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ABSTRACT. A new conception of the magnetic monopole is pre-
sented based on (1) a distinction between descriptions of medium-
independent fields and the constitutive relations to the medium in
which they exist, and (2) the magnetic monopole defined as the
excited state of a neutrino (Lochak). Using twistor formalism,
it is shown that the interactive exchange between electromagnetic
fields and the space-time metric (gravitational metric or aether) is a
second-order differential mapping of the A-vector potential onto the
metric (aether) provided by the neutrino-antineutrino pair concept
(Lochak).

The excited state of the neutrino, i.e., the magnetic monopole, is
proportional to the rate of change of the real part of the dielectric
and magnetic susceptibilities and also of the rate of change of the
dielectric dispersion and magnetic induction. A second influence on
the neutrino, is a phase change which is proportional to the rate of
change of the imaginary part of the dielectric and magnetic suscep-
tibilities and also of the electrical and magnetic conductance. Thus,
the electromagnetic field and the space-time metric (neutrino net-
work) have an independent or inherent existence, but the excited
states (magnetic monopole) and phase changes of the neutrino have
a dependent existence derived from fluctuations in the electromag-
netic field aforementioned. Justification for field-metric exchanges
is found is the requirement for entropy-energy balance conservation
between fields and metric.

The twistor formalism is only exactly applicable to the electromag-
netic field conditioned by polarization modulation (an angular mo-
mentum twistor). The electromagnetic field without polarization
modulation is well-known to be of U(1) symmetry. After polariza-
tion modulation conditioning, it is of SU(2) symmetry and thus of
non-Abelian Yang-Mills form. Conditioning the U(1) electromag-
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netic field into SU(2) form, in effect, adds a degree of freedom to
the field.

The consequences of this new picture are both an understanding of
the ubiquitous nature of the magnetic monopole leading to a refor-
mulation of Maxwell’s theory, as well as an approach to the unifica-
tion of electromagnetism and gravitational theory.

The major conclusion is that the relation of local fields and their met-
ric is governed by an energy-entropy conservation condition modeled
by an adiabatic polarization modulation waveguide. Experimental
testing of this theory can procede at radar, infrared and visible fre-
quencies. While the necessary speed of polarization modulation at
optical frequencies (in the picosecond range) is quite difficult to ob-
tain technically, the necessary speeds required for polarization mod-
ulation at infrared and radar frequencies are easily obtained.

INTRODUCTION

According to Cartan [1], the basic laws of electrodynamics permit a
functional separation between medium-independent law statements and
the constitutive specification of the medium. To include free-space, the
medium independent law statements should be independent of the space-
time metric. There have been early attempts to separate electromag-
netism from its metric [2,3], and early and recent attempts to provide
electromagnetic theories of gravitation [4-6]. Recently, the demonstra-
tion that the polarization of light is affected by wave-guide bending indi-
cates that Maxwell’s equations are independent of the affine connections
of space-time [7-18].

The successfully engineered ring laser gyro, based on the Sagnac
effect [19,20], implicates this independence [21-23]. The transit time
around the ring contour is determined by c, the speed of light, for all ob-
servers. A photon nonetheless takes a different length of time to traverse
the contour in a rotating frame.

Post [23-28], for example, functionally separates field and consti-
tutive equations and a distinction is drawn between physical frames
and the family of permissible coordinate neighborhoods associated with
such physical frames. Traditionally, the phenomenological description
of electromagnetism has been in two parts: firstly, the electromagnetic
field equations or properties which all systems share, and, secondly, the
constitutive equations of the medium, or a systematic characterization
of specific systems. However, as Post has shown, free-space was not
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treated as belonging to the second category. Therefore, Lorentz invari-
ance is presently incorrectly treated as a symmetry of the free-space field
equations, rather than as that of the free-space constitutive equations as
it should be. It is an aim of the present paper to define the magnetic
monopole as an entity dependent on both changes in the electromagnetic
field equations for origins and the constitutive relations for form.

In order to accomplish this aim, the paper is in three parts. The
first part is a summary of Lochak’s demonstration that the magnetic
monopole is an excited state of the neutrino and that the Majorana equa-
tion for the neutrino/monopole is a special case of the Dirac equation
for the electron. This work provides the dynamic link between the elec-
tromagnetic field (described by the Dirac equation) and the space-time
metric (described by the Majorana equation) in that gauge invariance is
demonstrated for the two and the latter is a special (constrained) case
of the former.

The second part addresses precisely in what dynamic form the elec-
tromagnetic field must be to perturb the aether represented by the neu-
trino system. This part depends on twistor formalism and shows that
an aether-perturbing electromagnetic field is in SU(2) symmetry form,
not U(1).

With the field-metric relations established in part one, and the gen-
eral method for perturbing the metric stated in part two, part three ad-
dresses specific ways of obtaining both excited states (monopoles) and
phase changes in the metric of the neutrino system and interactive re-
lations between field and metric based on entropy-energy balance con-
servation. Thus part three addresses the ways in which field and metric
can interact.

I. SUMMARY OF LOCHAK’S ANALYSIS

Lochak [29] demonstrated that the Dirac equation [30,31] admits
two, and only two, possible invariant gauges. One is the phase invariance
eiθ, which gives the electromagnetic coupling with an electric charge; the
other is the chiral transformation eiγ5θ, which is only valid for a massless
particle such as a neutrino. (The first of these corresponds to γr and ξr
and the second to γi and ξi in Figure 18 below).

A free Dirac particle is first considered:

γµ∂µψ + (m0c/h)ψ = 0, (1.1)
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in the relativistic coordinates xµ = {xk, ict}, (where the γ-matrices are
in terms of the Pauli matrices sk):

γk = i

(
0 sk
−sk 0

)
, k = 1, 2, 3 , γ4 =

(
I 0
0 −I

)
, (1.2)

γ5 = γ1γ2γ3γ4 =

(
0 I
I 0

)
Lochak proves that only two gauge transformations of the form:

ψ 7→ eiΓθψ (1.3)

are admitted where Γ is a constant Hermitian matrix and θ is a constant
parameter. It is then shown that there are only two possible forms of Γ
[29]: (I) Γ = I, which corresponds to the classical phase invariance:

ψ 7→ eiθψ, (1.4)

and (II) Γ = γ5, which gives the chiral gauge:

ψ 7→ eiγ5θψ. (1.5)

Furthermore, (II) is only valid for m0 = 0.

(I) defines a local gauge transformation:

ψ 7→ exp[i(e/hc)φ]ψ , Aµ 7→ Aµ + ∂µφ, (1.6)

and (II) defines another local gauge transformation:

ψ 7→ exp[i(g/hc)γ5]ψ , Bµ 7→ Bµ + ∂µφ, (1.7)

where Aµ is a polar vector (the Lorentz quadripotential), Bµ is an axial
vector (an electromagnetic pseudo-potential), φ a scalar function, e an
electric charge and g, a magnetic charge.

Whereas gauge (I) leaves the equation for an electron,

γµ(∂µ + (ie/hc)Aµ)ψ − (m0c/h)ψ = 0, (1.8)

invariant, gauge (II) leaves the equation for a magnetic monopole,

γµ(∂µ + (g/hc)γ5Bµ)ψ = 0, (1.9)
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invariant. If the monopole is in interaction with a Coulomb field, then
the relation of Dirac is obtained:

eg/hc = n/2 , n = 0, 1, 2, . . . (1.10)

The wave equation for a massless spin 1/2 monopole can be split
into two equations in terms of 2-component spinors ξ and η. Introduction
of a nonlinear term introduces a mass term. The dispersion relations for
this equation set have then two especially interesting solutions: (1) when
ξ and η have the same phase and frequency and the proper mass > 0,
then the bradyon case is obtained (a particle state with speed less than
that of light); (2) when ξ and η have opposite phases and frequencies
and the proper mass > 0, then the tachyon case is obtained (a particle
state with speed greater than that of light). If the proper mass is zero,
then the limiting luxon case is obtained.

The hypothesis is made [32] that the monopole of zero magnetic
charge is the neutrino and that magnetic charge is a multiple of the
fundamental charge g0:

g = ng0 , g0 = hc/2e. (1.11)

Due to a chiral invariance condition, the two component spinors in
the linear (zero mass) case are related by:

ξ = exp[2i(e/hc)θ]is2η
∗ , η = − exp[2i(e/hc)θ]is2ξ

∗, (1.12)

where θ(r, t) is an arbitrary phase. Thus ξ and η correspond to a
monopole-antimonopole couplet for which the total magnetic current
is zero.

The chiral invariance condition aforementioned is:

ρ2 = Ω2
1 + Ω2

2 = 0, (1.13)

where Ω1 = ψ+ψ and Ω2 = −iψ+γ5ψ. This is also the condition for
a Majorana field [33]. When θ = 0, the abridged Majorana equation
is obtained, which is identical to the Dirac equation for the electron.
Thus, the Majorana field is a constrained form of the Dirac field for
ψ = ψ2ψ

∗ = ψc. However, with θ nonzero, gauge invariance is obtained.
Furthermore, the electrical current density is shown to be the sum of
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two chiral currents, but the density of magnetic current, Σµ, is shown to
be the difference between the chiral currents.

The nonlinear generalization of the Majorana/monopole equation
which gives gauge invariance is [32]:

γµ(∂µ + (ie/hc)Aµ)ψ − (m0c/h) exp[2i(e/hc)θ]ψc = 0, (1.14)

and the relation of Uhlenbeck and Laporte can be derived from the above
definitions:

∂µΣµ + 2[(m0c/h)]Ω2 = 0, (1.15)

indicating that conservation of magnetic current occurs only under two
conditions: (1) when m0 = 0, i.e., under the condition for a magnetic
monopole but in its ground state; and (2) when Ω2 = 0, i.e., in the
case of a Majorana field, i.e., a field which is not invariant to gauge.
The Majorana/monopole field condition can be categorized as a hybrid
state of the Dirac electron which does not possess bound states, but
which possesses two possible types of trajectories different according to
sign, i.e., either attractive or repulsive. In a Coulombic field a Majorana
electron behaves as a negatively/positively charged particle. In later
sections of this paper, the following concepts will be used due to Lochak
[29,32]: (i) the Dirac equation can effectively describe electron behav-
ior. In fact, Oudet & Lochak [34] have shown its success in describing
atomic magnetic moments and its uniqueness in having as a premiss that
the angular momentum operator is the sum of the angular momentum
and the spin, which are not separately constants of the motion; (ii) the
Majorana equation describes the neutrino in its ground state and the
nonlinear Majorana equation describes the excited neutrino (magnetic
monopole) and the neutrino with phase change; and (iii) the Majorana
equations are special instances of the Dirac equation, with state changes
dependent on, or derived from, changes originating in fields described by
the Dirac equation.

In the next section the exact description is considered of the dynamic
form in which the electromagnetic field must be in order to perturb the
metric (aether) represented by the neutrino system. To achieve that aim
of exact description, twistor formalism is introduced.

II. TWISTOR FORMALISM OF THE PERTURBING FIELD

The conservation of energy and momentum law for the electromag-
netic field is contained in Poynting’s theorem (1884; cf. [35]). Poynting’s
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theorem addresses the balance of the power representing a conversion of
electromagnetic energy into mechanical and thermal energy with the rate
of decrease of energy in the electromagnetic field within a set volume. In
the usual formulation the magnetic field does no work as the magnetic
force is perpendicular to that field’s velocity. Other assumptions are that
the macroscopic medium involved is linear in its electric and magnetic
properties and that the energy is the sum:

W = (1/8π)

∫
E.D d3x+ (1/8π)

∫
H.B d3x,

even for time-varying fields. With the total energy density given by:

u = (1/8π)(E.D + B.H),

a differential continuity or conservation law is obtained:

∂u/∂t+∇.S = −J.E, (2.1)

where
S = (c/4π)(E×H)

represents (macroscopic) energy flow and is called Poynting’s vector with
the dimensions of (energy/area× time). Now the divergence of S appears
in the conservation law (equ. (1)), so the curl of any vector can be
added to it, i.e., Poynting’s vector, as defined by the conservation law,
is arbitrary. In fact, the divergence of Poynting’s vector only defines
the energy flowing out through the boundary surfaces of a volume per
unit time. The ∂u/∂t term in equ. (1) defines the time rate of change of
electromagnetic energy within that certain volume, but without specifics
concerning the form that energy takes. This is also true for Poynting’s
theorem for microscopic fields:

(c/4π)

∫
S

(E×H).nda+ (1/4π)

∫
V

(E.∂D/∂t+ H.∂B/∂t)d3x

= −
∫
V

E.Jd3x.

Thus, although, given the assumptions stated above, Poynting’s theorem
provides an estimate of the debits and credits of energy conservation at
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the surfaces of volumes, it does not provide a workable definition of a
propagating wave.

This is not to deny the validity of the theorem in defining the con-
ditions for propagation without dissipation. In fact, Crisp [36] used
the theorem to derive equations for distortionless propagation of light
through an optical medium. Crisp used the following form:

∂u(x, t)/∂t+∇.S(x, t) = −E(x, t).∂P(x, t)/∂t, (2.2)

where
E(x, t) = e1 E(z, t) cos(t− kz),
u(x, t) = (ε0/4π)E2(z, t) cos2(t− kz),
S(x, t) = (c/4π)(ε0/µ0)1/2e3E

2(z, t) cos2(t− kz),

for light polarized in the e1 direction and propagating in the e3 direction,
and P(x, t) is the dipole moment per unit volume. Solutions are then
found for E(x, t) under assumptions for P(x, t) when substituted into
equ. (2.2). The solutions found are analogous to the three possible
types of motion of a simple pendulum.

This approach is valid but again provides no specific form for the
crafted wave. Furthermore, in requiring a polarization which is locked
in phase with respect to the applied field, the approach is insufficiently
general to provide guidelines for wave generation.

The intention in this section, therefore, is to define directed energy
waves which propagate without dissipation in two ways. The first way
is a control theory system description of wave generation; the second
way is a mathematical account of that system. A fundamental assump-
tion underlying this description is that the medium through which the
energy propagates consists of interactive dipole moments which sample
or interact with the energy wave according to rules of polarization and
relaxation time.

The mathematical description is based on the work of Penrose and
Rindler [37,38]. In this section we provide an explanation of a system’s
polarization modulated output in terms of twistor form. This is abso-
lutely necessary, as the twistor form is the only precise definition of the
output of the adiabatic polarization modulated waveguide system con-
sidered. To my knowledge, this is the first time that twistor theory has
been applied to a system’s design or that twistor theory has been shown
to be necessary for system description.
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Following Penrose [39], we do not view space-time as constitut-
ing, fundamentally, a mathematical continuum, but rather space-time
is viewed as constituted of singularities, the interrelations of which con-
stitute a continuum. In other words,the spinor structure of space-time
is taken as more basic than its speudo-Riemannian structure. Three-
dimensional space then arises according to the combinatorial rules of
spin-networks [40].

The aim of the following subsection is to demonstrate that with the
electromagnetic field restricted to a polarization modulated form, then
it is in twistor form, and therefore with an affine relation to the twistor
form of the neutrino/monopole or the basic building block of the space-
time continuum. With this form field-metric interactions are possible,
without it, they are not.

2.1. Control Theory Picture

The waveguide system considered here is completely general in that
the output can be phase, frequency and amplitude modulated. It is,
however, an adiabatic system and only three of the lines are waveguides
–the input, the periodically delayed line, and the output. Other lines
shown are energy-expending, phase-modulating lines. The basic design
is shown in Figure 1. In this Figure, the input is E = E exp(iωt). The
output is:

E = (E/4) exp(iωt) + (E/4) exp{i[ω + exp(iφt)]t},

where φ = F(E/2) and ∂φ/∂t = Ḟ(E/2).

The waveguide consists of two arms –the upper (E/4) and the sec-
ond (E/4) with which the upper is recombined. The lower, or third,
arm, merely expends energy in achieving the phase modulation of the
second arm with respect to the first. This can be achieved by merely
making the length of the second arm change in a sinusoidal fashion (i.e.
by ∂φ/∂t), or it can be achieved electro-optically. Whichever way is
used, one half the total energy of the system (E/2) is spent on achieving
the phase modulation in the particular example shown in Figure 1. This
adiabatic system exhibits an energy-entropy conservation law discussed
in Part III. It is, therefore, important to realize that the entropy change
from input to output of the waveguide is compensated by energy expen-
diture in achieving the phase modulation to which the entropy change
is due.
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Figure 1. Waveguide system paradigm for polarization modulated
(∂φ/∂t) wave emission. This is a completely adiabatic system in which
oscillating energy enters from the left and exists from the right. On en-
tering from the left, the energy is divided into two parts equally. One
part, of amplitude E/2, is used in providing phase modulation; ∂φ/∂t
–this energy is spent (absorbed) by the system in achieving the phase
modulation; the other part, of amplitude E/2, is divided into two parts
of the waveguide equally, so that two oscillating waveforms of amplitude
E/4 are formed for later superposition at the output. Due to the phase
modulation of one of them with respect to the other, 0 < φ < 360◦,
the output is of continuously varying polarization. The choice of wave
division into two parts equally is arbitrary.

One can nest phase modulations. The next order nesting is shown
in Figure 2, and other, high order nesting of order n, for the cases,
∂φn/∂tn, n = 1, 2, 3 · · · follow the same procedure.

The input is again: E = E exp(iωt). The output is:

E = (E/4) exp(iωt) + (E/4) exp{i[ω + exp{i(φ1 + exp(iφ2t))t}]t},

where φ1 = F1(E/4); φ2 = F2(E/4) and ∂φ2/∂t2 = Ḟ1.Ḟ2.

Again, the waveguide consists of two arms –the upper (E/4) and the
second (E/4) with which the upper is recombined. The lower two arms,
merely expend energy in achieving the phase modulation of the second
arm with respect to the first. This again can be achieved by merely
making the length of the second arm change in a sinusoidal fashion (i.e.,
by ∂φ2/∂t2), or it can be achieved electro-optically. Whichever way is
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used, one half the total energy of the system (E/4+E/4 = E/2) is spent
on achieving the phase modulation in the particular example shown in
Figure 2.

Figure 2. Waveguide system paradigm for polarization modulated
(∂φ2/∂t2) wave emission. A completely adiabatic system in which oscil-
lating energy enters from the left and exists from the right. On entering
from the left, the energy is divided into two parts equally. One part,
of amplitude E/2, is used in providing phase modulation, ∂φ2/∂t2 –this
energy is spent (absorbed) by the system in obtaining the phase modula-
tion; the other part, of amplitude E/2, is divided into two parts equally,
so that two oscillating waveforms of amplitude E/4 are formed for later
superposition at the output. Unlike the system shown in Figure 1, the
energy expended on phase modulating one of these waves is divided into
two parts equally, of amplitude E/4, one of which is phase modulated,
∂φ/∂t, with respect to the other as in Figure 1. The energy of the super-
position of these two waves is then expended to provide a second phase
modulated ∂φ2/∂t2 wave which is superposed with the only nondelayed
wave. Due to the phase modulation of one of them with respect to the
other 0 < φ < 360◦, the output is of continuously varying polarization.
The choice of wave division into two parts equally is arbitrary.

Both the systems shown in Figures 1 and 2, and all higher order
such systems, ∂φn/∂tn, n = 1, 2, 3 · · ·, are adiabatic with respect to the
field and Poynting’s theorem applies to them all. However, the Poynting
description, or rather limiting condition, is insufficient to describe these
fields either exactly, or in their diversity and we seek a more precise
analysis.
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A simplification of Figure 1 is shown in Figure 3, below:

Figure 3. Phase Modulation by Three Wave Mixing. A is the generic
form for Figure 1. The waveguide consists of two arms which separate
and recombine. The energy in the lower arm is spent (absorbed) in
achieving the phase modulation of the second arm. The combined output
is the third wave. B indicates how a continuous wave of periodically
varying polarization would appear as discrete pulses to a discriminator
of set polarization. An adiabatic system is represented. In order to
provide an output composed of two vectorial components, one of which
is phase modulated with respect to the other, energy is expended to
provide the delay of one vectorial component with respect to the other,
so that, when superposed at the output, the vectorial components exhibit
a phase modulation, ∂φ/∂t, with respect to each other. In B this phase
modulation is achieved by varying in an oscillatory fashion, the path
traversed by one wave with respect to another prior to superposition at
the output. The output is thus a wave of continuous phase modulation,
0 < φ < 360◦. Although a continuous wave, such a wave of periodically
varying polarization would, nonetheless appear as discrete pulses to a
discriminator of set polarization, and this is indicated to the right of B.
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The Figure 1 system is shown in Figure 3 as a (classical) three-wave
mixer, the energy of one wave being spent (absorbed) on achieving the
phase modulation of one of the other two waves. The output wave, al-
though a continuous wave when all polarizations are considered, exhibits
discrete pulses (right side) when set polarizations are sampled (Figure
3B). The polarization of the output at some representative phase lags is
shown in Figure 4 below.

Figure 4. Modulo-evolution of phase-modulation: The Poincaré
sphere: E(x, y, z) = [A1E1(x, y) + A2(z)E2(x, y)]expik1z; Total Power
= (| A1 |2 + | A2 |2); C = A1(z)/A2(z); angular coordinates of
C : 2χ = arctan(| A1/A2 | −1)(| A1/A2 | +1]; 2ξ = arg(A1/A2). Four
depictions of polarized waves in terms of two vectorial components with
phase lag. The four waves are: linearly polarized vertically at phase
lag 0◦; linearly polarized horizontally at phase lag 180◦; right circularly
polarized at phase lag +90◦; and left circularly polarized at phase lag
−90◦. The polarized waveforms are shown as thick arrows and the vec-
torial components as thin arrows. These four examples illustrate waves
of set polarization and vectorial phase lag, φ = a constant, but do not
illustrate a polarization modulated, ∂φn/∂tn, wave – these illustrations
are merely “snap shots”.
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Now, it is well known that all polarizations can be represented on a

Poincaré sphere. A representative periodic phase modulation is shown

as an example in Figure 5, in which a vector C is rotating through

linear and circular polarizations at a set frequency of rotation. This

period of rotation is shown as ∆t in Figure 6 where eight representative

polarizations are indicated which occur during a periodic sweep-through.

It may again be indicated (Figure 7) that to an analyzer or discriminator

of set polarization, the continuous wave appears as pulses of set frequency

of repetition.

Figure 5. A wave of any polarization can be represented on a Poincaré

sphere, in this case as an arrow centered at the origin. More importantly,

waves of various polarization modulations, ∂φn/∂tn, can be represented

as trajectories on the sphere. In this case a circular trajectory, ∂φ/∂t = a

constant, is arbitrarily shown.
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Figure 6. A representation of phase modulation which traverses con-
tinuously through an arbitrary number (8) of set polarizations in time
∆t. ∂φ/∂t = a constant 0 < φ < 360◦.

Figure 7. A representation of continuous phase modulation in period
∆t; ∂φ/∂t = a constant 0 < φ < 360◦; with eight arbitrary representa-
tive polarization samplings. To an analyzer or material dipole moment
of set polarization, the continuous wave would appear, i.e., would be
sampled as a pulse train.

The particular polarization modulation chosen as an example is, of
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course, arbitrary; the vector, C, can traverse any periodic trajectory
on the Poincaré sphere (Figure 5). Thus the period of modulation can
be faster than the atomic or molecular relaxation time of the medium
through which the energy propagates. In other words, the pulses of
set polarization, constituting the continuous wave of regularly varying
polarization, can have a duration shorter than the relaxation time of
atomic and molecular dipole moments of the same set polarization. Al-
ternatively, the polarization modulation rate can be faster than the re-
laxation rate of some dipole elements, but slower than other elements.
In such cases, there will be dissipationless penetration of some media
and reflectance and/or absorption by other media.

So far, we have considered a completely adiabatic system in which
we have crafted the initial energy into a different form. This might
be considered “energy diversification”. If, however, in the three-wave
mixing paradigm of Figures 1 and 3, the sources of energy from the
modulated and the modulating waves are different, then the modulated
wave may be said to have undergone a form of parametric amplification,
but not of the phase-matched or Manley-Rowe kind. In the familiar
forms of parametric amplification, a phase matching is required and the
frequencies of the three waves are related by the Manley-Rowe relations.
In the present paradigm, however, the phase modulation is concomitant
with a frequency modulation (chirping) and the amplification appears
as a rate of change dEn/dtn increase, where n = 1 (Figure 1), n =
2 (Figure 2), n = 3 · · · etc., or, in other words, an amplification of
angular momentum and/or the differentials of the angular momentum.
Therefore, by increasing the angular momentum and/or its differentials,
it is possible to increase the total energy of the wave without directly
increasing its amplitude. It is thus even possible to generate a field (wave)
of relatively low amplitude but relatively high angular momentum.

In this subsection the system’s paradigm of Figures 1-3 was explored
and shown to be physically different from those paradigm’s presently
used in directed energy tasks. It was also indicated that merely applying
the conservation law of Poynting’s theorem results in limited insight into
the type of signal which can be crafted. In the following subsection a
remedy is found for this need and a remarkable fit is shown between the
paradigm under discussion and a framework developed for the discussion
of other topics in space-time. The aim of subsection 2 is to provide the
appropriate mathematical tool to achieve the further aim of describing
the energy conditioning according to the output of Figure 1.
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2.2. Mathematical Physics Picture

The picture we shall present, pointing out its advantages over other
pictures and frameworks, such as tensor analysis, is that of the theory
of spinors. Spinors were first used in physics in the field of quantum me-
chanics by Dirac in his equation for the electron [30,31], but in their most
general mathematical form, spinors were discovered by Cartan [41,42].
More recently, Penrose has extended the application of these concepts
to classical subjects [37,38]. Only 2-spinors will be discussed in the fol-
lowing.

Before introducing the spinor concept it is first necessary to es-
tablish the physical correspondence. The correspondence will al-
ways be with the system discussed in the previous section in Fig-
ures 1 and 3, namely, a system for producing polarization modula-
tion. That generic system is shown again in Figure 8, but with
the waves labeled w, x, y and z. This will always be the system we
shall have in mind, although the following synthesis can be general-
ized to more complicated systems such as the one shown in Figure 2.

Figure 8. Waveguide system paradigm for polarization modulated
(∂φ/∂t) wave emission as in Figure 1.

With the Figure 8 system in mind, we can define a vector V :

V = Ww +Xx+ Y y + Zz, (2.1)

and also what is known as a null vector, the coordinates of which satisfy:

W 2 −X2 − Y 2 − Z2 = 0, (2.2)
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which is clearly true for the system, it being understood that W,X, Y
and Z are functions of time: W (t), X(t), Y (t) and Z(t).

Suppose, now, we wish to consider null directions at any particular
time. The reason we would want to so, is that if a periodic polariza-
tion modulation is occuring, e.g., as represented on the Poincaré sphere
(Figure 5), then knowing what the polarization of the output is at time
t, does not provide a basis for knowing what the polarization will be at
time t+, nor what the polarization has been at time t−. The abstract
space whose elements are the future [past] null directions is called S+,
[S−]. Thus, in analogy to a world-vector description [37], the two spaces,
S+, S−, can be represented in any coordinate system (W,X, Y, Z) by the
intersection S+ [S−] of a future [past] null cone (Equ. (2)) with the hy-
perplanes W = 1 [W = −1]. In the Euclidean (X,Y, Z), i.e., output
space, S+ [S−] is a sphere with the equation:

x2 + y2 + z2 = 1, (2.3)

and shown in Figure 9.

Figure 9. The relation of the abstract space whose elements are the
future and past null directions, represented by the intersections, S+ and
S−, with the W hyperplanes, to the Euclidean output space spheres S+

and S− –in the instance highlighted– of S− to S−. After Penrose &
Rindler [37].

The sphere S+ [S−] is really the well known sphere of the represen-
tation of complex numbers of which the Poincaré sphere of Figure 5 is
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an example. In moving toward a definition of a spinor, we may replace
the coordinates x, y, z on S+ by a single complex number which can be
represented by the stereographic correspondence between the sphere and
the Argand plane (Figure 10):

Figure 10. Correspondence between the output space sphere and an
Argand plane. After Penrose & Rindler [37].

While performing this projection, it is understood that we have in mind
the projection of the Poincaré sphere to the Argand plane. The plane Σ
is drawn with z = 0 for W = 1 and the corresponding point P (1, x, y, z)
on S+ is mapped to P ′(1, X ′, Y ′, 0) on Σ. The point P ′ is then labeled
by a single complex parameter:

ζ = X ′ + iY ′. (2.4)

If:
z = 1− CA/CP ′ = 1−NP/NP ′ = 1−NB/NC,

then:
ζ = [x+ iy]/[1− z]. (2.5)

Defining by a pair (ξ, η) of complex numbers:

ζ = ξ/η, (2.6)

we may represent the waves of the paradigm in Figure 8 by:

W = (1/
√

2)[ξξ∗ + ηη∗], (2.7)

X = (1/
√

2)[ξη∗ + ηξ∗],

Y = (1/i
√

2)[ξη∗ − ηξ∗],
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Z = (1/
√

2)[ξξ∗ − ηη∗],

so that any complex linear transformation of ξ and η results in a real
linear transformation of (W,X, Y, Z). Thus, a complex linear transfor-
mation of ξ and η can be defined:

ξ 7→ ξ′ = αξ + βη, (2.8)

η 7→ η′ = γξ + δη,

or
ζ 7→ ζ ′ = [αζ + β]/[γζ + δ],

where α, β, γ and δ are arbitrary nonsingular complex numbers.

The transformations (2.8) are spin transformations and imply

ζ = [X + iY ]/[W − Z] = [W + Z]/[X − iY ], (2.9)

and if the spin matrix A is defined:

A =

(
α β
γ δ

)
,detA = 1, (2.10)

then the first two transformations of (2.8) are:(
ξ′ ξ
η′ η

)
= A (2.11)

Thus the spin matrix of a composition is given by the product of the spin
matrices of the factors. Furthermore, any transformation of the (2.11)
form is linear and real and leaves the form W 2−X2−Y 2−Z2 invariant.
For the present purposes this means that the physical paradigm of Figure
8 remains valid. Stated differently, the system of Figure 8 can perform,
physically, a spin transformation.

Due to the unimodular condition:

αδ − βγ = 1, (2.12)

the spin matrix A and its inverse A−1:

A−1 =

(
δ −β
−γ α

)
(2.13)
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give rise to the same transformation of ζ even although they define dif-
ferent spin transformations. Due to the unimodular condition (Equ.
(2.12)), the A spin-matrix is unitary or:

A−1 = A∗, (2.14)

where A∗ is the conjugate transpose of A. These relations have an in-
teresting consequence.

The consequence is that every proper rotation of S+ corresponds
to precisely two unitary spin rotations, one being the negative of the
other. Now we have justified identifying the Poincaré sphere (Figure 5)
representation with S+. The vector C in Figure 5 corresponds to two
vectorial components (Figure 4), one being the negative of the other.
As every unitary spin transformation corresponds to a unique proper
rotation of S+, then any representation of S+ corresponds to a tri-sphere
representation (Figure 11). Therefore, A−1A = ±I, where I is the
identity matrix, i.e., a spin transformation is defined uniquely up to sign
by its effect on the S+ sphere.

Figure 11. Tri-sphere representation of polarization mapping:
ξ1, η1; ξ2, η2 7→ ei2θξ, ei2θη; 0 < θ < π. Note that to a 360◦ excursion of
ξ1, η1 and ξ2, η2 corresponds a 360◦ excursion of ei2θξ, ei2θη, i.e., this is
a mapping for linear polarization. Compare this with Figure 13 below.

However, the tri-sphere mapping shown in Figure 11 (or ξ1, η1 ;
ξ2, η2 7→ ei2θξ, ei2θη; 0 < θ < π) does not describe the output from the
waveguide system shown in Figure 8 at all times, but is merely an instan-
taneous “snapshot”. The tri-sphere mapping is a mapping A−1A = ±I
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and for the continuous rotation of ξ1, η1; ξ2, η2 through 2θ, there is a

rotation of the resultant ξ, η through 2θ. Rather than the Figure 8

paradigm, this mapping is described by the system in Figure 12, below.

Figure 12. Waveguide system paradigm for wave emission in the ab-

sence of polarization modulation. A system in which the energy entering

from the left is partitioned into three waveguide components. Two com-

ponents progress along equal paths top and bottom which are modulated

equally and in phase according to lengths. These two components are

recombined with the third at the output. This is a system described

by the mapping shown in Figure 11 and is linearly polarized. Again,

corresponding to a 360◦ change in the top and bottom lines, is a 360◦

change in the middle resultant line. Note that this is not the case with

the system described by Figure 8, the mapping of which is described in

Figure 13.

It is also a consequence that if A−1A = ±I, then the uni-

tary transformation applied separately of either A or A−1 will not

result in the identity matrix. But if the unitary transformation is

applied twice, then the identity matrix is obtained. From this fol-

lows the curious properties of spinors that corresponding to two uni-

tary transformations of, e.g., 2π, i.e., 4π, one null vector rotation

of 2π is obtained. Such a bi-sphere correspondence is exhibited by

the system paradigm of Figure 8 and is shown in Figure 13.
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Figure 13. Bi-sphere representation of polarization modulation map-
ping and of the system paradigm of Figure 8 (or ξ1, η1 7→ eiθξ, eiθη;
0 < θ < π) exhibiting the property of spinors that corresponding to
two unitary transformations of e.g., 2π, i.e., 4π, a null rotation of 2π
is obtained. Notice that for a 360◦ rotation of the resultant (i.e., the
final output waveguide of the Figure 8 system), and with a stationary
operand (i.e., the top throughput waveguide line of the Figure 8 system),
the operator (i.e., the bottom waveguide throughput line of the Figure
8 system) must be rotated through 720◦.

So far we have seen how a pair, (ξ, η), serve as coordinate for a null
vector (Equ. (2.2)) which we shall call K. The W,X, Y, Z coordinates of
K in Equ.s (2.7) are, however, redundant in that phase transformations:
ξ 7→ eiθξ, η 7→ eiθη, leave K unchanged. Thus the null vector K repre-
sents ξ and η only up to phase. What this means in terms of the system
paradigm of Figure 8 can be demonstrated by reference to the Poincaré
sphere of Figure 5. The ξ, η representation of the vector C, which is a K
vector, gives no indication of the future position of C, i.e., the represen-
tation does not address the indicated hatched trajectory of the vector
C around the Poincaré sphere. But it is precisely this trajectory which
defines the particular polarization modulation for a specific wave. Stated
differently: a particular position of the vector C on the Poincaré sphere
gives no indication of its next position at a later time, as it can depart
in any direction from that position when only ξ, η coordinates are given.

The geometrical structure associated with ξ, η which reduces this
ambiguity up to a sign ambiguity is called a null flag [37]. A spinor,
κ, can be represented, then, by not only a null direction indicated by
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ξ, η or ζ, but also a real tangent vector L indicated in Figure 14.

Figure 14. Relation of a trajectory in a specific direction on an output
sphere S+ and a null flag representation on the hyperplane, W , inter-
section with S+. After Penrose & Rindler [37].

In effect this represents the Poincaré vector and its direction of
change (up to a sign ambiguity). A real tangent L of S+ at P is defined:

L = λ∂/∂ζ + λ∗∂/∂ζ∗, (2.15)

where λ is some definite expression in ξ, η. Making the choice λ =
−(1/

√
2)η−2, gives:

L = −(1/
√

2)[η−2(∂/∂ζ) + η∗−2(∂/∂ζ∗)], (2.16)

whence we see that that knowing L at P (as an operator) means that
the pair ξ, η is known completely up to sign, or, for any f(ζ, ζ∗):

lim
ε→0

[(1/ε)(fp′ − fp)] = Lf, (2.17)

which more accurately (if not yet completely) describes the output of the
system paradigm we are considering (Figure 8), or the periodic trajectory
(polarization) modulation represented on the Poincaré sphere (Figure 5),
because the direction of change (in polarization modulation) is accounted
for.

More succinctly: the tangent vector L in the abstract space S+

corresponds to a tangent vector L in the coordinate-dependent repre-
sentation S+ of S+ (cf. Figure 9). L is a unit vector if and only if K ,



On the distinction between fields and their metric 61

the null vector corresponding to ξ, η, defines a point actually on S+.

Therefore a plane Π′ of K and L can be defined by:

aK + bL. (2.18)

If it is required that b > 0, then (2.18) is a half-plane, Π, bounded by K .

K and L are both spacelike and orthogonal to each other. Π and K are

referred to as a null flag or a flag. The vector K is called the flagpole, its

direction is the flagpole direction and the half-plane, Π, is the flag plane.

We have thus made some progress in defining the polarization mod-

ulation system of Figure 8 represented as a periodic trajectory of polar-

ization modulation on a Poincaré sphere, i.e., the output wave from the

system of Figure 8 is a spinorial object. A defining characteristic of a

spinorial object is that it is not returned to its original state when rotated

through an angle 2π about some axis, but only when rotated through 4π.

Referring to Figure 13: we see that for the resultant to be rotated through

2π and returned to its original polarization state, the operator must be

rotated through 4π. Thus, the waveguide system of Figure 8 produces

spinorial objects as an output emission, and that spinorial object exists

in a different topological space from the input to the system, namely the

covering space, due to the additional degree of freedom provided by the

polarization bandwith which does not exist prior to modulation. (A sim-

ilar statement cannot be made for the operations shown in Figure 11

based on the system shown in Figure 12, which emits waves which are

not polarization modulated).

For example, let us consider the constituent polarization vectors,

Qi, and let C be the space of orientations of Qi. A spinorized ver-

sion of Qi can be constructed provided the space is such that it pos-

sesses a twofold universal covering space C∗, and provided the two

different images, Q1 and Q2 existing in C∗ of an element Qi existing

in C are interchanged after a continuous rotation through 2π is ap-

plied to a Qi. In the case we are considering, C has the topology of

the SO(3) group, but C∗ of the SU(2) group (which is the same as

that of the space of unit quaternions). There is thus a 1 − 2 rela-

tion between the SO(3) objects and the SU(2) objects (Figure 15).
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Figure 15. The left side (SO(3)) describes the symmetry of the top and
bottom throughput waveguide lines in Figure 8; the left side describes
the symmetry of the final waveguide output from the Figure 8 waveguide
system. The additional degree of freedom of the system output (with
respect to input) is provided by the polarization modulation bandwidth.
After Penrose & Rindler [37].

We may take the Qi to be polarization vectors (null flags) and C
the space of null flags. The spinorized null flags, i.e., the output objects
(waves) of the Figure 8 system, are elements of the space C∗, i.e., they
are spin-vectors. Referring to Figures 13 and 15, we see that each null
flag Qi defines two associated spin vectors, which we label κ and −κ. A
continuous rotation through 2π will carry κ into −κ by acting on (ξ, η).
On repeating the process, −κ is carried back into κ, so:

−(−κ) = κ, (2.19)

Any arbitrary spin-vector τ can be expressed as a linear combination of
two spin vectors κ and ω:

{κ, ω}τ + {ω, τ}κ+ {τ, κ}ω = 0, (2.20)

where the brackets {} indicates the antisymmetrical inner product. Thus
any arbitrary polarization can be represented as a linear combination of
spin vectors as shown in Figure 4.

A general representation of spin vectors in terms of components is
obtained by adoption of the normalized pair, o, ι, as a spin frame:

{o, ι} = 1 = −{o, ι}. (2.21)
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As the components of a spin-vector in the spin frame are:

κ0 = {κ, ι}, κ1 = −{κ, o} (2.22)

Thus:

κ = κ0o+ κ1ι. (2.23)

The flagpole of o is (t+z)/
√

2, with flag plane extending from this line in
the direction of x; the flagpole of ι is (t−z)/

√
2 with flag plane extending

from this line in the direction of −x. Therefore, both the output from
the Figure 8 system and the Poincaré sphere exhibiting polarization
modulation of Figure 5 (which is actually in Minkowski tetrad t, x, y, z
form) finds a rigorous representation in the spin frame of Figure 16:

Figure 16. Spin frame representation of spin-vector by flag pole nor-
malized pair representation of o, ι. After Penrose & Rindler [37].

The (antisymmetrical) inner product of two spin vectors can also
be represented in the following way:

{κ, ω} = εABκ
AωB = −{ω, κ}, (2.24)
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where the ε (or fundamental numerical metric spinors of second rank)
are antisymmetrical:

εABε
CB = −εABεBC = εABε

BC = −εBAεCB = εCA = −εCA, (2.25)

and establish a canonical mapping (or isomorphism) between κB and
κB :

κB ↔ κB = κAεAB . (2.26)

To recover the electromagnetic field a potential can be defined:

Φa = i(εα)−1∇aα, (2.27)

where α is a gauge:
αα∗ = 1 (2.28)

and ∇a is a covariant derivative ∂/∂xa but without the commutation
property.

Then the electromagnetic field in terms of the vector potential is:

Fab = ∇aΦb −∇bΦa, (2.29)

and in terms of the spinor, φAB :

Fab = φABεA′B′ + εABφ ∗A′B′ . (2.30)

The spinor, φAB , can also be defined in terms of the vector potential as:

φAB = ∇A
′

A′(BΦB), (2.31)

where the brackets indicate the symmetry operation.

In terms of the three vector fields, E and B, Fab is:

Fab =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 (2.32)

However, defining the field emitted by the Figure 8 waveguide sys-
tem paradigm as a spin object still leaves some incompleteness in the
description. An exact description is obtained by defining a spinor, say
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ωA, which is constant under contravariant and covariant differentiation,
because an adiabatic polarization modulation system (Figure 8) with no
energy dissipation implies such constancy. This required constancy is
described by:

∇(A
A′ω

B) = 0, (2.33)

which is called the twistor equation [38]. A solution for the twistor equa-
tion is:

ωA = ω0A − ixAA
′
π0
A′ , (2.34)

πA′ = π0
A′ ,

where ω0A and π0
A′ are constant spinor fields whose values coincide with

those of ωA and πA′ , respectively at the origin, i.e., ω0A and π0
A′ are the

vectorial components of the output of the system of Figure 8 without
polarization modulation.

Continuing the search for an exact description of the polarization
modulated field emitted from the Figure 8 waveguide system paradigm,
twistor space can be defined with elements:

Zα = [ωA] (2.35)

which determines the output of Figure 8 up to phase (which is the nec-
essary measure of exactness):

Zα 7→ eiθZα. (2.36)

If then we define:

pa = π̄AπA′ , Mab = iω(Aπ̄B)εA
′B′
− iω̄(A′

πB
′)εAB (2.37)

we can define, analogous to Fab:

Mab = µ̄ABεA
′B′

+ µA
′B′
εAB (2.38)

and an angular momentum twistor can be defined:

Aαβ =

(
0 pB

′

A

pA
′

B 2iµA
′B′

)
(2.39)

Āαβ =

(
−2iµ̄AB pAB′

pBA′ 0

)
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The anglar momentum twistor, Aαβ, is the description we have sought
for the output of Figure 8, with the µ ’s defined in terms of the spinors,
ωA, and πA′ , the p’s in terms of the spinor, πA, and the spinors them-
selves in terms of the e.m. field Fab and the vector potential Φ.

We thus arrive at a definition of the output from the system of Fig-
ure 8 more rigorous than any based on Poynting’s theorem alone. Unlike
a tensor formalism, which provides an algebra, the spinor/twistor for-
malism provides a calculus. Furthermore, this definition permits the
conclusion that the symmetry of such an electromagnetic field condi-
tioned (polarization modulated) to be in twistor form is not U(1), but
SU(2).

III. FIELD-METRIC INTERACTIONS

Given: (I) the magnetic monopole as an excited state of the neutrino
and that the Majorana equation for the neutrino/monopole is a special
case of the Dirac equation for the electron providing a (restricted) affine
connection between the electromagnetic field and the space-time met-
ric in that gauge invariance is demonstrated between the two (section
I); and (II) the gravitational (neutrino) metric is composed of twistor
forms and that the electromagnetic field, when polarization modulated,
is in such a twistor form (Section II), we turn, in this section, to ad-
dress the specific ways of obtaining both excited states (monopoles) and
phase changes in the metric of the neutrino system, when the field is
polarization modulated, i.e., the ways in which field and metric can in-
teract. In this field-metric interactive condition, the field is assumed
to be in twistor form, i.e., polarization modulated. Thus those cases,
which do not address energy transfer but rather entropy changes, can be
addressed.

Figure 17 shows the energy-momentum relations for the electromag-
netic field which includes both electric and magnetic current densities,
ge and gm [43-45], i.e., with a reformulation of the Maxwell equations
to include magnetic charge. εr and εi and µr and µi are the real and
imaginary parts of the dielectric constant and magnetic permeability re-
spectively. Other real and imaginary components are as defined in the
figure. The square with inserted “w” indicates an energy exchange. The
circle with arrow indicates an excursion in metric parameter space, i.e.,
what we shall call an entropy exchange. Thus the figure describes the
electromagnetic field affinities under polarization modulation in the case
only of entropy exchanges.
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Figure 17.
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Figure 18.
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Figure 18A describes the same affine relations of the electromagnetic
field and the neutrino or metric field of space-time. The excited state of
the neutrino (the magnetic monopole) for an entropy exchange between
fields and involving polarization modulated fields is represented as: n∗.
The phase-changed state of the neutrino for an energy exchange between
fields is represented as: n+ φ. In Figure 18B the connection coefficients
and torsion forms are shown abstracted from Figure 18A. Forms 2 and
4 describe the conditions for the occurrence of Berry’s phase [7-18], i.e.,
transport around a closed curve in the presence of a vector potential in
parameter (momentum) space. Forms 6 and 8 describe the conditions for
the occurrence of the Aharonov-Bohm effect [48-61] (and the related Alt-
shuler, Aranov and Spivak (AAS) effect [46,47]), i.e., transport around
a closed curve in the presence of a vector potential in ordinary space.
Both the Berry and Aharonov-Bohm effects result in a change in phase
of the wavefunction.

The theoretical justification for implicating neutrino states, i.e.,
states of the metric, in field energy transfer lies in the requirement
for entropy-energy balance conservation. The need for conservation of
information-energy during energy transfer has been shown by Balian
[62-8] and Remler [69-70]. Balian has shown that the Hilbert space
representation of quantum exchanges is discrete and does not retain all
aspects of the Liouville-Hermite representation which is continuous and
it is in the continuity wherein the information content lies. Furthermore,
the symmetry of the laws of space-time (the metric) and of angular mo-
mentum was indicated in the principle of reciprocity of Born [71] and,
more recently, by Ali [72].

The required conservation condition for energy-entropy balance is:

∆S + ∆E = ΞS+N . (3.1)

In Figures 17 and 18 an energy transferral is distinguished, represented
by a “w”, from: an entropy transferral, represented by a circle and arrow.
Thus, in Figure 18B, the exchanges 1, 3, 5 and 7 are energy transferrals,
and 2, 4, 6 and 8 are entropy transferrals. Now describe these transfer-
rals in matrix notation, and designate A and B to be fields, and C to
be discrete, noncontinuous, space-time, metric elements. If the case of
energy transfer is considered, i.e., 1, 3, 5 and 7 in Figure 18B, and letting
an asterisk “∗” indicate an excited state, then the total representation
is: A∗ A A

A A∗ A
A A A∗

→
A

A
A

 (3.2)
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B
B
B

→
B∗

B∗
B∗


C

C
C

→
C C C
C C C
C C C


If the A and B fields are considered independently of the metric element
C, then although EA − EB = 0 and energy is conserved, yet SA −
SB 6= 0, so consideration of the A and B fields alone does not indicate
conservation of ΞS+N . However, if the fields A and B, and also the
metric element C, is considered, then this energy transfer is conserved
with respect to both E, S and ΞS+N .

Considering now the case of entropy transfer, or 2, 4, 6 and 8 of
Figure 18B. The representation is:A∗ A A

A A∗ A
A A A∗

→
A

A
A

 (3.3)

B
B
B

→
B B B
B B B
B B B


C

C
C

→
C∗

C∗
C∗


If the A and B fields are considered independently of the metric element
C, then although SA − SB = 0 and entropy is conserved, yet EA −
EB 6= 0, so consideration of the A and B fields alone again does not
indicate conservation of ΞS+N . The lack of energy conservation in these
situations is usually ascribed to the energy loss to the medium through
which the field passed while being “conditioned” by the medium into
angular momentum form. This energy loss is clearly accounted for in
the adiabatic waveguide system of Figure 8 –the action of the energy-
expending lines producing the polarization modulation is described by
the C → C∗ condition of (3.3). The energy loss occurring in an electric
field (i.e., an A field in (3.3)) when conditioned to generate a magnetic
field (i.e., a B field in (3.3)), when the electric field is rotated by a
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medium, is balanced by an energy gain in a C element. That is to say, the
excited state of n in 2, 4, 6 and 8 of Figure 18B is due to entropy-energy
balance requirements. This excited state is also a metrical concept of
statistical mechanics rather than a force or energy concept of quantum
mechanics. In this way information theory notions define the space-time
metric (cf. also Harmuth [73]).

The concept of entropy-energy balance denies both the possibility
of the transfer of energy without a balancing transfer of entropy, and
the transfer of entropy without a balancing transfer of energy. The
entropy-energy balance does not, however, constrain two-field interac-
tions, but rather: three-object interactions of two fields and their metric.
The rationale for the unification of gravity (the metric) and forces lies,
therefore, in quantum and statistical mechanical considerations, rather
than quantum mechanical considerations alone. Unification of gravity
and electromagnetic forces therefore addresses the energy-entropy con-
nection. Thus the “excited state” of the neutrino (i.e., the magnetic
monopole) is the result of the translation of energy into a form not
usable as force but rather into metric “distortion” or reweighting. Ac-
cording to the viewpoint presented here, the magnetic monopole is not
a “force” or energy concept. Therefore, it is not appropriate to search
for the magnetic monopole as if it were.

The following remark is appropriate. After the eighteenth century
physicist, Pierre de Maupertius, survived an expedition to Lapland to
verify Newton’s theory on the flattening of the earth near the poles,
Voltaire joked to him: “Vous avez confirmé dans les pleins d’ennui ce
que Newton connût sans sortir chez lui”.

CONCLUSIONS

The analysis was based on the system of Figure 2 but can be gener-
alized to Figure 3 and higher order systems, i.e., ∂nφ/∂tn, n = 1, 2, 3, ...
Extrapolation to higher order moments is thus possible. For example,
Curtis [74] demonstrated that it is possible to obtain multipole spinors
as elements of the tensor algebra over the ten dimensional vector space
of spinors satisfying the twistor equation. These multipoles are identical
to those of Geroch [75,76].

The fields generated by the polarization modulating system of Fig-
ure 2 are broken in symmetry with respect to a system with feedback.
Similarly, the system of Figure 3 exhibits broken symmetry with respect
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to the system of Figure 2. Thus, the generalized system exhibits su-
persymmetry. It is significant, therefore, that supersymmetry was first
realized nonlinearly on Majorana spinors. The nonlinear form of the
O’Raifeartaigh model [77] is the simplest interacting model consisting of
3 chiral superfields and their anti-chiral partners which manifest breaking
of supersymmetry [78]. The spontaneous breakdown of supersymmetry
and internal symmetry has been studied for the interaction of N chiral
scalar superfields [77]. It is now known that a spontaneous breakdown of
supersymmetry does not occur for the interaction of a chiral scalar super-
field with itself, but that it may occur for the interaction of a nonchiral,
or gauge, superfield with two scalar superfields. The Lagrangian for N
chiral scalar superfields in the absence of any gauge fields is a simple
generalization of the Wess-Zumino Lagrangian [79] for one chiral scalar
superfield [77]. Future work will address these results with respect to
the generalized ∂nφ/∂tn, n = 1, 2, 3, ... polarization modulated system.

The twistor formalism is only exactly applicable to the electromag-
netic field conditioned by polarization modulation. Stated differently:
a polarization modulated wave is only described exactly by an angu-
lar momentum twistor. The electromagnetic field without polarization
modulation conditioning is well-known to be of U(1) symmetry. After
polarization modulation conditioning, it is of SU(2) symmetry and thus
of non-Abelian Yang-Mills form. Conditioning the U(1) electromagnetic
field into SU(2) form in effect adds a degree of freedom to the field.

The major conclusion is that the relation of local fields and their
metric is governed by an energy-entropy conservation condition modeled
by an adiabatic polarization modulation waveguide. Experimental test-
ing of this theory, in particular, the relations shown in Figure 18, can
procede at radar, infrared and visible frequencies. While the necessary
speed (∆t for 0−360◦ traversal, cf. Figure 7) of polarization modulation
at optical frequencies (in the picosecond range) is somewhat difficult to
obtain, it is easily obtained at radar and infrared frequencies.
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(Manuscrit reçu le 25 juillet 1987, modifié le 15 avril 1988)

RESUME. Une nouvelle description du monopôle est présentée. Elle
est fondée sur : 1) une séparation entre les champs, distincts du
milieu dans lequel ils existent, et les relations entre champs et mi-
lieu, 2) le monopôle magnétique défini comme un état excité du
neutrino (Lochak). A l’aide du formalisme des torseurs, il est
démontré que l’interaction entre les champs électromagnétiques et
la métrique d’espace-temps (métrique gravitationnelle ou éther) est

un difféomorphisme du second ordre du potentiel vecteur ~A sur
la métrique, donné par le concept de paire neutrino-antineutrino
(Lochak).


