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ABSTRACT. Realistic explanation of wave-corpuscle duality of par-
ticles is given qualitatively and quantitatively, based on proper
methodology. The experiments on particle diffraction and Wheeler’s
delayed-choice experiments unambiguously demonstrate that an in-
dividual particle has no wave properties, both particle diffraction
and particle interference being of essentially statistical nature. It
is shown that those wave phenomena are determined by the same
formal wave equation that holds for any genuine physical waves, but
is a probability-related one in essence.

RESUME. Une explication réaliste de la dualité onde-corpuscule
des particules est donnée sur les plans qualitatif et quantitatif, à
partir d’une méthodologie correctement adaptée au problème. Les
expériences de diffraction de particules et les “delayed choice ex-
periments” de Wheeler montrent sans ambigüıté qu’une particule
individuelle n’a pas de propriétés ondulatoires, la diffraction et
l’interférence de particules étant toutes deux fondamentalement de
nature statistique. Nous montrons que ces phénomènes ondula-
toires obéissent à la même équation formelle qui régit toute onde
réellement physique, tout en étant reliée aux probabilités de façon
essentielle.

1. Introduction

The issue of wave-corpuscle duality of particle behavior has in-
evitably arisen, when the wave properties of particles, suggested by L. de
Broglie, had been confirmed experimentally. Particles seem to have, ac-
cording to the experiments, both corpuscular and wave properties. The
former are revealed when particles move in sufficiently definite paths,
the latter manifest themselves through such typical wave phenomena as



178 L. Mayants

diffraction and interference. One usually concludes from the experiments
that both are inherent in every individual particle, and it is precisely
this inconceivable to common sense conclusion which causes the bewil-
derment : How can one and the same thing both move as a particle and
propagate as a wave ?

The issue could be settled neither in the framework of classical
physics nor in that of conventional quantum mechanics (CQM), and
has provoked long-lasting debates that have not ceased till now [1]. The
pile of works dealing with it and related matters is getting bigger and
bigger, involving new ideas, thought experiments, real experiments, etc.,
and no end seems to be foreseen to this even ongoing process. Many
works reflect the perplexities related to the understanding of quantum
mechanics (QM) and the confusion caused by Bell’s inequalities, but
none of them answers the vital question of why QM yields correct pre-
dictions, whereas it seems incompatible with the idea of real existence
of the outer world. And that is not at all by accident.

The fact of the matter is that taken for granted by most physicists
CQM actually consists of two quite different parts. The first one re-
sponsible for predictions contains specific mathematical methods used in
practical calculations and is basically correct. The second part of CQM ,
which is its interpretation as the theory of measurements, is wrong, the
defects of CQM as a whole being of essentially methodological nature
[2].

The importance of proper methodology for clearing up seemingly
unsolvable issues may perhaps be well-known to many. Of special inter-
est now is the case of QM . Recently the methodological clue was found
that made it possible to get a straightforward construction of probabilis-
tics (the science of probability) and probabilistic physics (the application
of probabilistics to physics), starting with the explicit definition of proba-
bility [2]. Two particular interconnected domains of probabilistic physics
are classical statistical mechanics and probabilistic quantum mechanics
(PQM). While the mathematics used in PQM is basically the same
as in CQM , PQM has made it possible to clear up many issues whose
solution might seem rather hopeless [2]. The methodological principle
meant is as simple as one only can be, and perhaps just because of that
its importance (were it known) has slipped great thinker’s attention. It
reads : It is necessary to distinguish strictly between concrete objects
and abstract objects.

Unlike concrete objects, abstract objects do not exist in reality and
merely are images of the former ones. But the names of both generally
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coincide, which often leads to a muddle and unceasing debates. This
fact explains why that methodological principle is of such an extreme
importance.

Any experiment is performed on concrete objects. Hence, experi-
mental statistics deals just with them. Theoretical considerations ob-
viously concern abstract objects. Hence, so does probability theory.
Experimental statistics is linked to probability theory by the fact that
statistical (relative) frequencies of events are, in a large enough number
of random tests, the approximate values of the pertinent probabilities.

PQM ’s methodology has easily explained (qualitatively) the wave-
corpuscle duality of particle behavior in a fully realistic way [2]. A careful
examination of particle diffraction (PD) removes the above mentioned
bewilderment. It turns out that there is no such one (real) thing that
both moves as a particle and propagates as a wave. It is precisely ev-
ery concrete particle which moves as a particle, as it should, whereas
no real thing involved in PD does propagate as a wave. The so-called
“wave properties” are connected with the probability distributions re-
lated to pertinent abstract particles, which are revealed (approximately)
through the experimental statistical distributions of the corresponding
concrete particles, in a long enough series of experiments (random tests).
If a few concrete particles only are used in a diffraction experiment, no
distinguishable diffraction pattern appears. So, only (real) corpuscular
properties are inherent in every individual (concrete) particle, whereas
the (unreal) “wave properties” are related to abstract particles. And this
fact removes the above stated challenge to common sense.

In the present paper, PD is discussed in more detail, and its quan-
titative explanation is outlined. The particle interference (PI), which
can be given a similar (realistic) qualitative explanation, is examined in
connection with Wheeler’s delayed-choice experiments [3], and its quan-
titative explanation also is outlined.

2. The nature of PD

Diffraction is known to occur when a series of any kind of running
waves of one and the same frequency encounters impermeable obsta-
cles, the diffraction pattern being determined mainly by the diffracting-
system-incident-beam geometry and the wave length of the wave in-
volved, no matter what its nature is. For a genuine physical wave pro-
cess, the diffraction pattern, i.e., the spatial intensity distribution, is
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governed mainly by the pertinent wave equation and boundary condi-
tions. The wave equation for any wave process is of one and the same
form

∇2f = (1/v2p)∂2f/∂t2, (1)

where ∇ is del operator, ∇2 is Laplacian, vp is the phase velocity of
waves, and f is a pertinent quantity whose magnitude squared, | f |2,
determines the diffraction pattern : the intensities in the latter are pro-
portional to the corresponding values of | f |2. Hence, the diffraction
patterns should also be alike for any wave processes, provided the re-
spective boundary conditions coincide, even though the nature and type
of the waves may be altogether different, as in the cases of acoustic and
light waves, for instance. This should obviously be true for PD as well,
which brings up the question : What is the nature of PD ? If the conven-
tional belief that wave properties are inherent in an individual (concrete)
particle is correct, then another question arises : Does it mean that a
concrete particle has some property f obeying (1) ?

To answer this question, let us recall that a diffraction pattern is
given by the solution to (1). Therefore, f should have first- and second-
order derivatives with respect to spatial coordinates and, hence, must
be continuous in space. If now the answer to the question is “yes”, the
diffraction pattern must remain the same, regardless of the intensity of
the beam, gradually weakening as the beam does. But that is not the
case, as the experiments show.

The well-known fact that a diffraction pattern does not depend on
the particle beam intensity should be understood correctly. That is only
true when the total energy diffracted is the same. This means that the
weaker the beam, the longer the experiment duration should be, in order
to get the same picture. But if only a few concrete particles are used, no
continuous diffraction picture appears at all. Instead, some point marks
on the display-screen can be noticed, which are left by the concrete
particles involved. Thus, the answer to the above question is “no”. No
specific wave property f is possessed by a concrete particle, which might
obey (1). And what is more, actually there is no diffraction pattern
for particles at all in the true sense of the notion. When the number
of concrete particles is small, the picture obtained is not obviously a
diffraction patter –it is not continuous, and the point marks left by the
concrete particles are somehow dispersed over the screen. When the
number of the concrete particles involved is large enough, the picture
looks like a diffraction pattern, but actually it is not, for it consists of
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point marks as well. The experimental made-of-points diffraction pattern
may, however, be regarded as an approximation to some continuous one
which represents the solution to a certain wave equation (1) involving a
certain quantity f . This is true for any particles, including photons.

New questions now arise : What is equation (1) in case of particles
? Does it describe some physical process or something else ? What is
the meaning of the quantity f there ?

Before answering the questions, let us dwell on PD-experiments
a little more. An experiment performed with a very weak intensity
beam should last continuously for some long time T in order to get
a diffraction pattern of desirable brightness. Suppose the experiment is
interrupted a large number n of times, so that in every time interval
τj (j = 1, 2, ..., n + 1) only a few concrete particles pass through the
diffractometer. If the conditions of the experiment are the same for
all τj , and Στj = T , then the final result will be practically the same
as for the continuous experiment. This result does not depend on the
durations of the intermissions between the intervals either, and if it is
possible to record the results for each interval on a separate display-
screen and then combine them for all the intervals, the pattern obtained
will practically coincide with one for continuous experiment of the same
duration, even though on every screen separate point marks only may
be found. And what is more, suppose the experiment is performed on
a separate diffractometer in every interval τj . If the conditions of the
experiment are the same for all n+1 diffractometers, the combined result
will also reproduce practically the same diffraction pattern.

These considerations show that a diffraction experiment on particles
looks like a typical statistical experiment, in which concrete particles,
being subjected to independent random tests, hit different points on the
screen by chance ; the statistical (relative) frequency of hitting an area
in the vicinity of a point being an approximate value of the probability
that a particle will do so. Thus, the quantitative explanation of PD
is a probabilistic problem in physics and should, hence, be treated by
methods of probabilistic physics, particularly by those of PQM [2].

3. Quantitative treatment of PD

In a PD-experiment we deal with a beam of concrete particles en-
countering impermeable obstacles and the experimental statistical distri-
bution of the coordinates of diffracted concrete particles. In the theoreti-
cal treatment of PD we are interested in finding the pertinent probability
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distribution of the coordinates for the corresponding abstract diffracted
particle. It follows directly from PQM ’s reasoning [2] that the probabil-
ity distributions of physical quantities for an abstract physical system,
which conform to real motion of the corresponding concrete physical
systems, are determined by the solutions to the pertinent Schrödinger
equation

Êψ = Ĥψ (2)

In the PD-experiment, a concrete particle is free in any part of
space available to it. Hence, (2) should refer to abstract free particle.
In the general case, the Hamiltonian function H of a concrete (classical)
free particle is

H = c(p2 +m2
0c

2)1/2 (3)

where m0 and p are its rest mass and momentum magnitude, respec-
tively, and c is the ultimate velocity of special relativity. Since in the
coordinate-time representation the operators for particle moment pα
(α = x, y, z) are p̂α = −ih̄ ∂/∂α and Ê = ih̄ ∂/∂t, (2) takes the form

c(−h̄2∇2 +m2
0c

2)1/2ψ = ih̄ ∂ψ/∂t (4)

We get from this, for ∂/∂t and ∂/∂α commute (α = x, y, z),

h̄2c2∇2ψ = m2
0c

4ψ + h̄2∂2ψ/∂t2 (5)

Recall now that diffraction refers to a stationary state of the abstract
free particle, determined by a definite value E of energy and, hence, the
corresponding definite value p of the momentum magnitude, connected
with E by p2 = (E2 −m2

0c
4)/c2. Therefore, h̄2∂2ψ/∂t2 = −E2ψ, and

ψ = −E−2h̄2∂2ψ/∂t2. Substituting this for ψ in the first term of the
right-hand side of (5), we obtain

∇2ψ = c−2(1−m2
0c

4/E2)∂2ψ/∂t2 (6)

By introducing (E2 −m2
0c

4)/c2E2 ≡ 1/v2p, we finally get

∇2ψ = (1/v2p)∂2ψ/∂t2, (7)

i.e., the wave equation (1) with

vp = E/p (8)
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defining the phase velocity and f = ψ.

Thus, we now have answers to all the queations raised in Sect. 2.
Equation (7) is one we have been seeking. It does not describe a physical
wave process, but is related to the probability distribution of particle
coordinates in a stationary state of the corresponding abstract particle
with definite values of energy and momentum magnitude. Function ψ in
it is an auxiliary mathematical quantity whose magnitude squared, | ψ |2,
determines the probability density ρ of particle coordinates, according
to the equation : | ψ |2 /(ψ,ψ) = ρ(x, y, z).

Equation (7) is valid for any particles, for it does not contain any
parameters characterizing their nature. It follows from the correspond-
ing Hamiltonian equations, (3), and E = H that the constant velocity
magnitude v = (v2x + v2y + v2z)1/2 of a particle related to the state under
consideration is

v = [(∂H/∂px)2 + (∂H/∂py)2 + (∂H/∂pz)
2]1/2 = c2p/E (9)

In view of this and (8), we get

vvp = c2 (10)

Equation (7) is both a wave equation and a modified Schrödinger
equation (4). Any solution to (4) is a solution to (7) as well. Consider,
for instance, a solution to (4) of the form

ψ(x, y, z) = A exp[2πi(pr − Et)/h], (11)

where p and r are the momentum vector and radius vector of a particle,
respectively. Then the pertinent solution to (7) is

ψ(x, y, z) = A exp[2πi(nr/λ− νt) (12)

where λ and ν are the “wave length” and “wave frequency”, respectively,
and n is the unit vector in the “propagation direction”. By comparing
these two solutions, which actually are merely two different representa-
tions of one and the same solution in respective terms, we get λ = h/p –
the famous de Broglie relation defining the “wave length”– and ν = E/h,
which is the definition of “frequency”. In view of (8), the usual condition

vp = λν (13)
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is obviously satisfied.

Important practical methods of the diffraction pattern calculation
are based on the Huygens-Fresnel principle applicable to any physical
waves. At the same time, since a diffraction pattern is determined by
the pertinent wave equation (1) with boundary conditions, i.e., by the
mathematical description of the physical system involved, to find the
diffraction pattern it would be enough to solve the corresponding math-
ematical problem. However, the problem is generally very complicated,
and only some simple cases can be solved analytically. It is essential,
therefore, that the practically verified principle of Huygens-Fresnel has
been proved to result directly from the corresponding wave equation [4].
Hence, the practical methods based on that principle can be regarded as
the techniques for the approximate solution of the corresponding mathe-
matical problem, regardless of its origin. This means that the calculation
of PD-patterns for any particles can also be performed with the aid of
these methods that have originally been developed for the cases of sound
and light [5], [6]. This concerns also the case of the famous “two-slit
Gedankenexperiment” which is a typical diffraction experiment as well
[7].

4. Wheeler’s delayed-choice experiment and the nature of PI

The particular delayed-choice experiment proposed by Wheeler [3]
deals with photons, but its possible results are to be valid for any parti-
cles. Here are its outlines.

An appropriate device allows one to perform the experiment in two
different versions which will be called for short : “open” and “closed”. In
the “open” version, a photon encounters a beam splitter (BS) and can
either pass through it or be reflected at it in a perpendicular direction.
A detector at the end of each route counts the number of photons that
have passed it. This version, hence, displays the corpuscular properties
of photons.

In the “closed” version, appropriate mirrors put on both above
routes make them change their directions and intersect at a second BS,
which each photon can again either pass through or be reflected at in
a perpendicular direction. It turns out that the ratio of the numbers
of photons passing both final routes, registered by corresponding detec-
tors, depends on the difference between their optical paths (or phases),
which implicates a kind of interference. This version thus reveals the
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wave properties of photons. The fact that interference occurs when even
one only photon is in the apparatus at any time, is regarded usually as
the evidence that wave properties are possessed by an individual pho-
ton (particle) which interferes with itself and, hence, should travel both
routes simultaneously.

The results obtained from both versions seem incompatible : the
“open” version demonstrates that a photon can travel only one of two
available routes ; the “closed” one implies that it should do both routes
simultaneously.

Wheeler’s delayed-choice experiment was supposed to answer the
question : What is in reality ? Does a photon travel only one of two
available routes or both ? His idea was to choose which of two versions
was to be performed by moving the second BS in or taking it out, after
the photon had already encountered the first BS. In Wheeler’s words,
this will have “an unavoidable effect on what we have a right to say
about the already past history of that photon”.

Subtle delayed-choice experiments have been realized on photons
[8], whose results may seem strange to one who does not distinguish
between concrete and abstract objects ; but one who does can easily
predict them. It has turned out that the outcome does not depend on
whether the choice is made before or after the photon has encountered
the first BS. This means, if we recall that the experiments are carried
out on concrete photons, that “interference” occurs while each concrete
photon travels just one path. This fact decisively disproves the above
mentioned common prejudice that in case of interference each photon
travels both routes simultaneously and interferes with itself. And that
is the experimental answer to Wheeler’s question.

So, the delayed-choice experiments realized also prove unambigu-
ously that concrete photons have corpuscular properties only. But what
then is the nature of the interference-like effects observed in those ex-
periments ? To answer this question we should recall that these effects
are revealed through the dependence of the ratio of the numbers of con-
crete photons passing the two final routes on the performance of the
“closed” version. This indicates that “interference” is of essentially sta-
tistical nature, just like in the case of PD, the experimental statistical
data obtained on concrete photons conforming to pertinent probability
distributions related to the corresponding abstract photons. Different
performances of the “closed” version result in different experimental sta-
tistical distributions corresponding to different probability distributions,
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and that is the qualitative explanation of the “interference” in the case
under consideration.

Now, since the statistical data in delayed-choice experiments are
registered by detectors disposed on the final routes behind the pertinent
devices, the particular processes proceeding within the devices them-
selves are of no immediate interest to us –the latter are merely “black
boxes”. Of interest to us are only the parts of the “open” and “closed”
systems closely adjacent to the corresponding detectors, and photons
can be regarded as free particles there. This fact drastically facilitates
the treatment of the problem and allows one to deal with the general
case valid for any particles.

The delayed-choice experiments can schematically be represented
now as follows. Let two interswitchable devices I and II correspond to
the above “open” and “closed” versions, respectively. Device I emits
concrete free particles of one kind in two different directions 1 and 2 at
random. The numbers of particles emitted for a certain time interval in
each direction is recorded by the corresponding counters C1 and C2. If
the time interval is large enough, the ratios of these numbers to their
sum give the measured (approximate) values of the corresponding proba-
bilities. The concrete free particles recorded belong to the corresponding
subsets A1 and A2 of the whole set A = A1 +A2 of particles emitted by
device I, whereas the probabilities are related to the pertinent abstract
free particles. If the emission is so weak that there is a long enough time
interval between any two consecutive counts, the records made by both
counters never coincide in time, and it is precisely this fact which has
been found when performing the “open” version on photons.

Device II, whose use results in some interference-like effects, emits
concrete free particles of the same kind in two different directions 3 and
4 at random, these particles belonging to the corresponding subsets A3

and A4, respectively, of the whole set A′ = A3 +A4 of particles emitted
by the device. The relative numbers of concrete particles recorded by the
corresponding counters C3 and C4 for a long enough time interval are
the measured (approximate) values of the corresponding probabilities
related to the abstract free particles for device II.

In performing the experiment, one can arbitrarily switch either de-
vice on at any time, the results obtained obviously being determined
by which one of them was switched on at the very last moment when
the recorded concrete particles were emitted. This explains the primary
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result of the delayed-choice experiments realized, namely, that delaying
one’s choice of the experimentation mode has no effect on the outcome.

5. Quantitative treatment of PI

If subset A3 in Wheeler’s case consists of concrete photons that
either passed through or were reflected at both BS’s, then subset A4

does of concrete photons that either passed through the first BS and
were reflected at the second one or vice versa. The interference-like
effects on either final route can then be treated as if the corresponding
concrete photons have been emitted by two different sources.

Considering the general case of any particles, we assume there are
two sources, a and b, emitting at random concrete free particles of one
kind (with equal energies E and, hence, equal momentum magnitudes
p), which are elements of two respective sets Sa and Sb. A question
now arises : What is the probability distribution of the free particle
coordinates in this case ?

To answer it one should find the ψ-function describing the state of
the abstract free particle corresponding to the set S = Sa + Sb, which
conforms to the same values of E and p.

If there is only one source, a or b, and, hence, only one set, Sa
or Sb, the state of the corresponding abstract particle is described by
ψa or ψb, respectively, which are of the form given in (11)-(12). The
ψ-function sought should be a solution to the Schrödinger equation (4)
with the same values of E and p, and hence, a solution to the wave
equation (7) with the pertinent values of λ and ν. At the same time, in
the absence of either source, it should give a description of the state of
the remaining abstract particle. The ψ-function ψ = ψa + ψb satisfies
both requirements and, hence, can be taken as the one sought.

Let us write ψa = A exp(ifa) ; ψb = A exp(ifb). Then

| ψ |2= 2 | A |2 [1 + cos(fa − fb)] (14)

Now, in the general case, f = 2π(nr/λ − νt) + ϕ, where ϕ is a phase.
Hence, fa − fb = 2π(na − nb)r/λ + ∆ϕ, where ∆ϕ = ϕa − ϕb, and we
have for the probability distribution of particle coordinates

ρ ∝ {1 + cos[2π(na − nb)r/λ+ ∆ϕ]}, (15)
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instead of a uniform probability distribution in case of one source. And
this quantitative explanation of PI is in line with all the experimental
results known. In Wheeler’s experiments, na = nb. Hence, for any r,

ρ ∝ 1 + cos ∆ϕ (16)

6. Concluding remarks

The realistic explanation of PD and PI outlined above provides
quantitative probabilistic predictions concerning both interconnected
phenomena. The phenomena themselves turn out to be of merely statis-
tical nature –they can be revealed only when a large enough number of
concrete (individual) particles are subjected to the corresponding prop-
erly arranged random tests. The noticed in Sect.1 connection between
probability theory and experimental statistics predetermines that the
experimental statistical distributions of any random variables, in par-
ticular, of any physical quantities, should be in line with the calculated
probabilistic predictions, provided the latter are correct. If, for instance,
the probability for a particle to hit some spot on the screen is exactly
zero, no concrete particle can do so. And whenever the PD and PI ex-
periments are carried out, their results indeed are generally in agreement
with the predictions, which corroborates the correctnes of the probabilis-
tic treatment presented here.

It should be emphasized again and again that no mystic “wave-
corpuscle duality” inherent in a concrete particle exists in reality. A
concrete particle possesses corpuscular properties only, whereas the so-
called “wave properties” are connected with the probability distribution
of particle coordinates in the pertinent state of the corresponding ab-
stract particle, and hence, refer to the latter. Thus, there is no contra-
diction between the corpuscular properties of concrete particles which
do exist in the real world and the “wave properties” related to an ab-
stract particle that only exists in our imagination (in our mind), the
wave equation (7) being related to the latter, but not to some genuine
physical process.

One should also notice that in a stationary state described by a solu-
tion to (4), a definite value of the momentum magnitude p corresponds to
the abstract particle involved, which is determined by the energy value
E for the state, whereas the momenta px, py, and pz have only defi-
nite probability distributions. This means that all the concrete particles
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gradually forming the PD-pattern have one and the same momentum
magnitude (and, hence, velocity magnitude), while having generally dif-
ferent momenta pα satisfying the condition Σp2α = p2.
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