nlmj
+ 2~∇~Rθ

II+
nlmj

· ~∇~RQ
+
nlmj

(23)

+Q+
nlmj
∇2

~R
θII+
nlmj

+ θII−nlmj
∇2

~R
Q−nlmj

+ 2~∇~Rθ
II−
nlmj

· ~∇~RQ
−
nlmj

+Q−nlmj
∇2

~R
θII−nlmj

]
+
∑
nlmj

[
θII+
nlmj

E+
nlmj

Q+
nlmj

+ θII−nlmj
E−nlmj

Q−nlmj

]

= ih̄
∑
nlmj

[
Q+

nlmj

∂

∂t
θII+
nlmj

+Q−nlmj

∂

∂t
θII−nlmj

]
but as a dependency in ~R of the functions Q± results from the inhomogeneity of

the magnetic field, which varies negligibly over distances of order the atom’s di-

mension, this situation must be very similar to that in which the field is constant ;

therefore, we shall pratically have ~∇~RQ
±
nlmj

(~r, ~R) = 0. In these conditions and

since the functions Q±nlmj
are all mutually orthogonal, is deduced from (23)

[HI
0 (~P ) + E±nlmj

(~R)]θII±nlmj
(~R, t) = ih̄

∂

∂t
θII±nlmj

(~R, t) (24)

So, owing to the expression (14) of E±nlmj
and introducing the functions

φII±nlmj
(~R, t), defined by

θII±nlmj
(~R, t) = bII±nlmj

e−iEnll±1/2t/h̄φII±nlmj
(~R, t) (25)
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where the bII±nlmj
are constant, (24) will be written more explicitly{

HI
0 ∓

∆Enl

2
+ ∆Enl

[
mjξnl(~R)± 1

2

√
1 +

4mj

2l + 1
ξnl(~R) + ξ2

nl(
~R)

]}
×

× φII±nlmj
(~R, t) = ih̄

∂

∂t
φII±nlmj

(~R, t)

(26)

and due to (25), (21) will be substituted by

ψII(~R,~r, t) =
∑
nlmj

[
bII+
nlmj

e−iEnll+1/2t/h̄φII+
nlmj

(~R, t)Q+
nlmj

(~r, ~R)

+ bII−nlmj
e−iEnll−1/2t/h̄φII−nlmj

(~R, t)Q−nlmj
(~r, ~R)

] (27)

The continuity of the state function demands that the functions ψI and ψII

verify on the X = A plane (see Paper I) the equality

[ψII(~R,~r, t)]X=A = [ψI(~R,~r, t)]X=A (28)

If we attend, either to the definitions (9), (27) and (17) of ψI , ψII and Q±,

or to the values assumed by (18), (19) and (20) on the X = A plane[
a+
nlmj

(~R)
]
X=A

=
[
b−nlmj

(~R)
]
X=A

= 1

[
a−nlmj

(~R)
]
X=A

=
[
b+nlmj

(~R)
]
X=A

= 0 (29)

the condition (28) implies{∑
nlmj

[
bII+
nlmj

e−iEnll+1/2t/h̄φII+
nlmj

(~R, t)Qnll+1/2mj
(~r)

+ bII−nlmj
e−iEnll−1/2t/h̄φII−nlmj

(~R, t)Qnll−1/2mj
(~r)

]}
X=A

=

{
φI(~R, t)

∑
nlmj

[
anll+1/2mj

e−iEnll+1/2t/h̄Qnll+1/2mj
(~r)

+ anll−1/2mj
e−iEnll−1/2t/h̄Qnll−1/2mj

(~r)

]}
X=A

(30)

Annales de la Fondation Louis de Broglie, Volume 13, no.1, 1988



76 M.F. Barros and M.H. Andrade e Silva

and considering the orthogonality of the functions Qnljmj
, the expression (30)

is simplified and is written

bII±nlmj

[
φII±nlmj

(~R, t)
]
X=A

= anll±1/2mj

[
φI(~R, t)

]
X=A

(30’)

Furthermore, the requirement of assuring the uniqueness of the function

φ(~R, t) on the X = A plane demands that the following condition must be

imposed [
φII±nlmj

(~R, t)
]
X=A

=
[
φI(~R, t)

]
X=A

(31)

and introducing (31) in (30’) we obtain

bII±nlmj
= anll±1/2mj

(32)

So the state function in region II must finally be written

ψII(~R,~r, t) =
∑
nlmj

[
anll+1/2mj

e−iEnll+1/2t/h̄φII+
nlmj

(~R, t)Q+
nlmj

(~r, ~R)

+anll−1/2mj
e−iEnll−1/2t/h̄φII−nlmj

(~R, t)Q−nlmj
(~r, ~R)

] (33)

5 - The state function in region III

In region III the hamiltonian operator regains the form (1) that it had in

region I, although the correlation between the functions φ and χ roused by the

crossing of region II demands that ψIII will be written under a more general

form

ψIII(~R,~r, t) =
∑

nljmj

θIIInljmj
(~R, t)Qnljmj

(~r) (34)

and since ψIII is defined as the solution of an equation identical to (2), we have

(HI
0 + Enlj)θ

III
nljmj

(~R, t) = ih̄
∂

∂t
θIIInljmj

(~R, t) (35)

Defining the functions φIIInljmj
(~R, t) through the expression

θIIInljmj
(~R, t) = bIIInljmj

e−iEnljt/h̄φIIInljmj
(~R, t) (36)
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where the bIIInljmj
are constant, φIIInljmj

(~R, t) must satisfy the equation

HI
0φ

III
nljmj

(~R, t) = ih̄
∂

∂t
φIIInljmj

(~R, t) (37)

and due to the expression of HI
0 we can verify that φIIInljmj

(~R, t) = φIII(~R, t). So

the expression (34) will be written

ψIII(~R,~r, t) =
∑

nljmj

bIIInljmj
e−iEnljt/h̄φIII(~R, t)Qnljmj

(~r) (38)

However, it is necessary to assure the continuity of the functions ψ(~R,~r, t) and

φ(~R, t) on the X = B plane (see Paper I). For reasons similar to those mentioned

on the previous paragraph we will have here

bIIInll±1/2mj

[
φIII(~R, t)

]
X=B

= anll±1/2mj

[
φII±nlmj

(~R, t)
]
X=B

(39)

the continuity of φ(~R, t) demanding that it will satisfy the directional equality[
φIII(~R, t)

]
X=B

=
[
φII±nlmj

(~R, t)
]
X=B

(40)

which leads us to introduce the two sets of functions φIII+
nlmj

and φIII−nlmj
. Conse-

quently, from (39) and (40) results

bIIInll±1/2mj
= anll±1/2mj

(41)

and the state function in region III will assume finally the form

ψIII(~R,~r, t) =
∑
nlmj

[
anll+1/2mj

e−iEnll+1/2t/h̄φIII+
nlmj

(~R, t)Qnll+1/2mj
(~r)

+ anll−1/2mj
e−iEnll−1/2t/h̄φIII−nlmj

(~R, t)Qnll−1/2mj
(~r)
] (42)

6 - Reformulation of the state function expressions

The expression (42) of ψIII is too much complicated so that we might

draw physically usable conclusions. We must however take in consideration

that the quantity ξnl defined by (16) remains much smaller that the unit, even

when extremely high values are imputed to the quantum number n. So, it is

Annales de la Fondation Louis de Broglie, Volume 13, no.1, 1988



78 M.F. Barros and M.H. Andrade e Silva

permissible to hold back the two first terms of the expansion in power series of

ξnl of the expression
√

1 + 4mj/2l + 1ξnl + ξ2
nl which figures in (26). Then the

equation (26), is written in a much more simple form[
HI

0 + µ0B(~R)mj

(
1± 1

2l + 1

)]
φII±lmj

(~R, t) = ih̄
∂

∂t
φII±lmj

(~R, t) (43)

Let us consider now the definition of Landé-g factor

g = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(44)

that in the case of the hydrogen atom is simply written

g =
2j + 1

2l + 1
(45)

Since we can only have here g = 2l+2/2l+1, when j = l+1/2 or g = 2l/2l+1

when j = l − 1/2, we verify that (43) can also be written in an equivalent form[
HI

0 + µ0B(~R)gmj

]
φIIljmj

(~R, t) = ih̄
∂

∂t
φIIljmj

(~R, t) (46)

which puts in evidence the importance of introducing the quantity 3 µ0gmj in

order to describe the wave packets evolution.

Equally, considering again the approach that the small value of ξnl has

allowed to introduce above, functions Q±nljmj
defined by (17) are reduced to 4

Q±nlmj
(~r, ~R) = Qnll±1/2mj

(~r) (47)

and consequently, instead of (33) comes finally

ψII(~R,~r, t) =
∑

nljmj

anljmj
e−iEnljt/h̄φIIljmj

(~R, t)Qnljmj
(~r) (48)

3One must remind that in the interpretation of the Zeeman effect by the atomic vecto-
rial model, several authors (see, for instance, Ref [3] and [4]) had already introduced the

quantity “effective” magnetic moment −µ0(1 +~s ·~j/j2)~j = −µ0g~j whose component

along the field direction is −µ0gmj .
4In this approach (19), (20) and (21) impute the equalities a+

nlmj
(~R) = b−nlmj

(~R) = 1,

a−nlmj
(~R) = b+nlmj

(~R) = 0 and γnlmj = 1.
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Using this new form of the state function in region II, it is enough to turn

again to expression (38) and continue demanding the continuity of the functions

ψ(~R,~r, t) and φ(~R, t) in order to write instead of (42),

ψIII(~R,~r, t) =
∑

nljmj

anljmje
−iEnljt/h̄φIIIljmj

(~R, t)Qnljmj (~r) (49)

or, defining

Sljmj
=
∑
n

anljmj
e−iEnljt/h̄Qnljmj

(~r), (50)

we shall still have

ψIII(~R,~r, t) =
∑
ljmj

Sljmj
(~r, t)φIIIljmj

(~R, t) (51)

If we define the operator corresponding to the component of the “effective”

magnetic moment along the field direction by the expression 5

µjZ = −µ0

(
1 +

~s ·~j
j2

)
jZ

it is easy to verify that the Sljmj
are eigenfunctions of this operator to which

correspond the eigenvalues −µ0gmj .

So the expression (51) shows that ψIII can be expressed as an addition of

products of two different nature functions. In more explicit terms each wave

packet φIIIljmj
(~R, t) finds itself correlated with a certain eigenfunction Sljmj

(~r, t)

of operator (52) to which must be associated the quantity component of the

“effective” magnetic moment along the field direction.

7 - Conclusions

Such as in Paper I we shall also admit here that the wave packets φIIIljmj

will give rise to the appearing of spots spatially separated in the detector. So,

we conclude from the previous analysis that the detection of an atom in one of

5The operator (52) was imputed in Ref. [5] to the component of the magnetic moment
along the field direction but such a definition would only be permissible if (52) had the
same eigenvalues and eigenfunctions as the operator −µ0(jZ + sZ) which isn’t surely

the case.
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those spots allows to confer it a certain function Sljmj
(~r, t), that is, a certain

value −µ0gmj of the component of the “effective” magnetic moment along the

field direction.

In these conditions, when we do not ignore in the hamiltonian the spin-orbit

interaction term, the Stern-Gerlach device goes on deserving to be considered

a measuring apparatus ; but now it measures the component of the effective

magnetic moment and not the component of the magnetic moment.

It is true that the Stern-Gerlach experiments accomplished till to-day with

beams of hydrogen or alkali atoms only concern states in which l = 0 and,

in these conditions, the values of those two quantities coincide. However it

could be rather disturbing that, generally, the quantity that the Stern-Gerlach

apparatus measures is, after all, determined by the approximations introduced

in the theoretical analysis.

Although with obvious differences, this situation has some analogies with

the well known phenomenon that an atom in a constant magnetic field gives rise

either to Zeeman effect or to Paschen-Back effect, depending on the intensity of

the field.

In the description of the Stern-Gerlach experiment when the spin-orbit in-

teraction is taken into account, one is led to introduce the quantity ξnl defined

by (16). But it was the numerical estimation of ξnl, based on the intensity of

the magnetic fields used in the Stern-Gerlach devices, that induced us to con-

clude that ξnl � 1 and consequently that the Stern-Gerlach apparatus has to

be considered as a measuring device of the “effective” magnetic moment.

So the conclusion reached in our previous paper, where the spin-orbit inter-

action has not been taken into account, should only be valid for intensity values

of the magnetic field far higher than those used in the experiments that have

been carried out up to the present day.
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RÉSUMÉ. Dans un article précédent on a vérifié que, en négligeant dans
l’hamiltonien l’interaction spin-orbite, l’expérience de Stern-Gerlach peut
être considérée comme une opération de mesure de la composante du mo-
ment magnétique atomique dans la direction du champ.
On reprend ici ce même problème mais en considérant maintenant l’interaction
spin-orbite. En introduisant certaines approximations qui semblent justifiées
on arrive à la conclusion que l’expérience permet de mesurer le moment
magnétique “effectif” selon la direction du champ.
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