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A quantum random walk
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ABSTRACT. A discrete version of the Feynman path integral for-
malism is introduced in terms of a quantum random walk. The
amplitude A(p) of a discrete path p in phase space is generated by a
transition amplitude Ajk where j and k are integers. The resulting
matrix Ajk is called a Dirichlet matrix since it is closely related to
a Dirichlet series. It is shown in Section 1 that in order to compute
certain probabilities at a discrete time r we must find the entries of
the rth power of Ajk. This is accomplished in Section 3 by finding
the eigenvalues and eigenvectors of Ajk. In Section 4 we compute
probabilities for the specific example of a square lattice. We observe
in Section 3 that the eigenvalues of Ajk can be degenerate and in
Section 5 we compute their multiplicities.

RESUME. Nous introduisons, en termes de marche aléatoire, un for-
malisme qui s’apparente, pour un temps discret, à celui de l’intégrale
fonctionnelle de Feynman. L’amplitude A(p) d’une trajectoire à
temps discret dans l’espace de phase est générée par une amplitude
de transition Ajk où j et k sont des entiers. La matrice Ajk qui
en résulte est appelée matrice de Dirichlet en raison de son étroite
relation avec une série de Dirichlet. Nous montrons au paragraphe
1, que pour calculer certaines probabilités au temps discret r, il nous
faut trouver les coefficients de la r-ième puissance de Ajk. Cela est
accompli au paragraphe 3 où nous trouvons les vecteurs et valeurs
propres de Ajk. Au paragraphe 4, nous calculons les probabilités
dans l’exemple particulier d’un réseau carré. Nous observons, au
paragraphe 3 que les valeurs propres de Ajk peuvent être multiples
et nous calculons les multiplicités au paragraphe 5.
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1. A random walk

Let D = {u0, u1, . . . , un−1} be a set of unit vectors in R2 where the
angle between ui and ui+1 is 2π/n. A point x ∈ R2 is a lattice point

if x =
∑n−1
i=0 aiui where ai is a nonnegative integer, i = 0, 1, . . . , n − 1.

For example, if n = 4 we have a square lattice and if n = 6 we have
a triangular lattice in R2. Denoting the lattice points by L, we call
S = L×D a discrete phase space. Suppose a quantum particle is initially
at the origin 0 = (0, 0) moving in the direction v0 ∈ D. After one time
step the particle will arrive at the point v0 ∈ L. The particle will then
move in one of the n directions v1 ∈ D and after a second time step it will
arrive at the point v0 +v1 ∈ L. This motion will continue until it arrives
at a point

∑r−1
i=0 vi after r time steps. Thus the particle moves from one

lattice point to an adjacent lattice point in each time step. We call a
sequence (x0, v0), . . . , (xr, vr) in S where xk+1 = xk+vk, k = 0, . . . , r−1,
an r-path. The r-paths give the allowable paths along which a particle
can travel.

We are mainly interested in the probability that a particle travels
from (0, v0) to (xr, vr) in S; that is, the probability that a particle arrives
at xr and then moves in the direction vr after r time steps given that it
was initially at 0 moving in the v0 direction. For a classical random walk
we would begin by postulating a probability (or transition probability)
that the particle moves from one lattice point to its neighboring lattice
points. We would then define the probability that the particle travels
along an r-path to be the product of the probabilities of the one-step
components of the r-path. This amounts to assuming that the motion
gives a Markov chain. Then the probability that the particle arrives at xr
in r time steps is the sum of the probabilities of all r-paths terminating
at xr [2]. But since this is a quantum random walk, we must follow the
tenets of quantum mechanics and work with probability amplitudes [5,
7, 11]. Roughly speaking, a probability amplitude is a complex-valued
function whose modulus squared is a probability.

Let a be a positive integer such that a and n are relatively prime (it
will become clear later why we want this condition). Define the transition
amplitude A:S × S → C by

A((x, uj), (y, uk)) =

{
1√
n
eiaπ(j−k)2/n if y = x+ uj

0 otherwise
(1)

j, k = 0, . . . , n − 1. It will also become clear why we have chosen A to
have this form. If

p = {(x0, v0), . . . , (xr, vr)}
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is an r-path with x0 = 0, we define the amplitude of p to be

A(p) =

r−1∏
j=0

A((xj , vj), (xj+1, vj+1)). (2)

Let Pr((0, v0), (xr, vr)) be the set of all r-paths from (0, v0) to
(xr, vr). We define the r-step amplitude from (0, v0) to (xr, vr) by

Ar((0, v0), (xr, vr)) =
∑
{A(p): p ∈ Pr((0, v0), (xr, vr))} (3)

and the r-step probability from (0, v0) to (xr, vr) is defined as

Pr((0, v0), (xr, vr)) =
∣∣Ar((0, v0), (xr, vr))

∣∣2.
The computation of Pr((0, v0), (xr, vr)) in general appears to be

quite difficult. However, if we are only interested in the direction of
motion, the problem becomes more tractable. Letting

Ar(v0, vr) =
∑
{Ar((0, v0), (xr, vr)):xr ∈ L}

we can interpret Ar(v0, vr) as the amplitude that a particle moves in
direction vr after r time steps given that it was initially moving in the
direction v0. Letting M be the matrix with entries

Mjk =
1√
n
eiaπ(j−k)2/n

we have

Ar(us, ut) =

n−1∑
i1,...,ir−1=0

Msi1Mi1i2 . . .Mir−1t = (Mr)st (4)

where Mr is the rth power of M . In particular, A1(us, ut) = Mst. The
corresponding probability becomes

Pr(us, ut) =
∣∣(Mr)st

∣∣2. (5)

Letting Hn be the inner product space Cn with the usual inner product

〈f, g〉 =
∑n−1
i=0 fiḡi and norm ‖f‖ =

(
〈f, f〉

)1/2
we can express (4) and
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(5) in a different form. If f̂0 = (1, 0, . . . , 0), . . . , f̂n−1 = (0, . . . , 0, 1)
denotes the standard basis in Hn, then

Ar(us, ut) =
〈
Mrf̂s, f̂t

〉
(6)

and

Pr(us, ut) =
∣∣∣〈Mrf̂s, f̂t

〉∣∣∣2. (7)

Since Pr(us, ut) is supposed to be a probability and since the particle
must be moving in one of the n directions after r time steps, we conclude
from (7) that we need Mr to satisfy

∥∥Mrf̂s
∥∥2

=

n−1∑
t=0

∣∣∣〈Mrf̂s, f̂t

〉∣∣∣2 =

n−1∑
t=0

Pr(us, ut) = 1. (8)

In quantum mechanical terminology, we say that the state of the system
at time r is Mrf̂s given that the initial state is f̂s. Equation 8 shows
that Mrf̂s is a unit vector. More generally, let f ∈ Hn be an arbitrary
unit vector. Then f is a state of the system for which the probability

that the particle is moving in the t direction is |ft|2 =
∣∣〈f, f̂t〉∣∣2. We

thus interpret f as giving the amplitude of the probability distribution
|ft|2, t = 0, . . . , n−1. Now suppose that initially we only know the state

f . Of course, if f = f̂s we know the initial direction precisely, but in
general this may not be possible. Then the state at time r is defined to
be Mrf . It follows that ‖Mrf‖ = 1 and in particular ‖Mf‖ = 1. We
conclude that M preserves norms and hence M is unitary [6].

It will follow from our later work that M is unitary if and only if
a and n are relatively prime and this is why we wanted that condition.
In order to find the state Mrf or the probability Pr(us, ut) we must
compute the rth power of the unitary matrix M . The only practical
way to do this is to diagonalize M ; that is, find its eigenvalues and
eigenvectors. This is what is usually done in the study of classical Markov
chains except in that case we have a stochastic matrix to diagonalize
instead of a unitary matrix [2].

If p is the r-path

p = {(0, ui0), (x1, ui1), . . . , (xr, uir )}
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then (1) and (2) give

A(p) =
1

nr/2
exp
[
i

r∑
j=1

a
π

n
(ij − ij−1)2

]
. (9)

If we interpret a as the mass of the particle, then it can be shown [7]
that for large n the summation in (9) is approximately the integral of
the kinetic energy K(t) of the particle along the path p minus a pos-
itive constant. (If the particle has zero mass, then a is related to its
“wavelength”.) Such an integral is called the action of a free particle.

We thus have for large n that

A(p) ∼ N exp
[
i

∫
p

K(t) dt
]

(10)

where N is a normalization constant. The right hand side of (10) is
called the Feynman amplitude of a free particle along the continuous
path p [5]. We now see that A(p) is a discrete analog of the continuum
Feynman amplitude. This is the reason that we chose A to have the
form given in (1). Equation 3 is the discrete analog of the Feynman
path integral which plays a dominate role in high energy physics [10].
Although the path integral has a physically intuitive appeal, it is sub-
ject to various mathematical difficulties. However, this discrete analog
is mathematically rigorous and for large n gives a close approximation
to the continuum value. Moreover, it can be generalized to the case of a
particle moving under the influence of a force by adding a potential en-
ergy term [7]. We have thus constructed a discrete quantum mechanics.

Besides the computation of Mr there is another reason for diago-
nalizing M even for relatively small values of n. In elementary particle
physics, two important classes of particles are mesons and baryons. Ex-
amples of mesons are the pion and kaon, while examples of baryons are
the proton and neutron. In the quark model of elementary particles,
a meson is composed of one quark and one antiquark while a baryon is
composed of three quarks or of three antiquarks. The constituent quarks
(or antiquarks) are held together by the strong nuclear force. This force
is mediated by an exchange of particles called gluons [3, 11]. In a certain
particle model, a meson is represented by a connected multigraph with
two vertices (a multigraph can have multiple edges and loops) while a
baryon is represented by a connected multigraph with three vertices [8].
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The vertices represent quark (or antiquark) constituents and the edges
represent gluon paths. In this theory the gluons perform a quantum
random walk along the edges of the multigraph. This quantum random
walk is governed by a unitary matrix that essentially has the form M
given before, where n depends on the number of edges. Since M is uni-
tary, its eigenvalues have the form eiθ, θ ∈ [0, 2π). It turns out that the
θ’s are closely related to the allowed energy values of the gluons and
hence have important physical significance [8]. The multiplicities of the
eigenvalues are also important for the calculation of particle masses [8].

2. Dirichlet matrices

We now begin a study of the matrices introduced in Section 1. Let
a be a positive integer and let M(n, a) be the n × n matrix whose jk
entry is

Ajk =
1√
n
eiπa(j−k)2/n j, k = 0, 1, . . . , n− 1.

We call M(n, a) a Dirichlet matrix. The reason for this terminology is
that M(n, a) is closely related to the Dirichlet sum

S(n, a) =

n−1∑
j=0

eiπaj
2/n

that occurs in various parts of number theory [1,4]. In fact, it follows
from Lemma 4 in the next section that the row and column sums of
M(n, a) are proportional to a Dirichlet sum. Moreover, Theorem 5 shows
that eigenvalues of M(n, a) have a common factor that is a Dirichlet sum.
For a = 2, we have S(n, 2) = G(n) where G(n) is called Gauss’s sum.
Dirichlet sums satisfy the following Dirichlet reciprocity law [1].

Theorem 1. If na is even, then

S(n, a) =

√
n

a
eiπ/4S(a, n).

This reciprocity law is useful for computing S(n, a) for small a. For
example, as a special case of Theorem 1, if a = 2 we have

G(n) =

√
n

2
(1 + i)(1 + e−iπn/2).
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As we have shown in Section 1, it is important to know whenM(n, a)
is unitary. The next theorem gives such a characterization. We shall need
the following lemma whose proof is straightforward.

Lemma 2. Two positive integers n and a are relatively prime if and
only if a` 6= nm for any integers `,m with 0 < |`| < n.

Theorem 3. M(n, a) is unitary if and only if n and a are relatively
prime.

Proof. Since
n−1∑
k=0

|Ajk|2 = 1

for j = 0, . . . , n− 1, it is clear that M(n, a) is unitary if and only if

n−1∑
k=0

AjkĀj′k = 0

for j 6= j′. For j 6= j′ we have

n

n−1∑
k=0

AjkĀj′k =

n−1∑
k=0

exp

{
iπa

n

[
(j − k)2 − (j′ − k)2

]}

= eiπa(j2−j′2)/n
n−1∑
k=0

ei2πa(j′−j)k/n.

If n and a are relatively prime, then applying Lemma 2, the geometric
series in this last expression satisfies

n−1∑
k=0

[
ei2πa(j′−j)/n

]k
=

1− ei2πa(j′−j)

1− ei2πa(j′−j)/n = 0

and M(n, a) is unitary. If n and a are not relatively prime, then by
Lemma 2 there exist j 6= j′ such that a(j− j′) = nm for some integer m.
In this case the geometric series has sum n and M(n, a) is not unitary.

3. Diagonalization

We need the following lemma to prove our main result.
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Lemma 4. Let n and a be positive integers.
(a) If na is even, then

n−1∑
k=0

eiπa(k−j)2/n = S(n, a)

for any 0 ≤ j ≤ 2n− 2. (b) If na is odd, then

n−1∑
k=0

eiπa(k−j− 1
2 )2/n =

1

2
S(4n, a)

for any 0 ≤ j ≤ 2n− 2.

Proof. (a) First suppose j ≤ n− 1. Then

S ≡
n−1∑
k=0

eiπa(k−j)2/n =

j−1∑
k=0

eiπa(k−j)2/n +

n−1∑
k=j

eiπa(k−j)2/n.

Letting r = j − k in the first sum and r = n− k + j in the second sum
gives

S =

j∑
r=1

eiπar
2/n +

n∑
r=j+1

eiπa(n−r)2/n.

Since na is even, we obtain

S =

n∑
r=1

eiπar
2/n =

n−1∑
r=0

eiπar
2/n = S(n, a).

Next suppose n ≤ j ≤ 2n− 2. Then j = n+ r for some integer 0 ≤ r ≤
n− 2. Again, since na is even we have

S =

n−1∑
k=0

eiπa(k−n−r)2/n =

n−1∑
k=0

eiπa(k−r)2/n.

But this last sum equals S(n, a) by the previous result.
(b) Consider the summation

T =

4n−1∑
k=0

eiπa(k−2j)2/4n.
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Now T is the sum of its odd and even partial sums T = U + E where

U =

2n∑
k=1

eiπa(2k−1−2j)2/4n

E =

2n−1∑
k=0

eiπa(2k−2j)2/4n.

We can write E as

E =

n−1∑
k=0

eiπa(k−j)2/n +

2n−1∑
k=n

eiπa(k−j)2/n.

Letting r = k − n in the second summation and using the fact that na
is odd, we obtain

2n−1∑
k=n

eiπa(k−j)2/n =

n−1∑
r=0

eiπa(r+n−j)2/n

= −
n−1∑
r=0

eiπa(r−j)2/n.

Hence, E = 0. Since

eiπa(4n−1−2j)2/4n = eiπa(1+2j)2/4n

we have

U =

n−1∑
k=0

eiπa(2k−1−2j)2/4n +

2n−1∑
k=n

eiπa(2k−1−2j)2/4n.

Again, letting r = k − n in the second summation and using the fact
that na is odd, we obtain

2n−1∑
k=n

eiπa(2k−1−2j)2/4n =

n−1∑
r=0

eiπa(2r+2n−1−2j)2/4n

=

n−1∑
r=0

eiπa(2r−1−2j)2/4n.
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It follows that

T = U = 2

n−1∑
k=0

eiπa(k−j− 1
2 )2/n.

But since 4na is even, it follows from Part a that T = S(4n, a).

We now come to our main result.

Theorem 5. (a) If na is even, then for r = 0, 1, . . . , n− 1, the vector

er =
(
e−i2πark/n

)
, k = 0, . . . , n− 1

is an eigenvector of M(n, a) with corresponding eigenvalue

λr = n−1/2S(n, a)e−iπar
2/n.

(b) If na is odd, then for r = 0, 1, . . . , n− 1, the vector

er =
(
e−i2πa(r+ 1

2 )k/n
)
, k = 0, . . . , n− 1

is an eigenvector of M(n, a) with corresponding eigenvalue

λr =
n−1/2

2
S(4n, a)e−iπa(r+ 1

2 )2/n.

Proof. (a) The jth coordinate of M(n, a)er is

[M(n, a)er]j = n−1/2
n−1∑
k=0

eiπa(j−k)2/ne−i2πark/n.

Now the summand may be written

e−i2πarj/n exp
{
iπa
[
(j − k)2 − 2rk + 2rj

]
/n
}

= (er)je
−iπar2/neiπa[k−(j+r)]2/n.

Applying Lemma 4a gives

[M(n, a)er]j = (er)jn
−1/2e−iπar

2/n
n−1∑
k=0

eiπa[k−(j+r)]2/n

= n−1/2S(n, a)e−iπar
2/n(er)j

= λr(er)j .
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(b) The jth coordinate of M(n, a)er is

[M(n, a)er]j = n−1/2
n−1∑
k=0

eiπa(j−k)2/ne−iπa(2r+1)k/n.

Now the summand may be written

e−iπa(2r+1)j/n exp
{
iπa
[
(j − k)2 − (2r + 1)k + (2r + 1)j

]
/n
}

= (er)je
−iπa(r+ 1

2 )2/neiπa[k−(j+r+ 1
2 )]2/n.

Applying Lemma 4b gives

[M(n, a)er]j = (er)jn
−1/2e−iπa(r+ 1

2 )2/n
n−1∑
k=0

eiπa[k−(j+r+ 1
2 )]2/n

=
n−1/2

2
S(4n, a)e−iπa(r+ 1

2 )2/n(er)j

= λr(er)j .

Applying Theorem 1 with a = 1 (which is physically important since
it corresponds to the smallest mass) we have the following Corollary.

Corollary 6. (a) If n is even, then

λr = eiπ/4e−iπr
2/n

is an eigenvalue of M(n, 1), r = 0, 1, . . . , n− 1. (b) If n is odd, then

λr = eiπ/4e−iπ(r+ 1
2 )2/n

is an eigenvalue of M(n, 1), r = 0, 1, . . . , n− 1.

It will follow from Theorem 7 that Corollary 6 lists all the eigen-
values of M(n, 1). However, in general, Theorem 5 does not determine
all the eigenvalues of M(n, a). This is because some of the λr’s may
coincide and the corresponding er’s may be linearly dependent. In this
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case, some of the eigenvalues will be missed. The simplest case of this
occurs for the matrix

M(2, 2) =
1√
2

[
1 −1
−1 1

]
.

We then have λ0 = λ1 = 0 and e0 = e1 = (1, 1). We have missed the
eigenvalue

√
2. Notice that M(2, 2) is not unitary. Our next result shows

that this problem does not occur in the unitary case.

Theorem 7. The vectors er, r = 0, . . . , n− 1, in Theorem 5 are mu-
tually orthogonal if and only if n and a are relatively prime.

Proof. If na is even, then the inner product 〈er, es〉 satisfies

〈er, es〉 =

n−1∑
k=0

ei2πa(s−r)k/n.

The proof now proceeds as in Theorem 3. If na is odd, the proof is
similar.

Corollary 8. The following statements are equivalent. (a) n and a are
relatively prime.
(b) M(n, a) is unitary. (c) er ⊥ es for r 6= s = 0, . . . , n− 1.

Corollary 9. If n and a are relatively prime, then all the eigenvalues
of M(n, a) are given in Theorem 5.

Even in the unitary case, some of the eigenvalues can be degenerate;
however, Theorem 5 gives a complete list together with an orthogonal
basis of corresponding eigenvectors.

4. Probabilities

We now apply the results in Section 3 to compute probabilities. Let
Pr(t) be the probability that the particle is moving in direction ut after
r time steps given that it was initially moving in direction u0. Then
according to (7) we have

Pr(t) =
∣∣∣〈Mrf̂0, f̂t

〉∣∣∣2, M = M(n, a). (11)
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Denoting the normalized eigenvectors and eigenvalues of M by ek, λk,
k = 0, . . . , n− 1, we have

Mrf̂0 =
∑
k

〈
f̂0, ek

〉
Mrek =

∑
k

〈
f̂0, ek

〉
λrkek.

Hence, 〈
Mrf̂0, f̂t

〉
=
∑
k

λrk
〈
f̂0, ek

〉〈
ek, f̂t

〉
=

1√
n

∑
k

λrk(ek)t.

Applying Theorem 5 gives for na even

〈
Mrf̂0, f̂t

〉
=
S(n, a)r

n
r
2 +1

∑
k

e−iπark
2/ne−i2πakt/n

and for na odd〈
Mrf̂0, f̂t

〉
=
S(4n, a)r

2rn
r
2 +1

∑
k

e−iπar(k+ 1
2 )2/ne−i2πa(k+ 1

2 )t/n.

Since M is unitary, we have |λk| = 1, k = 0, . . . , n − 1. It follows
from Theorem 5 that

|S(n, a)| =
√
n and |S(4n, a)| = 2

√
n.

Applying (11) for the case na even, we obtain

Pr(t) =
1

n2

∣∣∣∑
k

e−iπa(rk+t)2/nr
∣∣∣2

=
1

n2

∑
k,k′

exp
iπa

nr

[
(rk′ + t)2 − (rk + t)2

]
=

1

n2

∑
k,k′

exp
iπa

n
(k′ − k)

[
r(k′ + k) + 2t

]

=
1

n
+

2

n2

k′−1∑
k=0

n−1∑
k′=1

cos

[
πa

n
(k′ − k)(r(k′ + k) + 2t)

]
.
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In a similar way, for na odd we have

Pr(t) =
1

n
+

2

n2

k′−1∑
k=0

n−1∑
k′=1

cos

[
πa

n
(k′ − k)(r(k′ + k + 1) + 2t)

]
.

For example, in the simple case n = 4, a = 1, we have

Pr(t) =
1

4
+

1

8

[
cos

π

4
(r + 2t) + cosπ(r + t) + cos

π

4
(3r + 2t)

+ cos
3π

4
(3r + 2t) + cosπ(2r + t) + cos

π

4
(5r + 2t)

]
.

This last expression can be simplified as

Pr(t) =
1

8

[
(1 + (−1)r+t)

(
1 + 2 cos

πt

2
cos

πr

4

)
+ 2 cos2 πt

2

]
. (12)

In this case, one can see from the form of the eigenvalues that the motion
has period 8. Applying (12), the probabilities are tabulated in Table 1.
Of course, for larger values of n the probabilities are much more compli-
cated.

r Pr(0) Pr(1) Pr(2) Pr(3)

0 1 0 0 0

1 1/4 1/4 1/4 1/4

2 1/2 0 1/2 0

3 1/4 1/4 1/4 1/4

4 0 0 1 0

5 1/4 1/4 1/4 1/4

6 1/2 0 1/2 0

7 1/4 1/4 1/4 1/4

8 1 0 0 0

...

Table 1 (Probabilities Pr(t))



A quantum random walk 453

5. Multiplicities

It was mentioned in Section 1 that the eigenvalue multiplicities for
M(n, a) were needed for certain elementary particle studies. There is also
a mathematical reason for finding these multiplicities. By the spectral
theorem [6] M(n, a) has a unique representation of the form

M(n, a) =

m∑
j=1

µjPj

where µj , j = 1, . . . ,m, are the distinct eigenvalues of M(n, a) and Pj is
the orthogonal projection onto the eigenspace of µj . Now the dimension
of Pj is the multiplicity mj of µj . Moreover, since we have found the
eigenvectors corresponding to µj in Theorem 5, this may enable us to
compute Pj by adding the mj one-dimensional projections corresponding
to these eigenvectors.

We shall use the notation (n,m) for the greatest common divisor of
two integers n,m. In the sequel we shall assume that M(n, a) is unitary
and hence (n, a) = 1. We first consider the case in which na is even.
Let λr be the (possibly repeated) eigenvalues of M(n, a) as given in
Theorem 5a, r = 0, 1, . . . , n− 1.

Lemma 10. Let na be even and let 0 ≤ x < n be an integer. Then
λx = λr if and only if x2 = r2 (mod n) for n odd and x2 = r2

(mod 2n) for n even.

Proof. Applying Theorem 5a, λx = λr if and only if

πax2

n
=
πar2

n
(mod 2π)

and the latter is equivalent to

a(x2 − r2) = 0 (mod 2n). (13)

If n is odd, then a is even so (n, a) = 1 and (13) imply x2 − r2 = 0
(mod n).

To solve the congruence relation in Lemma 10 we shall need some
results from elementary number theory. The next two lemmas appear
as exercises 16, 18 (slightly modified) in [9; p. 301]. In the sequel, all
numbers that we consider are integers.
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Lemma 11. Let p be an odd prime, e > 0 and 0 ≤ r < pe with r 6= 0
(mod p). The congruence

x2 = r2 (mod pe), 0 ≤ x < pe

has exactly two solutions x = r and x = pe − r.

Proof. If x2 = r2 (mod pe), then pe | (x− r)(x+ r). But

(x+ r)− (x− r) = 2r

so that (x + r, x − r) | 2r. Since p is odd and r 6= 0 (mod p) we have
(p, r) = 1 and (p, 2) = 1. Hence, (p, 2r) = 1 and any distinct divisors of
2r and p are relatively prime. We conclude that

((x+ r, x− r), p) = 1.

It follows that either pe | (x + r) or pe | (x − r). The first case gives
x = pe − r and the second case gives x = r. Conversely, both r and
pe−r are solutions to the congruence. They are distinct since pe−r = r
would imply p even.

Lemma 12. For e > 0, let r be odd with 0 ≤ r < 2e. The congruence

x2 = r2 (mod 2e), 0 ≤ x < 2e

has exactly four solutions if e ≥ 3, exactly two solutions if e = 2 and
exactly one solution if e = 1.

Proof. If x2 = r2 (mod 2e), then as in the proof of Lemma 11, (x+
r, x − r) | 2r. Since r is odd, (x + r, x − r) contains at most one factor
2. Hence, one of the following possibilities holds

2e | x + r with 0 ≤ x + r < 2e+1

2e | x − r with −2e < x− r < 2e

2e−1 | x− r with −2e < x− r < 2e

2e−1 | x+ r with 0 ≤ x+ r < 2e+1.

These give the possible solutions x = 2e − r, x = r, x = 2e−1 + r, x =
2e−1−r. Conversely, these numbers clearly satisfy the given congruence.
If e ≥ 3, the solutions are distinct. Indeed, otherwise we obtain one of
the following contradictions.
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2e − r = r ⇒ r = 2e−1

2e − r = 2e−1 + r ⇒ r = 2(2e−2 − 2e−3)
2e − r = 2e−1 − r ⇒ 2e = 2e−1

r = 2e−1 + r ⇒ 2e−1 = 0
r = 2e−1 − r ⇒ r = 2e−2

2e−1 + r = 2e−1 − r ⇒ r = 0.

If e = 2, then the congruence becomes x2 = r2 (mod 4), 0 ≤ x < 4.
Since 12 = 1 (mod 4), 32 = 1 (mod 4), there are two distinct solutions
x = r, x = 4− r. If e = 1, there is only one solution x = r = 1.

Notice that Lemmas 11 and 12 solve our desired congruence relation
for the case in which n has only one prime factor and (r, n) = 1. The
next lemma extends this to the case (r, n) = 1 for general n.

Lemma 13. Let 0 ≤ r < n with (r, n) = 1 and let k be the number of
distinct prime divisors of n. The congruence

x2 = r2 (mod n), 0 ≤ x < n

has exactly (a) 2k solutions if n is odd, (b) 2k−1 solutions if n is even,
n 6= 0 (mod 4), (c) 2k solutions if n = 0 (mod 4), n 6= 0 (mod 8),
(d) 2k+1 solutions if n = 0 (mod 8).

Proof. Let n have the prime factorization

n = pe11 p
e2
2 . . . pekk .

First suppose that n is odd. Then x2 = r2 (mod n) if and only if
x2 = r2 (mod peii ), i = 1, . . . , k. Let ri be the residue of r modulo peii .
Then x2 = r2 (mod n) if and only if x2 = r2

i (mod peii ), i = 1, . . . , k.
From Lemma 11, each congruence x2 = r2

i (mod peii ) has exactly two
solutions, ri and peii − ri. Hence, x = ±ri (mod peii ), i = 1, . . . , k, and
this gives 2k systems of congruence relations. By the Chinese Remainder
Theorem [9] each system has a unique solution modulo n. Moreover, the
solutions cannot overlap since (r, n) = 1. Hence, there are 2k distinct
solutions. Now suppose that n is even and that n has the above prime
decomposition with p1 = 2. As before, x2 = r2 (mod n) if and only
if x2 = r2

i (mod peii ), i = 1, . . . , k. For i ≥ 2, we have x = ±ri
(mod peii ). For i = 1, we have x2 = r2

1 (mod 2e1). Applying Lemma 12,
this latter congruence has one solution if e1 = 1 (n 6= 0 (mod 4)), two
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solutions if e1 = 2 (n = 0 (mod 4), n 6= 0 (mod 8)) and four solutions
if e1 = 3 (n = 0 (mod 8)). Proceeding as before, the result is obtained.

It follows from Lemma 13 that the number of distinct solutions of
x2 = r2 (mod n), 0 ≤ x < n, is independent of r if (r, n) = 1. We
denote this number of solutions by ψ(n). That is, ψ(n) = 2j where j
equals k−1, or k, or k+1 depending on the value of n. For an arbitrary
0 ≤ r < n, define the function or two variables d = d(r, n) = (r2, n),
let δ2 = δ2(r, n) be the smallest positive square multiple of d and let
∆ = ∆(r, n) = d/δ. The next theorem extends Lemma 13 to the general
case.

Theorem 14. If 0 ≤ r < n, then the congruence

x2 = r2 (mod n), 0 ≤ x < n (14)

has ∆ψ(n/d) distinct solutions.

Proof. If x is a solution to (14), then x2 is a multiple of d. Hence, x2

is a multiple of δ2. It follows that x is a multiple of δ. It is clear that
δ2 = dd′ where d′ is the product of the prime divisors of d that have
odd exponents in the prime factorization of d. For 0 ≤ x < n, (14) is
equivalent to

δ2

[
x2

δ2
− r2

δ2

]
= 0 (mod n)

which is equivalent to

d′
[
x2

δ2
− r2

δ2

]
= 0 (mod n/d). (15)

We now show that (d′, n/d) = 1. Let α be a positive integer. If α |
(d′, n/d) then αd | (δ2, n). But δ2 | r2 so αd | (r2, n). But (r2, n) = d so
α = 1. We next show that (r/δ, n/d) = 1. If α | (r/δ, n/d) then αδ2 | r2

and αd | n. But αd | αδ2 so αd | (r2, n). Again, we have α = 1. It now
follows from (15) that x2 = r2 (mod n) if and only if

(
x

δ

)2

=

(
r

δ

)2

(mod n/d)
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where (r/δ, n/d) = 1. Applying Lemma 13, the number of solutions
modulo n/d to

x2 =

(
r

δ

)2

(mod n/d) (16)

is ψ(n/d). Let x0 be a solution to (16). Then x/δ = x0 (mod n/d) if
and only if

x = δx0 +m
δ

d
n, 0 ≤ m <

d

δ
.

Hence, for each solution of (16) we have ∆ = d/δ distinct solutions to
(14). Also, two different solutions to (16) cannot yield the same solution
to (14). Indeed, if

δx0 +m
δ

d
n = δx1 +m′

δ

d
n

then x0 − x1 = (m′ −m)n/d. But 0 ≤ x0, x1 < n/d. Hence m = m′

which implies x0 = x1. Hence, (14) has ∆ψ(n/d) distinct solutions.

Lemma 10 and Theorem 14 together now give the multiplicities for
the case na even. But as we shall see in the proof of the next theorem,
the case na odd can be reduced to the na even case giving a complete
solution. We continue to assume that (n, a) = 1 and that λr, r =
0, . . . , n − 1 are the (possibly repeated) eigenvalues of M(n, a) given in
Theorem 5. We use the notation ψ(r, n) = ψ(n/d(r, n)).

Theorem 15. The multiplicity of λr is
(a) ∆(r, n)ψ(r, n) if a is even

(b) ∆(r,2n)
2 ψ(r, 2n) if n is even

(c) ∆(2r + 1, n)ψ(2r + 1, n) otherwise.

Proof. (a) In this case na is even and n is odd. Applying Lemma 10
and Theorem 14 gives the result. (b) Again na is even. By Lemma 10,
λx = λr if and only if x2 = r2 (mod 2n). But we are only concerned
with the solutions modulo n. By Theorem 14, x2 = r2 (mod 2n) has

∆(r, 2n)ψ

[
2n

d(r, 2n)

]
= ∆(r, 2n)ψ(r, 2n)

solutions modulo 2n. However, since n is even, for every 0 ≤ x < n,
(x + n)2 = x2 (mod 2n). Hence, there are twice as many solutions
modulo 2n as there are modulo n. This completes the proof of (b).
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(c) In this case na is odd and the eigenvalues λr, 0 ≤ r < n, of M(n, a)
are given in Theorem 5b. Let µ2r+1 be the (2r + 1)th eigenvalue listed
for M(4n, a). Applying Theorem 5, we have λr = µ2r+1, 0 ≤ r < n. The
multiplicity of µ2r+1 is twice the multiplicity of λr. Indeed, we are only
concerned with finding the numbers 0 ≤ x < 2n such that µx = µ2r+1

and for such x, µ4n−x = µx since

(4n− x)2 = x2 (mod 8n).

Applying Part b of this theorem, the multiplicity mr of λr becomes

mr =
∆(2r + 1, 8n)

4
ψ(2r + 1, 8n).

Since 2r + 1 is odd we have

d(2r + 1, 8n) = ((2r + 1)2, 8n) = ((2r + 1)2, n) = d(2r + 1, n).

Hence,
∆(2r + 1, 8n) = ∆(2r + 1, n)

and

mr =
∆(2r + 1, n)

4
ψ(2r + 1, 8n).

Since n/d(2r+1, n) is odd, applying Lemma 13a we have ψ(2r+1, n) = 2k

where k is the number of distinct prime divisors of n/d(2r+ 1, n). Since

8n/d(2r + 1, n) = 0 (mod 8)

and 8n/d(2r+1, n) has k+1 distinct prime divisors, applying Lemma 13d
we have ψ(2r + 1, 8n) = 2k+2. Hence,

ψ(2r + 1, 8n) = 4ψ(2r + 1, n).

The result now follows.
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