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ABSTRACT. The time-evolution of solutions to the Schrodinger equa-
tion in the presence of potentials U(x) = —Fz, F = const (a constant
force field that may be equal to zero in the specific case of free motion)
and U(z) = mw?z? /2 (the harmonic oscillator case) is considered for ar-
bitrary initial conditions in the case of normalizable states of motion and
for a class of initial conditions for nonnormalizable states. For a wide
variety of cases the behaviour of position distributions in the relevant
quantum ensembles coincides (at all times or in the limit of large t) with
that of classical ensembles with a one-to-one position-velocity correspon-
dence at any given moment ¢. This fact leads to a number of inferences
about the physical sense of the well known uncertainty relations and the
nature of measurement procedures. In particular, it follows that, gener-
ally, lawful measurement procedures are in no way (quasi)instantaneous
and that there are no grounds to interpret position-momentum uncer-
tainty relations as describing physical properties of individual members
of quantum ensembles.
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IV. Explicit position-velocity coexistence in certain normalizable
nonstationary quantum states

As the uncertainty relation (1.3) applies, by its very way of deriving
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(cf. any book on QM), to QM states that are normalizable to unity, that
is, to ¢(z,t) for which

(4.1)
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we shall demonstrate first the necessity of its ST reinterpretation by exam-
ining the time-evolution of such states. (One may find a similar example
in ref. 10, but in a stationary setting and without an explicit solution).
It will be evident from our consideration, besides, in what objective sense
the relevant velocities represent macroscopic magnitudes in the case under
consideration.

[Notational convention : From now on z and v will denote time-independent
arguments, whereas the corresponding Newtonian functions will be explic-
itly written as xz(v,t) or v(x,t). Besides, in analogy with “c-numbers” and
“g-numbers”, we shall write “c-ensembles” and “g-ensembles” for classical
and quantum ensembles, correspondingly].

Examine first the case of free motion [that is, all basic physical fields
U(z,t) = 0 at t > 0 plus the no-analyser requirement Ux(z,t) = 0, t > 0].
Let the initial wave function (at ¢ = 0) be given by

Yin = (@, 0), (4.2)

where ¢(x,0) is of an arbitrary form, the only requirement imposed on it
being given by eq. (4.1) at ¢ = 0. Will the conduct of the g-ensemble of par-
ticles (moving along the z-axis), corresponding to any such function (4.2),
approach the conduct of an appropriate c-ensemble in the limit ¢ — oo ?

The possible ways of action for finding the answer to this question
were described in Sec. IIT and we shall directly employ them from now on.
Formulae (3.10,11) give here

m 1/2 ima? +oo —imaa’ ima’2
Y(x,t) = (2m'ht> e 2ht / ezt e =i h(a,0)dr’ (4.3)

Assume now, just for the sake of convenience, that 1 (z,0) is ‘centered’
at the origin x = 0. Replace x by z(v,t) = vt (which expression will be
valid for a free classical particle with an initial position x = 0 and velocity
v) and set t — oo. Eq. (4.1) at t = 0 guarantees a spatially restricted
¥(x,0), so one may replace, in the limit ¢+ — oo, exp(ima'?/2ht) by unity
under the integral in (4.3) and arrive at

tliglo P(vt,t) = \/Z exp(imv?t/2h)a,(0) (4.4)
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where we have made use of formula (3.2) for a, at ¢t = 0. [In the case of free
motion | a,(0) *=| a,(t) ).

Taking the square of the modulus of expression (4.4) and multiplying
it by | 0x(v,t)/0v |=t, we obtain

(4.5) tli)rglc | ¥(vt,t) \2 t=m|ay(0) |2: m | ap(t) |2
= RQM(U,t) = RQM(’U,O)

[cf. eq. (3.1)]. In such a way, in the case of free motion, the time-evolution
of the g-ensemble of particles tends in the limit ¢ — oo to that of a c-
ensemble of particles, all of which are located initially at point z = 0 and
whose R(v,0) [ = R(v,t)] coincides with Rgas(v,0).

This result, obtained in our ensemble approach, is an expression of the
fact that one may employ the essentially macroscopic and classical time-of-
flight technique for measuring the velocity of microparticles [11] (cf. also
the somewhat more detailed discussion below). We have obviously, besides,
a corroboration for the case just examined of the QM postulate (3.1,2).

It is worth pointing out that the inverse proportionality of | [z (v,t),] |2
to t for x(v,t) = vt, obtainable from eq. (4.4) in the limit ¢ — oo, may be
regarded as a consequence of the fact that the dimensions of a region in z-
space containing a host of particles with velocities in the interval [v,v + A]
must increase linearly with time (at least when ¢ — c0).

The general result obtained above does not offer an immediate answer
to questions concerning the possible role of the c-ensemble idealization (all
c-particles located at © = 0 when ¢ = 0), the possibility to violate ineq.
(1.3) in (individual) measurement, etc. We may certainly elicit, in princi-
ple, the answers from the general information that we already have at our
disposal but it is probably better to obtain more vivid answers by examining
specific explicit expressions for the time-evolution of position densities in c-
and g-ensembles. So we are going to discuss now an explicit solution to the
Schrodinger equation for U(z) = 0 that is well known from a purely math-
ematical point of view but whose ensemble interpretation gives nontrivial
consequences in a number of cases (cf. also the subsequent considerations
and, in particular, Appendix A). Namely, examine an initial wave packet of
the Gaussian form

¢(33’0) =

exp[—(z — X)?/20?] exp(iPx/h) (4.6)
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where P = const is an arbitrary fixed real number and o = const > 0 char-
acterises the spread of ¢)(x,0) along x about a fixed point X, X € (—o0, ).
In our case of U(x,t) = 0 [and also in the case of U(x,t) = U(x) = —Fx,
where F represents a (t,z)-independent force field] we may put X = 0,
P = 0 without any loss of generality. (The first is obvious while the second
can always be obtained by a transition to a suitable frame of reference [20]).
We can therefore confine ourselves here to

P(x,0) = exp(—2?%/2 o?) (4.7)

QH

leq. (4.6) will be employed in Sec. V]. The expression for ¢ (z,t) will then

mo \'/? exp(ima? /2ht)
T (1 —imo?/nt)t/2"

4.8
. [ m2o2a? 1 (1 + im02>} (4.8)
X —_ .
Pl onze 1y m204 /h*t2 ht
Replacing x by x(v,t) = vt, we get
mo 1 mov\ 2 1
| l/}(vt,t) |2: mht . 1+m?204 1/2 P l (T) 1+m204‘| (49)
(™) h*2

Multiplying (4.9) by | 0x(v,t)/0v |= t and taking the limit of the expression
so obtained as ¢ — oo we obtain, in agreement with the above considera-
tions, a time-independent velocity distribution

R(v) = 2=

Jah exp[—(maov/h)?] = Rou (v) (4.10)

[As we already know, the second eq. (4.10) may be checked directly with the
aid of egs. (3.1,2) ; the integration itself is standard here]. When assigned to
a c-ensemble of particles located at the origin at ¢t = 0, this R(v) generates
an

r(vt,t) = % exp[—(mov/h)?], (4.11)

Annales de la Fondation Louis de Broglie, Volume 13, no. 3, 1988



Discussion of concrete time-dependent solutions ... 361

to which expression (4.9) tends at t — oo for an arbitrary given v. We have
thus at our disposal now an explicit complete realization for a specific case
[eq. (4.7)] of our general consideration.

Let us demonstrate now the inessential character of the d-like ideal-
ization of r(z,t) at ¢ = 0 in our specific case. (The consideration may be
extended to the general case too). Assume that, as in the g-ensemble, the
particles in the c-ensemble are smoothly distributed in a region of charac-
teristic length dy = o at t = 0, their v-distribution being given once again
by eq. (4.10), in which the characteristic v-spread is equal to d, = ii/mo.
From the viewpoint of obtaining a well defined R(v), the velocity v will be
well defined if the objective uncertainty Ay in its definition is small com-
pared to the characteristic spread d,,, that is, when Ag/d, < 1. In our case
this (classical) uncertainty will come from the fact that the initial positions
of the particles in the realistic c-ensemble are determined with a precision
~ dg = o, so the objective error in the definition of v in this ensemble will be
given by Ay (t) = dp/t, where dp, by definition, is time-independent. Conse-
quently, in the limit of small Ay (t)/d, = do/td,, the realistic r(vt, t) will be
such that its form will exhibit a well defined R(v) given by eq. (4.10), that
is, the form of the realistic r(vt, t) will tend to that of the idealized r (with a
one-one x — v correspondence) in the limit ¢t — oo, so the idealization of our
basic c-ensemble does not modify the physical essence of the problem. In
particular, the tendency of the behaviour of the above realistic c-ensemble
and that of the g-ensemble to the same one-one x — v correspondence rule
in the limit of large ¢ shows that time-of-flight technique makes possible the
violation of ineq. (1.3) to an arbitrary extent in individual measurements.
Really, the objective uncertainties in the macrovelocity definition are the
same (~ do/t) in the limit of large ¢ for the realistic c-ensemble and our
g-ensemble and the product dodg/t = 02/t tends to zero as t — co.

A picture of ensemble evolution that is of the same kind as the one just
examined may be found in the case U(x) = —Fz too, F' = const. Consider
first a normalized initial wave packet of an arbitrary form (4.2). Egs. (3.10)
and (3.12) lead to

exp(imz'? /2ht)(x’, 0)dx’

where A(z,t) = exp[i/h(ma?/2t+ Ftx/2— F?t3/24m)] : obviously, | A |= 1,
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t > 0. The single-particle solution of the respective classical problem [with
x(0) = z¢ and v(0) = vy] is

v = v(zg, vo,t) = vo + Ft/m (4.13)
x = x(x0,v0,t) = 20 + vot + Ft?/2m = x + vt — Ft*/2m (4.14)

[Eq. (4.13) must be interpreted here as an auxiliary law establishing a
one-one time-dependent correspondence between the (independent) velocity
argument v and the variable vy that plays the role of an initial velocity].
Having in mind that the term exp(imaz'?/2ht) in (4.12) can be put equal
to unity at ¢ — oo for the same reason as in the case of free motion and
replacing, as usually, = in (4.12) with z(v,t) [as determined by the second
eq. (4.14)] we see that at ¢ — oo the square of the modulus of (4.12) is
equal to

lim | Ye(o,8),8] = m | apo) | /¢ (4.15)

t—o0

where py = mwvg and

1 > - / / /
a(pg) = Wors /_OO exp(—imuoz’ /h)Y(x’,0)dx (4.16)

Multiplying then, in accordance with our prescriptions in Sec. III, eq. (4.15)
by | 0z(v,t)/0v |=t, we arrive at

R(v,t) =m | a(po) |? (4.17)

for v’s satisfying the correspondence law (4.13). Evidently, this is the result
which permits us to say that in the limit ¢ — oo the g-ensemble, evolving
from an arbitrary initial normalized state v (x,0), will behave as an appro-
priate c-ensemble. Indeed, in arbitrary c-ensembles of particles (including
idealized ones) with an initial velocity distribution

R(vo) = m | a(po) |27 (4.18)

we shall have
R(v,t) = R(vp) (4.19)

for v and vy connected via (4.13) due to the fact that all classical vy obtain
the same increase F't/m with time in our homogeneous field F, so that the
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lengths of the corresponding velocity intervals A does not vary with ¢ i.e.
interval (vg,vo + A) is transformed into (vg + Ft/m,vg + Ft/m + A) with
the course of time]. Consequently, (4.19) coincides with (4.17).

The only thing that remains to be done is to check whether the QM pos-
tulate (3.1,2) conforms to the just found equivalence of ¢- and c-ensembles
in the limit ¢ — oo and in the presence of the homogeneous force field F'.
This can be done by replacing ¢ (z,t) in (3.2) by expression (4.12) and in-
tegrating first over argument x. A straightforward application of formula
(5.2) of next section leads to the necessary result :

RQM(U,t) = RQM(’UO70) = R(’Uo) (420)

for v and vy connected via (4.13) and all ¢ > 0. All this means that time-of-
flight measuring technique is applicable in the presence of our force field F’
too since it will evince a classical v-distribution in the limit of large ¢. Ex-
amine as a concrete illustration of this statement the explicit solution for the
specific case of a Gaussian ¥(z,0) given by (4.7). Standard manipulations
yield here

TV L W Ny 4 R N

P VR (e 2 PP T\ ) Ty
h2t2 g

(4.21)

Replacing z in (4.21) by z(v,t) from (4.14) (with zo = 0, as the idealized
c-ensemble may certainly be centered at the origin), we get

. s MO B 5
tlgglo | Y[z(v,t),t] |*= N exp[—(mugo /h)?| (4.22)
and after multiplying this expression by | dz(v,t)/0v |= t we arrive at

an expression for Rgp(v,t) = R(v,t), t — 00, coinciding with expression
(4.10) for the case of free motion (in the latter expression v plays the role
of our vg). This is certainly the result (4.17) for our concrete case.

Evidently, all the results for a Gaussian ¥(z,0) in the case of free
motion can be directly obtained from eq. (4.21) by putting there F' = 0.
Therefore, from the viewpoint of a transition (at large ¢) to an explicitly
classical behaviour of g-ensembles, the cases F' = 0 and F' # 0 differ only
insignificantly for Gaussian 1;,,’s, the essential feature in both cases being
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that a v-distribution of a classical nature emerges when m?o*/h%*t> — 0. A
similar assertion is valid for an arbitrary ;.

In the cases examined until now we had an ‘irreversible relaxation’ of
the behaviour of g-ensembles to that of relevant idealized c-ensembles in
the limit ¢ — oo. This is certainly not the general case : as evident from
expression (3.13) for the propagator in the case of a harmonic potential field
U(x) = mw?x?/2, the corresponding nonstationary wave functions 9 (z,t)
have a strictly periodic behaviour with time for arbitrary initial conditions.
Nonetheless, limiting situations in which the behaviour of g-ensembles is
almost identical to that of an idealized c-ensemble practically all the time
are possible here too. In order to see this examine a normalized state
satisfying an arbitrary initial condition (4.2). Egs. (3.10) and (3.13) yield

Y(x,t) = (mw/2mihsinwt)'/? exp(imw cot wt - 22 /2h)

oo , 4.23
/ exp(imwz % cot wt/2h) exp(—imwzz’ /hsinwt)y(z', 0)dx’ (4.23)

— 00

The single-particle solution of the corresponding classical problem [with
initial conditions z(0) = xo and v(0) = vp] is

x(zg, vo,t) = xg coswt + (vg sinwt)/w (4.24)
v(xg,v0,t) = 0x(xg, vo,t)/0t = —xow sin wt + vy cos wt (4.25)

Examine now an idealized c-ensemble of particles located at a fixed
point g = X in the harmonic field at ¢ = 0 and having an initial velocity
distribution R(vg,0). The obvious equality

R(v,t) | dv |= R(vg,0) | dvg |, (4.26)
valid for such a c-ensemble [v and vy being connected via (4.25)] yields
R(v,t) = R(vp,0)/ | coswt | (4.27)

[From (4.25) it follows that, for a fixed zg = X, | dv/dvy |=]| coswt | ; egs.
(4.26) and (4.27) for our specific c-ensemble hold at all ¢, with the exception
of a discrete set of moments t =1¢,, n=0,1,2, ...,

tn = (20 + 1)7/2w, (4.28)
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at which all particles in the c-ensemble have the same velocity +Xw and
eq. (4.26) loses sense due to the d-like course of the velocity distribution at
these moments of time].

Let the initial wave packet 1(x,0) be centered at our fixed point 2y =
X and let us begin to contract its spread about X (certainly, preserving
normalization). Replace, as usually, « in (4.23) by expression (4.24). For
initial states with sufficiently small spreads about X all the exponential
terms under the integral in (4.23) will be almost all the time practically
constant along the ‘effective length’ of ¢(x,0), with the exception of the
term exp(—imuvox’/h) = exp(—ipoz’/h), in which vy may be large. This
will not be true only in a small vicinity of time-points t = 7,, n = 0,1,2, ..

Tn = N7 /W, (4.29)

at which sinwt = 0 [so that all particles in the idealized c-ensemble have the
same position £ X at 7, —cf. (4.24)]. The length of these time-intervals, how-
ever, will clearly tend to zero as the spread of ¢)(z, 0) tends to zero. Multiply-
ing, in accord with our prescription, the expression for | 1[z(zo,vo,),t] |
by

| 0x(x0,v0,t)/0v |=| Oz (x0,v0,t)/0v0 - Ovg/OV |=]| tgwt/w |,

we obtain for almost all ¢ the practically precise equation
| ¢ 7| O24/0v | = m | a(po,0) |* / | coswt |= Roar(vo,0)/ | coswt | (4.30)

Consequently, almost all the time the behaviour of the position density
of such a g-ensemble will be practically identical with that of an idealized c-
ensemble, ‘concentrated’ at zp = X at moment ¢ = 0 and having a velocity
distribution R(vo,0) = Roa(vo,0) at that moment. We have to point out,
however, that this correspondence between ¢- and c-ensembles (being absent
only in the vanishing intervals around 7,,, n = 0,1, ...) becomes physically
meaningless also in small time intervals [of length tending to zero as the
spread of ¥ (z,0) tends to zero] around time points ¢,,n = 0, 1, ... This may
be seen by checking up the validity of the QM postulate (3.1,2), employing
expression (4.23) for ¢(z,t). The corresponding expression for a(p,t) is

a(p,t) = 1/(27h coswt)*/? exp(iB)/ exp(—ipx’ /hcoswt) - (431)
oo .31

exp(—imwz % /2h sin wt cos wt)i(z’, 0)dx’,
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where B is an inessential real term. If one replaces v in p = mwv with
expression (4.25), one sees that for sufficiently narrow initial states ¢ (x’,0)
expression

RQM(U,t) = RQM(’U(J,O)/ | coswt ‘ (432)

is precise enough, with the exception of small time intervals about points ¢,,,
Tn, that tend to zero as the dispersion of ¢)(2’,0) tends to zero. We therefore
have practically all the time (with the just said exception) a clear-cut one-
one x — v correspondence, hence a clear-cut classical macrovelocity concept
in these g-ensembles, so time-of-flight measuring technique is applicable here
too inside the large time intervals of interest and it will evince there the QM
predictions for Rgas(v,t).

An initial condition that makes possible a concrete numerical realiza-
tion of the above general consideration is given in (4.6) (with P = 0 just
for the sake of simplicity, in order to evade unnecessarily long formulae that
lead to the same final conclusions). The QM state of motion at ¢ > 0 will
then be

1/2 27 (1 + imwo? cot wt/h)
27rzhoﬁ sin wt 1+ m2w20? cot? wt/h?
< zmwa: cot wt)

2h
o’ (4.33)
ex .
P { 21 4+ m2w204 cot? wt/h2
X® . 2 2 2 2
{—4 — (mwz/hsinwt)” + 2m-w*Xx cot wt/h” sin wt
o
[ 2mwXx n mwo? cotwt(X2 m2w?a? ) }
il— 2w
hio? sinwt I ot h¥sin?wt

In the limit ¢ — 0 practically all particles in the g-ensemble will be
localized at moment ¢ = 0 in a vanishingly small interval of length ~ o
centered at point X = xg = const. Correspondingly, all particles in the
idealized c-ensemble are localized at X at moment ¢t = 0. Our prescription
gives now

Oxy om o2m?

G ‘ W exp 77(1}8 — W2X2 C0t2 wt) 3 (434)

| P 5~
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where certain inessential terms are neglected having in mind that we are
interested in very small o’s. Eq. (4.34) will be invalid or physically mean-
ingless in small time intervals (of length tending to zero in the limit o — 0)
about points 7, and t,, n = 0,1, 2, ..., in agreement with the above consid-
eration. The second term in the exponent has a fixed value, given ¢, whereas
vg is a free variable, so in the limit ¢ — 0 we have

8!L't

e Pl Gy |~ 5= T aos e P omuo/%) - (4.39)

meaningful for practically all times, with the exception of the mentioned
vanishing time intervals. The right-hand side of (4.35) is certainly the v-
distribution at ¢ of an idealized c-ensemble whose v-distribution at ¢ = 0 is
R(v0,0) = [omexp(—a?m?vg/h?)]/hy/7. On the other hand, one obtains
using (4.33) that

Row(v,1) = om
U7
oM V7h | coswt | (14 ’"2“2"4 tg? wt)1/2
1 v o2m2y?
e ——(—sinwt+ X)? — —— " coswt| -
Xp|: pn (w + ) ) :|

2

1 m2w2ot 2
exp { T mz;{)jaél w2 l) [U(l — ?) sin wt + Xw]

(4.36)

A straightforward analysis shows that, after replacing v in (4.36) by

expression (4.25) (with o = X), Roum(v,t) will be given in the limit of

small ¢’s and in the large time intervals of interest by the right-hand side

of eq. (4.35), which fact demonstrates the agreement of the QM postulate
(3.1,2) with the concept of macrovelocity in the case examined.

The employing in the case of U(z) = mw?z?/2 of ‘realistic’ c-ensembles
with the same initial velocity distribution and initial dispersion of the same
order of magnitude as in the corresponding g-ensembles leads to the same
inference as in the previous cases. Namely, r(z,t) behaves analogously to
the relevant | ¢ (z,t) |2, exhibiting well defined macrovelocities (whose dis-
tribution practically coincides with the microvelocity distribution of the
idealized c-ensemble with which the g-ensemble is compared) for all ¢, with
the exception of the mentioned small time intervals of vanishing length for
vanishing initial position dispersions. The concept of macrovelocity thus

Annales de la Fondation Louis de Broglie, Volume 13, no. 3, 1988



368 N.S. Todorov

is of the same nature in g-ensembles and relevant realistic c-ensembles. A
feature of a similar kind is easily noticeable in all cases examined : The
time necessary for | ¥(z,t) |* to exhibit a well defined macrovelocity dis-
tribution decreases with the decrease of the initial position dispersion dg
(= o in the Gaussian case) and in this sense the limit dy — 0 may be
called “quasiclassical”. Somewhat paradoxically, the formal limit 7z — 0
acts in the opposite sense, contrary to current notions on the applicability
of a quasiclassical consideration. The reason for this may be found in the
fact that we examine suitable time-variable positions in the g-ensemble (In
the usual W K B method, say, one has a static position distribution picture)
and, besides, in the fact that i participates as a parameter in both ¢- and
c-initial velocity distributions (and one may certainly introduce formally all
kinds of parameters in c-velocity distributions at ¢ = 0).

We must pause here to mention a fact which appears to be already
known and which should be derivable from the general formulae in the recent
review paper by Littlejohn [21] but which is certainly worth a simple discus-
sion on the basis of the formulae obtained up to now. Namely, in the case
of initial Gaussian wave packets [eq. (4.6)] one can construct classical phase
space densities p(z,v,t) that yield position densities r(z,t) = [ p(z,v,t)dv
and velocity densities R(v,t) = [ p(z,v,t)dz, which behave in ezactly the
same way as the relevant QM density distributions in all potential fields
examined until now. In order to see this examine a well known corollary of
a theorem due to Liouville which says that

p(z,v,t) = p(zo,vo,0) (4.37)

in a c-ensemble of particles, where x and v are the position and velocity
of a particle at moment ¢, corresponding to position xg and velocity vg of
the same particle at ¢ = 0. Let the initial QM state be given by (4.6)
(once again with P = 0 for the sake of simplicity). The initial QM velocity
distribution corresponding to this ¥ (x,0) is given by (4.10), so examine a
classical phase space density p of the form

p(xo,v0,0) = % exp[—(zo — X)?/0?] exp[—(movy/h)?] (4.38)

at t = 0 (h playing once again the role of a certain parameter in the c-
distribution). [In the case of U(z) = —Fx, as we know, we may additionally
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set X = 0 without any loss of generality]. With the aid of egs. (4.13,14)
one arrives at

p(z,v,t) = p(x — vt + Ft*/2m,v — Ft/m,0) (4.39)

Using this expression, one easily sees that ffooo p(x,v,t)dv coincides
with expression (4.21) for | ¢(z,t) |?, and [*_ p(z,v,t)dz gives exactly
mao //Th exp[—(movg/h)?] = (mo//Th) exp{—[mo(v — Ft/m)/h]?}, that
is, the velocity distribution in the g-ensemble at an arbitrary ¢t > 0. (When
F = 0 one arrives at the formulae for free motion adduced by Littlejohn).
For the harmonic case (where, generally, X # 0) eqgs. (4.24) and (4.25) lead
to

plx,v,t) = p(x coswt — g sinwt, v cos wt + zw sinwt, 0) (4.40)
Correspondingly, the integration of this p over v gives exactly | ¥(x,t) |2
with ¢(z,t) from eq. (4.33) and integration of p over z yields precisely
expression (4.36) for Roas(v,t).

The identical behaviour of the position and velocity densities in these ¢-
and c-ensembles is, in itself, a clear indication that the problem of position-
velocity coexistence should not be resolved in an essentially different man-
ner in QM and Newtonian mechanics. (Indeed, as argued in the preceding
sections, we have no logically consistent way of forming inferences other
than consideration and comparison of relevant ensemble behaviours). But
as one is inclined nowadays of asserting —under the impact of the C'I— that
only experiment can determine the applicability of certain classical concepts
in QM and as well known simple thought experiments (e.g. Heisenberg’s
electron microscope experiment, etc) seem to rule out position-velocity co-
existence, one may suspect that the identical behaviour of the said ¢- and
c-ensembles is, in a way, deceptive : We have no direct experimental evi-
dence of position-velocity coexistence in these cases, hence no grounds to
immediately assert the unacceptability of the C'I. Such an opinion may find
further support in the fact that in models as Bohm’s (cf. Appendix A) the
QM ensemble picture for these cases is not purely Newtonian (a nonzero
h-dependent “quantum potential” exists there for a specific velocity defini-
tion). But the employing of convenient g-ensembles with a clear-cut one-one
x — v correspondence removes objections against the possibility of position-
velocity coexistence based on arguments appealing to experiment since these
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ensembles give evidence for the existence of experimental methods for veloc-
ity measurements by position registering (time-of-flight technique) and the
capability of these methods of reproducing the exact g-ensemble predictions
for velocity distributions.

In fact, I believe that the consideration in this section offers a concrete
illustration of de Broglie’s physically lucid idea about wave packet sepa-
ration with the course of time in a process of measurement. The natural
evolution of our QM states, however, needs no special analysers here in
order to exhibit a well defined (macro)velocity distribution, each velocity
corresponding to a definite part of the overall wave packet.

Let us adduce now more systematically the inferences that follow from
our consideration in this section.

(i) Our discussion reveals the essence of the ensemble concept of velocity in
Q@M and demonstrates that it is possible to employ time-of-flight macrov-
elocity measuring technique (based on position detection and conforming
to the no-analyser requirement) in normalizable g-ensembles. More exactly,
the last is a consequence of the fact that the process of an unperturbed
evolution of g-ensembles with known initial normalizable ensemble states
objectively reveals with the course of time a definite macrovelocity distribu-
tion that can be registered with the aid of the said technique [the latter being
at that theoretically capable of reproducing (thus confirming) the ensemble
predictions of QM]. Consequently, one may regard time-of-flight technique
as a commonplace measuring device and may compare the C'I statements
about measurements in general with the properties of this concrete device.

(ii) As a consequence of this one sees that ineq. (1.3) applies, generally, to
positions and macrovelocities in the entire g-ensemble and has no relevance
to the concept of microvelocity. The product of the objective experimen-
tal uncertainties for positions and macrovelocities can be made arbitrarily
small for an individual particle (cf. also ref. 10). In other words, (1.3)
applies, generally, to the result of ensemble measurement and not to that of
measurement (cf. Sec. II for definitions). Hence general statements as “the
electron cannot have simultaneously a definite position and momentum” (cf.
any textbook on QM) may not be justified even within a ‘minimal’ ST.

(iil) Measurement can play an inessential role in g- and c-ensembles : it may
just give information about objectively existing facts in these ensembles that
may be confirmed, at a will, by simple detection. Besides :
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(iv) Measurement may not be regarded, generally, as an instantaneous
process. Really, the preparatory intervals of time (0,7) (T being suffi-
ciently large) necessary for velocity measurements via the time-of-flight tech-
nique [determining, by measurement, individual macrovelocities in the time-
evolved ensemble corresponding to the initial wave packet ¢ (z,0) or equiv-
alently —by ensemble measurement— macrovelocity distributions assigned to
the said ensemble] now play the same role as the one attributed to analysers.
Namely, both analysers and /or time-intervals (0, T') are necessary for a good
separation of certain physical quantities, so they are an inseparable part of
the process of measurement, making it noninstantaneous : This process just
begins at a given moment —in our case t = 0— by, say, ‘switching off” all the
external fields at that moment. In other words, everything that could be
treated as a measuring device must be removed at the chosen moment of
time, in contrast to the C'I notion of an instantaneous application of such
a device at that moment. Only the last stage of measurement, i.e. sim-
ple detection, may be regarded as a quasi-instantaneous process. Clearly,
everything in this point applies mutatis mutandis to measurements in a
realistic c-ensemble too (the ¢- and c-pictures of the evolution of position
and velocity distributions being even explicitly identical for Gaussian wave
packets). Hence

(v) From the viewpoint of a time-of-flight velocity measuring technique po-
sitions and macrovelocities cannot coexist at small ¢ > 0 in both ¢- and
realistic c-ensembles due to the very nature of the concept of macrovelocity.
Namely, a large part of the ensemble members are still to be found in a small
vicinity d; of point z = 0 at these t’s and the initial spread dy of position
densities make impossible a good mathematical definition of macrovelocity
when d; is of the order of magnitude of dj.

(vi) Ensemble measurement of both ¢- and c-ensembles introduces a certain
asymmetry in treating the past and future (with respect to this measure-
ment) of a physical system (more exactly, of its statistical ensemble image).
Namely, with regard to the past it evinces a (predicted) probability distri-
bution of a physical magnitude while with regard to the future it creates a
new ensemble state. In our case the last will be due to the fact that position
detection of particles can certainly modify the velocity distributions in both
g- and c-ensembles because of a possible direct perturbing influences of the
position detector whose performance may be based on a variety of physical
phenomena. Therefore, there is nothing specifically quantum-mechanical in
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this kind of a past-future asymmetry contrary to widespread notions based
on Heisenberg’s ideology. (There exist recent discussions of Heisenberg’s
viewpoint in the literature [10],[22]. This viewpoint has penetrated text-
books too —see, e.g., § 7 in ref. 20). Consequently :

(vii) The specific QM features of the problem examined in this section
(which, according to the ‘minimal’ ST are not to be found in any of the
preceding points) must be sought in an explanation of the concrete fixed
numerical value of the constant term in the right-hand side of ineq. (1.3).
A possible explanation may probably be that in the process of prepara-
tion of the wave packet with an initial form 1 (x,0) there exist phenomena,
forces, and so on which are not taken into consideration in the usual clas-
sical approach to the problem and in which % plays an important role. [In
fact, as we know, the ‘nonminimal’ SI’s mentioned in the Introduction (cf.
also appendix A) represent attempts at explaining the QM behaviour of
microparticles along such lines. We are not going to make here (within the
‘minimal’ ST) any concrete assumptions about the nature of the possible
additional factors and their time-evolution but shall just point out that this
interpretation is completely open for new physics (and mathematics —see
Appendix B) that may lead to future developments].

To summarize, the CI rests on an admittedly universal theory of mea-
surement in which measurements are instantaneous and “complementary”
magnitudes do not coexist. Besides, the C'I asserts that immediately af-
ter the instantaneous measurement process the measured magnitude has
a definite value for the measured system. The above viewpoint, however,
finds no corroboration when the objective evolution of the QM state of
motion (combined with its ensemble interpretation) is considered for cer-
tain solvable cases : It turns out that uncertainty relations are, generally,
ensemble concepts while lawful experimental procedures (theoretically ca-
pable of reproducing the g-ensemble predictions for certain magnitudes and
arbitrary normalizable initial conditions) are essentially noninstantaneous,
may be destructive for the measured magnitude (the same applying to the
relevant classical case) and are based exactly on the idea of coexistence of
“complementary” magnitudes for individual members of the ensemble.

V. Explicit position-velocity coexistence in certain nonnormaliz-
able nonstationary quantum states

The reinterpretation of ineq. (1.3) in the previous section and the ex-
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plicit demonstration of position-macrovelocity coexistence (within the frame
of the ‘minimal’ ST) in g-ensembles corresponding to normalizable v’s poses
an obvious question. Namely, are there QM problems in which explicit
position-velocity coexistence (from the viewpoint of the ‘minimal’ ST) may
be objectively interpreted as an explicit position-microvelocity coexistence
for individual particles ?

The possible answer to this question should obviously be sought in prob-
lems of two types : (A) problems in which the characteristic initial spread
of QM states is exactly equal to zero, so that there would be no necessity of
ascribing macroscopic sense to particle velocities, and (B) problems in which
the characteristic initial spread of the QM states is infinite, so that the con-
cept of macrovelocity in the above sense just does not exist. A sufficient
objective condition for the admissibility of explicit position-microvelocity
coexistence in the ‘minimal’ ST would be an identical behaviour of ¢- and
c-ensemble position and velocity distributions for all ¢ > 0 in problems of
kinds (A) and (B).

Let us recall here that the discussion in Sec. IV already contains a clear
indication that type (A) problems may offer an explicitly Newtonian picture
of position-microvelocity coexistence for all ¢ > 0 in the physical fields of
interest. Indeed, we saw there that the time needed of a g-ensemble to evince
via its position distribution a clear-cut classical velocity distribution tends
to zero as the spread dy of ¢(z, 0) tends to zero and one may certainly expect
that the limit dy = 0 itself will give one-one z—wv correspondence for all £ > 0.
But, whereas in the classical case it is possible to construct normalizable
p(x,v,t)’s even in the case of ensembles ‘concentrated’ at a given point xg
(at t = 0), the type (A) problems require in the QM case initial states of
the form ¢(z,0) ~ 6(z — zo). These states correspond to nonnormalizable
c-ensembles in order to carry out the necessary comparisons. A typical
initial @M state in a type (B) problem is ¥ (z,0) = exp(ipx/h), for which
| ¥(z,0) =1, © € (—o00,00), that is, once again a nonnormalizable state
whose evolution must be compared with that of a relevant nonnormalizable
c-ensemble.

The consideration of such nonnormalizable QM states is of a definite
theoretical interest for other reasons too, say (a) they give an answer to legit-
imate questions as “what is the state of motion of particles for which either
position or momentum are exactly known (recall that there is no theoretical
limit in nonrelativistic QM to the precision with which these magnitudes
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can be defined), and (b) ineq. (1.3) seems to imply total inapplicability of a
given classical concept ( z or p) in cases when its “complementary” concept
(p or x, respectively) is exactly defined. But the corresponding nonnor-
malizable QM states of motion in these cases, as we know, go outside the
range of states to which ineq. (1.3) applies, so special investigation of the
properties of the QM systems in question is necessary.

Somewhat unexpectedly from a CI viewpoint, the nonnormalizable
QM states that will be examined here will really give a totally classical
statistical picture of explicit position-microvelocity coexistence for all times
t>0.

[One should recall here that in the nonnormalizable case | ¢ |? has a
relative meaning, determining for instance via | ¥(z1,t1) |? / | ¥(w2,t2) |?
just the ratio of the actual number of particles (and not actual probabilities)
in infinitesimal intervals of the type (x; — €, x; + ¢€), x; fixed, i = 1,2, at
moments t; and ts].

Examine first the case of a homogeneous force field F' and an initial
state

1/1(% O) = exp(ipox/h)a (51)

po being an arbitrary initial momentum. Formulae (3.10) and (3.12), with
Y(a’,0) from (5.1), yield via standard integration

Y(x,t) = explip(t)z/h] exp | =——— (pat + po Ft* + F*t3/3)| , (5.2)

27L

where
pit)=po+Ft , t>0 (5.3)

is the momentum at ¢ of a classical particle with an initial momentum

o [cf. (4.13)]. Consequently, | ¢(z,t) |* remains constant all the time
while the variation of the momentum of microparticles conforms to Newton’s
dynamics. A c-ensemble of (noninteracting) particles with the same initial
momentum pg, mass m and a homogeneous position distribution will behave
in exactly the same way at ¢ > 0 in the above force field. This identity of our
q- and c-ensemble pictures at all ¢ > 0 makes it possible to assert for the case
of interest explicit position-microvelocity coexistence in g-ensembles within
the frame of the ‘minimal’ ST.
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Examine now an initial QM state

P(x,0) = 0(x — o) (5.4)

in our force field F', xy being an arbitrary fixed position along x. It is well
known that
lim K(z,t)+¢a',t) =6(z — '), (5.5)
e—0
so the time-evolved state v (z, t) will essentially coincide here with the prop-
agator itself and the position density will therefore be

| ¥(x,t) [P~ const/t , t>0 (5.6)

The corresponding 7(z,t) in a c-ensemble of particles located at point
xo € (—00,00) at moment ¢t = 0 and having a homogeneous velocity distri-
bution R(v,0) at that moment is easily seen to obey the same law (5.6) at
all ¢ > 0, R(v,t) remaining homogeneous all the time. A straightforward
check-up shows that the same applies to Rgas(v,t). We can thus assert both
explicit position-microvelocity coexistence within the ‘minimal’ ST and va-
lidity of the QM postulate (3.1,2) for g-ensembles obeying condition (5.4)
in a homogeneous field F'.

We are going to examine now a really instructive example, namely, par-
ticle motion in a harmonic potential field U(z) = mw?x?/2, z € (—o00, ).
As we shall see, there will be one-one x — v correspondence in our prob-
lem at all ¢ > 0, with the exception of the discrete set of moments t,,
Tk, (nyk = 0,1,2,...), defined in Sec. IV, at which the violation of this
correspondence will turn out to be inessential from the viewpoint of the
applicability of our approach outlined in Sec. III, so we shall employ the
said prescriptions in the usual manner. Consider first a nonnormalizable
c-ensemble of noninteracting particles all of which have the same initial
velocity vy, being homogeneously distributed along the x-axis at moment
t = 0, that is, r(x,0) = const. (The ensemble thus represents a classical
situation in which one knows the precise value of the initial momentum
Ppo = mug of a microparticle in the harmonic field and has no information
whatsoever about its position). For the sake of convenience we choose

r(z,0) =1 (5.7)
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The motion of a given particle in our c-ensemble is determined by egs.
(4.24,25). From (4.24) it follows now (v fixed, o —a free variable) that
the particles in the c-ensemble with different values of zy will be located at
nonoverlapping points z(xg, vg,t) at any moment ¢ > 0, with the exception
of the discrete set of moments ¢, [eq. (4.28)], n = 0,1,..., at which all
particles will have the same position z(t,) = £vo/w. This means that the
equation

rlz(xo, vo, t), ]} Dx(zg, vo, t) = (0, 0)Dxo (5.8)

will hold at any t # t,, ; the ‘differential’ D in (5.8) is defined for the general
case via Df =| 8f/0x¢ | dxg, dxo (= Dxg) being an infinitesimal variation
of the (free) initial position xzy. With the aid of eqns. (5.7) and (4.24) we
obtain

Dzx(xg,v0,t) =| coswt | dxg (5.9)

Hence
rlz(xo,v0,t),t] =1/ | coswt | (5.10)

at t # t,,. That is, at any moment ¢ # t,, we have once again a homogeneous
position density distribution, the only difference being that the number of
particles per unit length has changed everywhere by a factor of 1/ | coswt |.
(It is worth recalling here that there exists no upper bound for the speed of
a particle in Newtonian dynamics and that under our assumptions infinity
serves as a source of particles).

Eq. (3.3) may be written here in the form
Rlv(xg, vo, t), | Dv(xg, vo, t) = r[z(x0, vo, t), ]} Dx(x0, V0, t) (5.11)
The velocity ‘differential’” in (5.11) is equal to
Duv(zg,vg,t) = DOx(xg,v0,t)/0t = w | sinwt | dzo,

so that
Rlv(zg,v0,t)t] = 1/w | sinwt | (5.12)

at t # 1 [eq. (4.29)], kK = 0,1,2,... Consequently, R(v,t) is homogeneous
too and varies with time analogously to r(z,t). At moments 73, for which
R is indefinite, all particles in the c-ensemble will have equal velocities
+vp. (For the sake of comparison recall what happened at ¢,, and 75 in the
consideration in Sec. IV).
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Let us see now what will be the result for the appropriate g-ensemble
in the same field. The initial wave function 1 (z,0) that corresponds to an
initial value py = mug of the momentum and to r(xg,0) =| ¥ (z,0) |*= 1
will evidently be

¥(x,0) = exp(ipoz/h) (5.13)

Egs. (3.10) and (3.13) lead in this case to

1 7 9 2pox p%tgwt
)= —— (- tg wt -
(b (coswt)1/2 oxp {Zh < MWWt st mw
(5.14)

We thus see that at moments ¢t # t,, the position density as given by
| 1(x,t) |? is homogeneous and equal to

| (z,t) =1/ | coswt |, (5.15)

which result exactly coincides with the classical one [cf. eq. (5.10)] at ¢ # t,,.

In order to determine the nature of the indefiniteness of ¢ (z,t) at
moments t, examine the time-evolution of the wave function satisfying the
initial condition

Yy (2,0) = (=2mih/mw)*/28(z — x0) (5.16)
where 29 = po/mw = vo/w. From eqs. (3.10) and (3.13) we get

1
(—sinwt)1/2

2xx

Yi(z,t) = + 23 cotwt)| (5.17)

mw
exp | —— (1’2 cot wt — —
2h sin wt

Obviously, the value of ¥;(x,t) coincides with that of ¥(x,t’), where
t' =t+ /2w [cf. eq. (5.14)]. Consequently, the indefinite nature of ¥ (z,t)
at moments t,, results from the fact that it represents a d-function of coordi-
nates at these moments, ‘centered’ alternatingly at points = +vo/w. The
behaviour of the ¢- and g-position densities in this problem is thus identical
at all ¢ > 0.

We therefore have sufficient grounds to assert that the g-ensemble in
this problem must have the same velocity distribution as that of the c-
ensemble at all ¢, so that we have once again an explicit example of coex-
istence of the position-microvelocity concepts. The check-up of the validity
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of the QM postulate (3.1,2) yields a result that agrees with the just said.
Really, by standard integration,

exp(—im/4) i 9 2ppo 5
t) = twt — twt
*(5:1) (mw sinwt)1/2 P 2men \P T Sinwt +pycote
(5.18)
Hence
Rom(v,t) = 1/w | sinwt | (5.19)

in agreement with eq. (5.12). Evidently, a(p,t) is indefinite at the same
moments 7 at which the classical momentum density is indefinite and this

is once again due to a d-like course of the function in question [compare egs.
(5.17) and (5.18)].

Consequently, the coinciding classical and QM pictures exhibit a peri-
odic interchange of a fixed momentum and a fixed position for all members
of the ensemble. In our consideration this fact is not related to any kind of
measurement but results from the properties of the physical systems con-
sidered whose evolution in the harmonic field is such that precise knowledge
of momentum at a given moment of time makes possible the precise predic-
tion of a fixed coordinate at a relevant subsequent moment of time and vice
versa.

The implications of the last example are thus quite instructive indeed:
One not only sees the admissibility of position-microvelocity coexistence
but obtains as well an explicit demonstration of consequtive localizations
in coordinate and/or momentum space as a result of particle dynamics,
without any need of employing a special projection postulate.

The above consideration readily leads to a prescription for velocity
measurement in the QM states in question. Namely, as in the identical
classical case, one may measure velocity at t # t,, by registering the par-
ticle’s position at such ¢. Knowledge of position at ¢ makes possible the
reconstruction of the initial position zg via formula (4.24). The velocity
v(xg,vo,t) (vo being fixed and known for all particles) can then be calcu-
lated with the aid of (4.25). [The identical nature of the indefiniteness at
t = t, in the classical and QM cases makes it possible to determine, in any
case, v(Zg, vo, tn) by position registering at some ¢ # t,, and then computing
xo and v(xg, vo, t,) in the manner just described]. The ensemble of results
so obtained (in other words, the statistics of ensemble measurement) will
be precisely the one predicted by both QM and the statistical variant of
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classical mechanics and, as it was already pointed out, statistical theories
admit just ensemble predictions in the general case.
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