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ABSTRACT. We show for stationary states in a central potential
that the quantum action S is a part of the classical action W and
derive a new expression for the “quantum potential” UQ in terms of
the other part. The association of momenta of some “trajectories”
in the causal interpretation of quantum mechanics by ~p = ∇S and
by d~p′/dt = −∇(V +UQ) are studied in detail for stationary states.
They give different type of orbits which express some flow properties
of the quantum mechanical current. For coherent states on the other
hand ~p and ~p′, as well as the quantum mechanical averages < ~p >
and the classical momenta, all four, lead to essentially the same
trajectories except for different integration constants. The spinning
particle is also considered.

RESUME. Nous avons montré que dans le cas des états station-
naires l’action quantique S est seulement une (première) partie de
l’action classique W et nous avons exprimé le “potentiel quantique”
UQ en fonction de la deuxième partie. Les moments associés aux
“particules” dans l’interprétation causale par la relation ~p′ = ∇S et
par la relation d~p/dt = −∇(V +UQ) donnent dans les états station-
naires des orbites qui sont très différentes les unes des autres et qui
sont très différentes des orbites classiques. Ces orbites provenant
de la première relation expriment les propriétés du courant quan-
tique. D’un autre côté, pour les états cohérents, les moments ~p et
~p′, ainsi que le moment moyen quantique ~p et le moment classique,
conduisent essentiellement aux mêmes trajectoires, qui diffèrent par
les constantes d’intégration. Nous étudions aussi la particule avec
spin dans le champ magnétique.
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I. Introduction

During the last decade Bohm’s causal trajectories based on the con-
cept of the so called “quantum potential” [1,2] have been evaluated in
a number of cases, the double slit [3,4], tunneling through the barrier
[5,6], the Stern-Gerlach magnet [7], neutron interferometer [9,10], EPRB
experiment [11]. In all these works the trajectories have been evaluated
numerically for the time dependent wave packet of the Schrödinger equa-
tion.

In the present paper we study explicitly the quantum potential and
the associated trajectories for stationary states and for coherent states.
We show how the quantum potential arises from the classical action.
The classical action is a sum of two parts Sc1 = S1 + S2, one part S1

becomes the quantum action, the other part S2 is shifted to the quantum
potential. We also show that the two definitions of causal trajectories
do not coincide for stationary states.

II. Review of Bohm’s interpretation versus Schrödinger discov-
ery

In suggesting the interpretation of Quantum theory in terms of
“hidden” variables, so-called Causal Interpretation, [2], Bohm treated
Schrödinger equation as a postulate. The sequence of steps leading to
causal trajectories, is as we are going to show, approximately the inverse
of the Schrödinger’s original sequence of steps [12,13], one from classi-
cal trajectories to wave equation, the other from wave equation to some
new associated trajectories which have nothing to do with the original
classical trajectories.

Schrödinger’s discovery of wave mechanics represents one specific
synthesis of mechanics, wave theory and Planck hypothesis. Basic me-
chanical concepts are the classical Hamilton and Lagrange functions for
a particle

H = (~p2/2m) + V (~r) = T + V (1)

L = (~p2/2m)− V (~r) = T − V (2)

And the basic wave concept is the wave function ψ(~r, t) required to
satisfy the wave (d’Alembert) equation

∆ψ − ψ̈/u2 = 0 (3)
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where u is the wave (phase) velocity. The synthesis of mechanical and
wave notions are realized now by deriving a relationship between the
phase velocity and the kinetic and total energies of the particle

u = E/
(
2m(E − V )

)1/2
= E/(2mT )1/2 (4)

in two different ways.

The first method uses the Hamilton-Jacobi equation for the action
W

W =

∫ t

to

(T − V )dt (5)

which taken as a function of the upper limit t and of the final value of
the coordinates x, y, z satisfies the Hamilton-Jacobi partial differential
equation

∂W/∂t+ (∇W )2/2m+ V (~r, t) = 0 (6)

If the potential does not depend on time, the equation (6) can be solved
by setting

W (~r, t) = −Et+ w(~r) (7)

This substitution leads to

(∇W )2/2m+ V (~r) = E (8)

or

| −−→gradw| = [2m(E − V )]1/2 (9)

The relation

~p = m~v =
−−→
gradW =

−−→
gradw (10)

is satisfied in the above procedure.

In this method the relation between the mechanical and the wave
motion is expressed by assuming the action W to be proportional to the
phase of the wave

ψ(~r, t) = A exp(iW/K) = A exp(−iEt/K) + iw/K) (11)

Further to the motion of the particle one associates the motion of surfaces
of constant W and therefore the propagation of the wave. If W0 is the
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value of W on a particular surface for a given t, and dW0 = Edt, then
the infinitesimal normal

dn = dW0/[2m(E − V )]1/2 (12)

determines the velocity of motion of any surface at any one of its points
by

u = dn/dt = E/[2m(E − V )]1/2 (13)

which is the desired eq.(4).

The second method uses [14] the analogy between the principle of
least action

δ

∫ B

A

[2m(E − V )]1/2ds = 0 (14)

and Fermat’s principle in optics

δ

∫ B

A

ds/u = 0 (15)

This analogy leads to

u = C/[2m(E − V )]1/2 (16)

Then one identifies the group velocity of the wave of frequency ν given
by

1/vg = d(ν/u)/dν (17)

with the particle velocity v = p/m. The result is the value of the constant
C,

C = E

i.e. the relation (4) again.

Schrödinger then looked for those solutions of the wave equation (3)
whose time dependence is of the form

ψ(~r, t) = φ(~r) exp(−iEt/K) (18)

where the constant K must have the physical dimension of action (en-
ergy.time). Now since the frequency of the wave is obviously

ν = E/2πK (19)
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Schrödinger “could not resist the temptation” [13] to use Planck’s rela-
tion

E = h · ν (20)

i.e. to put K equal to h/2π = h̄.

By combining the latter relation with (4) one finds for the wave-
length

λ = h/[2m(E − V )]1/2 = h/p (21)

which is the de Broglie relation originally derived relativistically [15],
Schrödinger’s derivation is nonrelativistic.

By introducing equations (4), (18) and (20) into d’Alembert equa-
tion (3) Schrödinger found the equation for amplitude φ(~r)

∇2φ(~r) + (h̄2/2m)(E − V ) · φ(~r) = 0 (22)

In order to get the equation for a function ψ(r, t) whose time dependence
is not restricted to the dependence of the form exp(−iEt/h̄) Schrödinger
later in the fourth paper of Ref. [12] used the property of the stationary
solution

Eψ(~r, t) = ih̄∂ψ(~r, t)/∂t (23)

to eliminate the term Eφ(~r) from (22) and arrived at

−(h̄2/2m)∇2ψ + V ψ = ih̄∂ψ/∂t (24)

“Causal interpretation”

As stated at the beginning Bohm took the latter equation as a pos-
tulate and applied the following reasoning. Since every complex function
can be written as,

ψ(~r, t) = R(~r, t) exp(iS(~r, t)/h̄) (25)

the equation (24) is equivalent to two partial differential equations for
the real functions R(~r, t) and S(~r, t)

∂R(~r, t)/∂t = −(1/2m)[R∇2S(~r, t) + 2∇R∇S(~r, t)] (26)

∂S(~r, t)/∂t = −[(∇S(~r, t))2/2m+ V (~r)− (h̄2/2m)∇2R(~r, t)/R(~r, t)]
(27)
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These equations were used earlier by de Broglie [1,16]. Madelung gave
them a hydrodynamical interpretation [17].∗They were also used by
Fenyes in a Stochastic interpretation [18]. The corresponding set of
equations for the functions R(~r) and s(~r) associated with stationary so-
lution

ψ(~r, t) = R(~r) exp(−iEt/h̄) exp(is(~r)/h̄) (28)

read
R(~r)∇2s(~r) + 2∇R(~r)∇s(~r) = 0 (29a)

E = (∇s(~r))2/2m+ V (~r)− (h̄2/2m)∇2R(~r)/R(~r) (29b)

Equation (29b) and the corresponding equation (27) look like the
Hamilton-Jacobi equation for the functions s(~r) and S(~r, t), respectively,
with an additional term −(h̄2/2m)∇2R(~r)/R(~r). De Broglie gave [1] to
this term the name “quantum potential”

UQ = −(h̄2/2m)∇2R(~r)/R(~r) (30)

With the action S(~r, t) which satisfies (26) and (27) Bohm associates
now a “momentum” by

~p = ~p(~r, t) =
−−→
gradS(~r, t) (31)

and in this way obtains the causal interpretation of quantum mechan-
ics in which particles move along one of the trajectories determined by
integrating the equation

m
d~r

dt
= ~p(~r, t) (32)

To each initial coordinate corresponds one trajectory.

We see that the equation (24) is the last in Schrödinger and the first
one in Bohm’s approach. The relation (31) is the last one in Bohm’s
approach whereas the corresponding relation (10) is one of the first in
Schrödinger one. Relations (11) and (28) are the corresponding ones
in the two approaches. Bohm’s approach does not contain the relation
(4) whereas in Schrödinger one it is the relation which couples elements
of mechanical and wave theory. Hamilton-Jacobi equation for the func-
tion W is at the beginning of Schrödinger procedure whereas “quantum

∗ NDLR. On trouvera ci-après une traduction de cet article, souvent cité, mais
peu accessible.
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Hamilton-Jacobi equation” for the function S is near the end of Bohm
procedure.

The fact that S does not satisfy the classical H − J equation but
quantum one indicates that Schrödinger equation is not consistent with
all relations used in its “derivation”. That might be the hidden reason
for the existence of different interpretations of quantum mechanics whose
common feature is that they all contain the Schrödinger equation itself.

The statistical interpretation [19] neglects the whole classical back-
ground physical picture which led Schrödinger to his discovery. This
interpretation denies the existence of waves as well as the existence of
trajectories. Only the equation (24) remains in which absolute value
square of ψ(~r, t) is the density of probability of ~r whereas an overall
phase of ψ has no physical interpretation.

The old quantum theory [20] is closer to Schrödinger’s wave picture
than the statistical interpretation. It assumes that classical trajectories
exist. The Sommerfeld conditions of quantizations reduce the set of all
trajectories to a subset in which these conditions are satisfied. Since the
Schrödinger wave equation also reduces the set of all allowed energies
of the system to a subset, one may say that in this theory the classical
Hamiltonian (1), the relation between momentum and classical action
(10), the expression for phase velocity (4) and Schrödinger equation are
the basic equations. Waves do not destroy classical trajectories, they
only reduce the whole set of trajectories to a subset. In such an approach
one does not require that the phase of ψ(~r, t) is equal to the action. That
means that one neglects only the relation (11).

In the interpretation of Bohm, finally, the trajectories exist, but the
set of trajectories is not a subset of the classical set because the action is
not a classical action i.e. neither the classical Hamilton-Jacobi equation
is satisfied nor the energy relation (1). In fact, we shall show that these
new “trajectories” are entirely different from the classical trajectories.

Bohm takes the phase of the wave function as the analogue of the
classical action (we will call it “quantum action”) and keeps the relation
(10). But now there is the new relation (31) between “momentum of the
particle” and “quantum action”. In Bohm’s theory particles are real, but
since the relation (1) is not valid the expression (4) for phase velocity is
not valid either.

III. Remarks on Bohm’s interpretation

Already in 1952 Halpern [21] criticized the contention of Bohm that
his interpretation is a mechanical interpretation of the wave equation :
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“To obtain the solution of a mechanical problem it is necessary to have
an action S which depends on the coordinates of the system, the physical
parameters entering into the expression for kinetic and potential energy
and f nonadditive integration constants. Bohm has failed to show that
such a function can be found... Until a way to find these integration con-
stants has been devised, the similarity with the Hamilton-Jacobi theory
is purely extraneous, and one cannot talk about a mechanical interpre-
tation of the wave equation”.

Bohm replied [22] that Hamilton-Jacobi theory was being used only
for the purpose of indicating in a simple way how one might arrive at a
causal interpretation of the quantum theory, while the theory itself was
to be based directly on the equations of motion

md2~r/dt2 = −∇{UQ(~r) + V (~r)} (33)

where V (~r) is the classical potential, and UQ(~r) is the “quantum poten-
tial”. Guided by Hamilton-Jacobi theory, one guesses tentatively, writes
Bohm, that if the momentum were equal to ~p = ∇S(~r), this function
would satisfy the equations of motion. Now, Bohm takes ~p to be the
function of ~r and t (whereas in Newton’s formulation ~p is equal to ~̇r and
depends on t only). Hence

d~p/dt = ∂~p/∂t+ (~v · ∇)~p = ∂(∇S)/∂t+∇(∇S)2/2m (34)

But since S satisfies (27), Bohm finds

d~p/dt = −∇{V + UQ} (35)

and concludes that the equation (33) follows. Bohm further concludes
that this verifies that a particle traveling with velocity ~v = ∇S/m will
satisfy the equations of motion (26) and (27). Therefore according Bohm
the condition ~p = ∇S is a consistent subsidiary condition.

Eqs. (34) and (35) should however be written as a covariant deriva-
tive

D~p

Dt
= −∇(V + UQ) ,

D

Dt
= ∂t + ~v · ~∇ (36)

At first sight Bohm’s answer seems acceptable. But in his original work
[2] as well as in his answer [22] Bohm does not always keep track of the
other equation (26) and in this way gives the impression that UQ(~r) may
be treated on the same footing as the external potential. This impression
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is misleading because S and R are coupled also through the equation (26)
and therefore UQ(~r) in eq.(27) is not a function given in advance and
independent of S or ~p.

The most direct way to see the importance of the equation (26) is
to consider the one dimensional stationary case. Equations (29) become

Rd2s(x)/dx2 + 2(dR/dx) · (ds/dx) = 0 (37)

(ds/dx)2/2m+ V (x)− (h̄2/2m)(d2R/dx2)/R = E (38)

The first relation results

R(x) = C/(ds/dx)1/2 (39)

UQ(x) = −(h̄2/4m)[(d3s/dx3)/(ds/dx)− 3(d2s/dx2)/2(ds/dx)2] (40)

The substitution of the latter expression into “quantum Hamilton-Jacobi
equation” gives

E = s′
2
/2m+ V (x) + (h̄2/4m)[s′′′/s′ − (3/2)(s′′/s′)2] (41)

It is very hard to see any ressemblance of equation (41) to the Hamilton-
Jacobi equation and consequently it is hard to justify the relation p =
dS/dx on this basis.

Furthemore, by taking covariant derivative (36) instead of dp/dt one
has replaced the ordinary differential equation for p(t), of Newton, by
a partial differential equation for p(x, t). Thus the assertion in Bohm’s
reply [22] that Newton’s form of mechanics is the methodological basis
of his interpretation is not valid.

The main consequence of the above observations is that, while clas-
sical trajectories depend on initial velocity ~v0 and initial position ~r0,
the trajectory calculated in the causal interpretation from m~r = ~p =−−→
gradS(~r, t) depends only on the initial position ~r0 [23,24,25,26].

The best way to see the main features of this “causal interpreta-
tion” is to determine explicitly the “associated trajectories” for solvable
quantum systems. This is the subject of the next section. We shall also
show that the two ways of introducing “causal” orbits by eqs.(32) and
(33) respectively are in fact not equivalent at least for stationary states.
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IV. Causal trajectories in the stationary states of the central
potential (hydrogen atom, spherical oscillator,...)

It is well known that stationary solutions of the Schrödinger equa-
tion in the case of a central potential V (r)

[−(h̄2/2m)∇2 + V (r)]ψ = Eψ (42)

have the form
ψ(r, θ, φ) = R(r)Θ(θ)Ω(φ) (43)

where functions
R(r) = AF ln(r)

Θ(θ) = PMl (cos θ)

ΩM (φ) = exp(iMφ) (45)

are the solutions of three separate differentiel equations

(1/R)[d(r2dR/dr)/dr + (2m/h̄2)r2(E − V )]R = −C (45a)

(1/Θ)[(1/ sin θ)d(sin θdΘ/dθ)/dθ − C sin2 θ] = M2 (45b)

(1/Ω)d2Ω/dφ2 = −M2 (45c)

By Bohm’s definition the quantum action is proportional to the phase
of the wave function. Since the functions R(r) and Θ(θ) are real we
conclude that

s(~r) = h̄Mφ (46)

We see in agreement with Halpern remark [21] that s(~r) does not depend
on three independent non-additive constants.

Using (43) and (45) one easily determines the quantum potential

UQ(~r) = −(h̄2/2m)∇2(R(r)Θ(θ))/R(r)Θ(θ) = E−V−h̄2M2/2mr2 sin2 θ
(47)

Taking into account that

−−→
grad s =

−−→
grad h̄Mφ = (h̄M/r sin θ)~eφ (48)

we see that s satisfies “quantum Hamilton-Jacobi equation”

E = (
−−→
grad s)2/2m− (e2/r)− (h̄2/2m)∇2

(
R(r)Θ(θ)

)
/R(r)Θ(θ) (49)
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In spherical coordinates m~̇r reads

m~̇r = mrφ̇ sin θ · ~eφ (50)

Hence equating (48) to (50) on the basis of the definition (31) of “mo-
mentum” we obtain

φ̇ = h̄M/mr2 sin2 θ , r = r0 , θ = θ0 (51)

and finally

φ = (h̄M/mr2
0 sin2 θ) · t+ φ0 , θ = θ0 , r = r0 (52)

Therefore, according to the causal interpretation in the stationary states
the electron moves along the circles lying in the planes parallel to the
x− y plane for any central potential.1 For the same magnetic quantum
number M these trajectories do not distinguish between different poten-
tials. They have to be distinguished by their probability distribution.

For kinetic energy we find

T = ~p2/2m = p2
φ/2m = m2r2φ̇2 · sin2 θ/2m (53)

By substituting this equality into (47) we obtain

E = V (r) + T + UQ(~r) (54)

i.e. quantum energy is a sum of kinetic energy, Coulomb potential energy
and quantum potential energy.

The trajectories derived from ~p = ∇s for the hydrogen atom in par-
ticular are quite different from Bohr’s (semiclassical) trajectories. Bohr’s
trajectories form a subset in the set of Kepler’s orbits (this particular set
satisfies the conditions of quantization). The nucleus lies in the plane of
the orbit. This is not the case with these “causal” orbits whose planes in
general do not contain the nucleus. This is due to the difference between
quantum action s(~r) given in (46) and the classical action given by

w(~r) = w1(r) + w2(θ) + w3(φ) =

∫
[2m(E − V )− α2

2/r
2]1/2dr

+

∫
(α2

2 − α2
3/ sin2 θ)1/2dθ + α3φ (55)

1 The circles for hydrogen atom have also been mentioned by Belinfante [26]

and L. de Broglie [31].
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Bohr trajectories satisfy the relation ~p =
−−→
gradw and the conditions of

quantization, whereas Bohm trajectories (Fig. 1) satisfy ~p =
−−→
grad s =

−−→
grad h̄Mφ =

−−→
gradw3, with α3 = h̄M .

Figure 1. The draft of semiclassical (- - -) and of two types of “causal”

trajectories ; ~p = ∇S (—-), d~p′/dt = −∇(V + UQ) (− · − · − · −) for
the central potential.

In order to see further the difference between the quantum and
classical actions we write the Hamilton-Jacobi equation for the function
w(~r) taking into account its structure given in (55)

(∇w1)2/2m+ (∇w2)2/2m+ (∇w3)2/2m+ V = E (56)

From Eq.(55) we find

(∇w1)2 = (∂ω1/∂r)
2 = −(α2

2/r
2)− 2m(V − E) (57a)

(∇w2)2 = (∂w2/∂θ)
2/r2 = α2

2/r
2 − α2

3/r
2 sin2 θ (57b)

(∇w3)2 = (∂w3/∂φ)2/r2 sin2 θ = α2
3/r

2 sin2 θ (57c)
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(∇w1)2 + (∇w2)2 = 2m(E − V )− α2
3/r

2 sin2 θ (58)

By comparing (55) with (46) and (58) with (47) we conclude that in the
central potential the “quantum action” is just a part of classical action,
whereas quantum potential is associated with the rest of the classical
action as follows

s(~r) = w3 , α3 = h̄M (59)

UQ(~r) = [(∇w1)2 + (∇w2)2]/2m (60)

The fact that the “associated” trajectories are all the same for any central
potential is evidently the consequence of the property that these orbits
depend only on the initial coordinates and not on the initial velocities.

In the ground state of the central potential, in particular, we have
l = 0, M = 0 and consequently s = 0, p = 0 which means that the
“particle” is immobile. Similarly, in the case of standing waves

u+
n (x) = a−1/2 cosπnx/2a , n = 1, 3...

u−n (x) = a−1/2 sinπnx/2a , n = 2, 4...

En = h̄2π2n2/8ma2

between two impenetrable potential walls at x = −a and x = a, and for
the bound states in the rectangular potential hole

V (x) =
{−U |x| < a

0 elsewhere

the “associated particle” is at rest and cannot distinguish between dif-
ferent physical situations.

Now we come to the second definition of the associated causal mo-
menta by d~p′/dt = −∇(V + UQ). In the central potential for the states
given in (43) we obtain

d~p′

dt
= ∇(

h̄2M2

2m
· 1

r2 sin2 θ
− En) (61)

where M and En are the quantum numbers of the particular stationary
state under consideration. This is an interesting dynamical system in
its own right. The potential is singular along the z-axis with an inverse



80 A.O. Barut and M. Božić

cube force law (a two-dimensional version of the Dirac’s charge-monopole
system). The equations of motion are

m~̈r = γ∇(1/ρ2) , ρ2 = x2 + y2 , γ = h̄2M2/2m

We have two integrals of motion for this dynamical system, the total
energy and the z-component of the angular momentum. In cylindrical
coordinates

ε =
m

2
(ρ̇2 + ρ2φ̇2 + ż2) + (En −

γ

ρ2
)

Lz = mρ2φ̇ (62)

Furthermore, z̈ = 0, or ż = vz(0), z = vz(0)t + z(0). Consequently, we
have one first order equation for ρ

ρ̇2 + (
L2
z

m2
− 2γ

m
)

1

ρ2
= K , K = 2

ε

m
− v2

z(0)− 2En
m

This equation can be integrated and gives

ρ = [K(t+ C)2 + (L2
z − h̄

2M2)/m2]1/2 (63a)

Whence

φ =
Lz
K

(
K

L2
z − h̄

2M2
)1/2 arctg

t+ C

( Km2

L2
z−h̄2M2 )1/2

+ C ′ (63b)

The projection of the orbits in the z =const. plane are

ρ =
λ√
K

[tg2(
λm

Lz
(φ+ φ0)) + 1]

and schematically shown in Fig. 1 (dotted lines). For Lz = h̄M (angular
momentum of the associated particle = quantum angular momentum)
the equations simplify considerably: ρ = (m/Lz)[1/(φ0 − φ)]. There are
also special circular orbits ρ =const., φ̇ =const. .



The quantum potential and “causal” trajectories . . . 81

V. Passage through a step-like barrier in the causal interpre-
tation

Figure 2. Step-like magnetic barrier.

In the case of the potential shown on Fig. 2. the wave functions in
regions I and II have the form

ΨI
1(x) = A01e

ik1x + Ã1e
−ik1x ≡ RI1eis

I
1/h̄

ΨII
1 (x) = A′1e

ik′1x = RII1 eis
II
1 /h̄ (64)

where
k′1

2
= k2

1 − (2m/h̄2)V (65)

Ã1 = r1A01 , A′1 = t1A01

r1 = (k1 − k′1)/(k1 + k′1) , t1 = 2k1/(k1 + k′1) (66)

When k′1 is real (h̄2k2/2m > V ) the quantum action and its amplitude
in regions I and II are

RI1 = [2(A2
01 + Ã2

1)]1/2

RII1 = t1A01

SI1 = h̄ arctg((1− r1) tg k1x/(1 + r1)) , x < 0

SII1 = h̄k′1 · x , x ≥ 0 (67)

The expressions for “momentum” follow directly

pI1 = dx/dt = h̄k1(1− r2
1)/(1 + r2

1 + 2r1 cos 2k1x) , x < 0
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pII1 = dx/dt = h̄k′1 , x ≥ 0 (68)

It is easy to see that pI1 and pII1 are always positive. That means that
for k1 > 0 the particle moves only in the positive x-direction.

The integration of equations (68) gives the relation between x and t

(1 + r2
1)x+ (r1/k1) sin 2k1x+ CI = (h̄k1/m)(1− r2

1)t , x < 0

x = (h̄k′1/m)t+ CII , x ≥ 0 (69)

We determine the integration constants from the conditions t = 0, x = x0

; t = t0, x = 0.

t0 = −m[(r1/k1) sin 2k1x0 + (1 + r2
1)x0]/h̄k1(1− r2

1)

(1 + r2
1)x+ (r1/k1) sin 2k1x− (r1/k1) sin 2k1x0

− (1 + r2
1)x0 = (h̄k1/m)(1− r2

1)t , t < t0

x = (h̄k′1/m)t+ k′1[(r1/k1) sin 2k1x0 + (1 + r2
1)x0]/k1(1− r2

1) , t > t0
(70)

If k1 is imaginary (h̄2k2
1/2m < V )

k′1 = i

√
(2m/h̄2)V − k2

1 = iρ′1 (71)

the wave functions in regions I and II are

ψI1(x) = eik1xA01 +A01e
−ik1xe−2i arctg(ρ′1/k1)

ψII1 (x) = A01e
−ρ′1x(2k1/(k

2
1 + ρ′1

2
))1/2e−i arctg(ρ′1/k1) (72)

whereas quantum action and associated momentum take the form

SI1 = −2h̄ arctg(ρ′1/k1) , SII1 = −h̄ arctg(ρ′1/k1)

pI1 = 0 , pII1 = 0 (73)

Therefore, a curious result is obtained : If the initial energy is less than
the potential energy in region II the particle remains at rest at the initial
position in region I.

For the second definition of causal trajectories, eq.(35), we find that,
since quantum potential in regions I and II

UQI(x) = h̄2k2
1/2m , UQII(x) = −(h̄2ρ′1

2
/2m)
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is independent of x, the equation d~p/dt = −∇(V +WQ) gives arbitrary
constant values for momentum in the two regions

pI = C1 , pII = C2 (76)

We note that in this physical situation the causal interpretation does not
agree with the statistical interpretation since according to the latter one
there is a finite probability for the particle reflection at the boundary of
the two regions. On the other hand Dewdney found that among the nu-
merically computed trajectories in the time dependent states there exist
both reflected and transmitted trajectories [8]. Dewdney’s result may
be understood by analysing the trajectory associated with the simplest
wave packet which is a superposition of two energy eigenstates :

ψI(x, t) = C1R
I
1e
i(sI1−E1t)/h̄ + C2R

I
2e
i(sI2−E2t)/h̄ = RIe

isI/h̄

ψII(x, t) = C1R
II
1 eik

′
1xe−iE1t/h̄+C2R

II
2 eik

′
2xe−iE2t/h̄ = RIIe

isII/h̄ (77)

Here RI , s
I
1 and sII1 are given in (67) whereas RII , s

I
2 and sII2 are ob-

tained from (67) replacing k1 by k2 :

One directly obtains sI , sII , pI and pII

sI(x,t)=h̄·arctg
C1RI

1
sin(sI

1
−E1t)/h̄+C2RI

2
sin(sI

2
−E2t)/h̄

C1RI
1

cos(sI
1
−E1t)/h̄+C2RI

2
cos(sI

2
−E2t)/h̄

sII(x,t)=h̄·arctg
C1RII

1
sin(p′

1
x−E1t)/h̄+C2RII

2
sin(p′

2
x−E2t)/h̄

C1RII
1

cos(p′
1
x−E1t)/h̄+C2RII

2
cos(p′

2
x−E2t)/h̄

(78)

pI=
(C1RI

1
)2p1+(C2RI

2
)2p2+C1RI

1
C2RI

2
cos{[s1−s2−(E1−E2)t]/h̄}[p1+p2]

(C1RI
1
)2+(C2RI

2
)+2C1RI

1
C2RI

2
cos[s1−s2−(E1−E2)t]/h̄

pII=
(C1RII

1
)2p′

1
+(C2RII

2
)2p′

2
+C1RII

1
C2RII

2
cos[(p′

1
−p′

2
)x−(E1−E2)t]/h̄[(p′

2
+p′

1
)]

(C1RII
1

)2+(C2RII
2

)+2C1RII
1

)+2C1RII
1

C2RII
2

cos[(p′
1
−p′

2
)x−(E1−E2)t]/h̄

The “momenta” now oscillate in time which may perhaps be interpreted
as due to reflected waves. But the explicit interpretation of trajectories
remains.

VI. The causal motion of a spinning neutral particle inside the
magnetic field

The spinning neutral particle in the magnetic field is described by

the two-component spinor ψ̂ =

(
ψ1

ψ2

)
which satisfies the Pauli equation

(− h̄2

2m
∇2 + µσ̂ · ~B)ψ̂ = ih̄

∂ψ̂

∂t
(80)



84 A.O. Barut and M. Božić

In the causal interpretation the spinor ψ̂ is written [7,27] in the form

ψ̂(~r, t) = ReiS/h̄
(
φ1

φ2

)
= ReiS/h̄φ̂ , ψ̂ = Reis/h̄e−iEt/h̄φ̂ (81)

S = s− Et

One assumes

φa = raeiθ
a/h̄ , a = 1, 2 , θ1 = −θ2

φ̂+φ̂ = 1

|r1|2 + |r2|2 = 1 (82)

Lochak [25] and Dewdney et al. [7] showed that the Pauli equation is
equivalent to four partial differential equations for variables S, R and ~s

∂S/∂t− ih̄φ+∂φ/∂t+ (m~v2/2) + UQ + Us + (2/h̄)µ~B · ~s = 0 (83a)

∂ρ/∂t+∇(ρ~v) = 0 (83b)

D~s/Dt = ~T + (2/h̄)µ~B × ~s (83c)

Here, ρ = R2 is the probability density

~v = (1/m)(∇S − ih̄φ+∇φ) = (h̄/im)ψ+∇ψ/ψ+ψ (84)

is a velocity field, ~s a “spin density vector”

~s = (h̄/2)φ̂+~σφ̂ = (h̄/2)ψ+σ̂ψ/ψ+ψ (85)

Us is a spin-dependent addition

Us = (1/2m)∂iθ
j∂iθ

j (86)

to the quantum potential

UQ = −(h̄2/2m)∇2R/R

where ~T is a quantum torque

~T = (1/mρ)~s× ∂i(ρ∂i~s) (87)
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Because of the flow derivative D~s/Dt (as we have noted already in (36)
in connection with D~p/Dt) a quantum torque arises in the spin equation
(83c) so that this equation has nothing to do with either the classical
spin precession, nor with Heisenberg quantum spin equation. Finally we
find that the equation corresponding to the equation (36) in the spin
case is

D~p

dt
= −∇(UQ + Us + µ

2

h̄
~B~s) + ih̄[(∇φ̂+)

∂φ̂

∂t
− ∂φ̂+

∂t
(∇φ̂)] (84a)

We shall now determine S, sa and ~v for stationary states in a magnetic
field along z-axis.

The general eigenstate of (80) which propagates in the positive x-
direction is

ψ̂(~r) = α′ei
~k′~r

(
1
0

)
+ β′′ei

~k′′~r

(
0
1

)
(88)

where

h̄2k2/2m = h̄2k′
2
/2m− µB , h̄2k2/2m = h̄2k′′

2
/2m+ µB (89)

Barut et al. showed [28] that by writting the state (88) in the form

ψ̂(~r) = ei(
~k′+ ~k′′)·~r/2

(
α′e−i(

~k′′−~k′)·~r/2

β′′ei(
~k′′−~k′)·~r/2

)
(90)

one makes explicit the representations of the translation and rotation
groups to which this state for given ~k′ and ~k′′ belongs. The form (90) is
consistent with the following transformation relation

ψ̂(~r2) = D~kt(~r2 − ~r1)R(φ)ψ̂(~r1) , ~kt = (~k′ + ~k′′)/2 (91)

By comparing the form (91) and the requirement (82) of the causal
interpretation, we see that symmetry requirements and the requirements
of the causal interpretation lead to the same result in the identification
of the two parts in the wave function, one of which (Reis/h̄) describes

the external degrees of freedom and the other (φ̂) describes the internal
spin degrees of freedom.

We see that the action s(~r) is given by

s(~r) = (h̄/2)(~k′ + ~k′′) · ~r (92)



86 A.O. Barut and M. Božić

By substituting the latter expression into (84) we obtain for momentum

~p = m~v = h̄[~k′|α′|2 + ~k′′|β′′|2] (93)

which is in the direction of the current density [29]

~j = Re(
h̄

i
ψ̂+∇ψ̂) (94)

The trajectories associated with “Newton equation”

d~p′

dt
= −∇(UQ + Us +

2

h̄
µBzsz) + ih̄[(∇φ̂+)

∂φ̂

∂t
− ∂φ̂+

∂t
(∇φ̂)]

are straight lines characterized by

~p′ = ~p0

because in the stationary state (90) the second parenthesis vanishes
whereas UQ, Us and z-component of the spin vector ~s are independent
of ~r

UQ = 0

Us =
h̄2( ~k′′ − ~k′)2

4m

~s = 2Reα′∗β′′ei(
~k′′−~k′)·~r ·~i+ 2Imα′β′′ei(

~k′′−~k′)·~r ·~j

+ (|α′|2 − |β′′|2) · ~k

The general relation of causal interpretation to quantum current is dis-
cussed in the next Section.

VI. Currents and flows

We think that the best way to interprete the so called causal “asso-
ciated motions” is to say that they express certain flow properties of the
current density (see also Ref.30). We have the following general relations
in spinless case

Im (
h̄

i
ψ+∇ψ)/ψ+ψ = −h̄∇R/R (95a)

Re (− h̄
i
ψ+∂tψ)/ψ+ψ = (1/2m)(∇S)2 + (V + UQ) (96)
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Re(
h̄

i
ψ+(∂t + ~v · ∇)ψ)/ψ+ψ = (1/2m)(∇S)2 − (V + UQ) (96b)

(with ~v = ∇S/m).

Thus ~p = ∇S indicates the flow lines of the wave mechanical cur-
rent density, whereas the real part of the expectation value of the time
displacement operator ih̄∂t and flow displacement operator (∂t + ~v · ∇)
(i.e. covariant derivative) give the “Hamiltonian” and “Lagrangian” of
a “particle” whose momentum is ~p = ∇S, moving in the total potential
V + UQ.

In the case with spin we obtain

h̄

i
ψ+∇ψ/ψ+ψ = (∇S − ih̄φ̂+∇φ̂) +

h̄

i
∇R/R (97)

using the parametrization (81). Or, if we treat each component sepa-
rately by writing

ψ̂ =

(
R1e

iS1/h̄

R2e
iS2/h̄

)
we have

h̄

i
ψ̂+∇ψ̂/ψ̂+ψ̂ =

R2
1

R2
1 +R2

2

∇S1 +
R2

2

R2
1 +R2

2

∇S2

− ih̄(
R1

R2
1 +R2

2

∇R1 +
R2

R2
1 +R2

2

∇R2) (98)

These equations show that one associates the “causal momentum” to the
translational motion of the spin 1/2 particle and not to the individual
spin components.

VII. Coherent states

These are time dependent states which have some properties very
close to the classical trajectories. Hence it would be interesting to find
the two associated orbits for such states.

We consider Schrödinger’s original coherent states [32] for the har-
monic oscillator characterized by a complex number A (“amplitude”)

ψA(x, 0) =< x | A >=< x |
∞∑
n=0

(
A

2
)n

1

n!
| n > (99)
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where | n > are the energy eigenstates of the Hamiltonian

Ĥ =
h̄ω0

2
(− ∂2

∂x2
+ x2) (100)

Here x is the dimensionless variable related to the coordinate q of the
oscillator by

x = q
√
mω0/h̄

Hence we find

ψA(x, t) = ψA(t)(x, 0)e−iω0t/2 =< x | A(t) > e−iω0t/2 (101)

where A(t) = Ae−iω0t = |A|ei(φ−ω0t). Explicitly we obtain for the nor-
malized coherent states

ψA(x, t) = (
mω0

h̄π
)1/4e−[x−|A| cos(φ−ω0t)]

2/2·

e−i[(ω0t/2)+(|A|2/4) sin 2(φ−ω0t)−|A|x sin(φ−ω0t)]

Hence the quantum action (phase) is

S = −h̄[(ω0t/2) + (|A|2/4) sin 2(φ− ω0t) · |A|x · sin(φ− ω0t)] (102)

The associated motion is then

p = ∇S =
√
h̄mω0|A| sin(φ− ω0t) , q =

√
h̄mω0|A| cos(φ− ω0t)

(103)
The quantum potential is

UQ = (h̄ω0/2)[1− (x− |A| cos(φ− ω0t))
2] (104)

Hence the associated motion of the second kind is

dp′/dt = −d(V + UQ)/dq = −ω0

√
mh̄ω0 cos(φ− ω0t) (105a)

which gives

q′ = |A|(h̄/mω0)1/2 cos(φ− ω0t) + C1t+ C2 (105b)

We compare these with the quantum mechanical averages in the coherent
state

p =< ψ | p̂ | ψ >=
√
h̄mω0|A| sin(φ− ω0t)

q =< ψ | q̂ | ψ >=
√

(h̄/mω0)|A| cos(φ− ω0t)
(106)
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and with the classical solutions

qcl(t) = (p0/mω0) sinω0t+ q0 cosω0t

pcl(t) = p0 cosω0t−mω0q0 sinω0t
(107)

in which p0 and q0 are the initial position and momentum. (Note that
classical action is w = (ω0/2)[q · (α2 − q2)1/2 + α sin−1(q/α)] where
α2 = 2E/ω2

0 .

Thus in the coherent state all four concepts of momenta and position
of “particles” come most close to each other. But even then there are
differences, namely in the number of constants of integration.

Conclusion

The “causal interpretation” of quantum mechanics by quantum po-
tential has a priori an appealing feature. Distinct from the statistical
interpretation, it emphasizes the importance of the phase of the wave
function and in this way aims to solve the difficulties in the character-
ization of quantum mechanical reality. But as we showed, the method-
ological basis of this interpretation does not lie in classical mechanics.
Also, for explicit quantum systems in stationary states the resulting or-
bits of the “causal” interpretation have nothing to do with semiclassical
picture rather they model certain flow patterns of the quantum current.
In coherent states which are time-dependent, however, the orbits of the
classical motion, the average quantum motion and those coming from
~p = ∇S and d~p′/dt = −∇(V +UQ) all coincide except for different inte-
gration constants. But in general the “causal” trajectories cannot give
a full picture of the behavior of the quantum system. They must be
supplemented by complicated probability densities of such trajectories.
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