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The nonlinear extended oscillator:
a particle concept beyond quantum mechanics

U. Enz

University of Twente

Enschede, The Netherlands

ABSTRACT. The proposed particle concept is based on non linear
field equations derived from a least action principle and interpreted
calssically. Solutions correspond to stable, extended, soliton-like
field structures, which as a whole are viewed as “particles”. The
total field energy of the structure is interpreted as rest energy or
mass of the particle. Internal oscillations (or rotations) of the struc-
tures lead, for the moving particle, to a wave with a wavelength
and a frequency comparable to those of the matter wave of quantum
mechanics. Two examples are discussed: the sine-Gordon breather
in 1 + 1 dimensions, and Hopf maps in 3 + 1 dimensions. The free
sine-Gordon breather represents an oscillator in uniform, rectilinear
motion. When confined in a square well potential, the breather as-
sumes discrete energy levels identical with those found in quantum
mechanics for a particle in a box. Mappings of three dimensional
space on a sphere, Hopf maps, also derived from a well defined least
action principle, lead to field structures which are topologically sta-
ble. The total field energy, the size of the structures, and their in-
ternal rotation can be calculated in principle, but, contrary to what
holds for the breather, no exact results heve been obtained as yet.

RESUME. Le concept de particule proposé est basé sur des équations
de champ non linéaires déduites d’un principe de moindre action
et interprétées classiquement. Les solutions correspondent à des
structures de champ stables et étendues, du type soliton, qu’on peut
considérer globalement comme des “particules”. L’énergie totale de
champ de la structure est interprétée comme une énergie ou une
masse au repos de la particule. Les oscillations (ou rotations) in-
ternes des structures conduisent, pour la particule en mouvement,
à une onde avec une longueur d’onde et une fréquence comparables
à celles de l’onde de matière de la mécanique quantique. Deux ex-
emples sont discutés: le “breather” de sinus-Gordon à 1 + 1 dimen-
sions, et les applications de Hopf à 3 + 1 dimensions. Le “breather”
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de sinus-Gordon en mouvement libre représente un oscillateur en
mouvement rectiligne et uniforme. Confiné dans un puits de po-
tentiel carré, le “breather” adopte des niveaux d’énergie discrets
identiques à ceux trouvés en mécanique quantique pour une partic-
ule dans une bôıte. Les applications de l’espace à trois dimensions
sur la sphère, applications de Hopf, déduites aussi d’un principe de
moindre action bien défini, conduisent à des structures de champ qui
sont topologiquement stables. L’énergie totale du champ, la taille des
structures, et leur rotation interne peuvent être calculées en principe,
mais, contrairement à ce qui est vrai pour le “breather”, des résultats
exacts n’ont pas encore été obtenus.

Introduction

The purpose of the present paper is to propose and discuss a particle
concept which is based on classical, continuous fields. The field intro-
duced here is considered to be the basic fundamental entity from which
all particle properties and the known physical fields can be derived as
limiting cases or asymptotic approximations. The equations governing
the field are essentially nonlinear and of such a type that they allow for
soliton-like solutions representing stable extended (bunched) field struc-
tures of minimum energy or action. The central idea is to identify such
a stable field structure with a stable particle. Examples treated include
the sine-Gordon equation and its breather solution, representing a model
particle in a one dimensional space, and the Hopf map, which leads to
a (more realistic) particle model in three dimensional space. Both de-
scriptions are Lorentz invariant.

In our concept, the rest energy (or rest mass) of a single free par-
ticle is defined as the total field energy of such a bunched field. The
extension of the field structure is infinite in principle, but the region of
essential nonlinearity (and thus of sizeable contribution to the total field
energy) may be quite small, so that the larger part of the rest mass can
be considered to be well localized. The region mainly containing the
mass will turn out to be related to a given elementary length. The field
is continuous and regular at all points of space and time. The field struc-
tures are not assumed to be static, breather-like internal oscillations or
a rotation of the structure as a whole are not excluded. Such structures
can be viewed as localized (nonlinear) oscillators or rotators exhibiting
a rest mass. The Lorentz invariance of the equations leads directly to
solutions discribing such structures in a state of uniform motion along
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some direction. Momentum and kinetic energy of the particle are then
easily derived from the proper Lorentz transformation. The particle con-
cept advocated in the present paper deals essentially with these moving
oscillators or rotators : they are viewed as moving particles.

The description given so far is classical. Any particle concept should
address, however, the wave nature of matter. Indeed our concept in-
cludes, without further assumptions, wave aspects which emerge from
two properties of the model, i.e. the internal oscillation and the infinite
extension of the field. The particle at rest exhibits an oscillation which
is periodic in time with correlated phase all over space. Transformation
to motion of this oscillating structure leads to a periodicity of the field
in both space and time, i.e. a phase wave. This (nonlinear) phenomenon
is governed by a vector k describing the translational invariance of the
structure. It is of great importance to note [1] that the momentum of
the moving structure turnes out to be proportional to k. Therefore a
comparison of k with the wave vector of a harmonic plane wave of equal
phase, the ψ-wave of a free particle, is possible, although the two con-
cepts are completely different. In this context we would like to stress
the relation of our concept with de Broglie’s [2] fundamental ideas on
moving oscillators leading to quantum mechanics.

In the present paper, the emphasis is put on the sine-Gordon
breather in order to expose and discuss the particle concept in detail.
The breather solution is well known and can be expressed in closed
form using elementary mathematics, which facilitates the interpretation.
Moreover it has been found that a solution in closed form is not restricted
to uniform motion, a breather confined in a square well potential can be
treated exactly as well [3]. The confined breather assumes discrete en-
ergy levels which are identical with the energy levels found in quantum
mechanics for a particle in such a potential [3]. These exact results are
used to confront our particle concept with the usual quantum mechan-
ical description and to discuss questions like localization, probability
interpretation, or momentum in the simplest possible context.

The second example to be treated in this paper concerns bunched
field structures in three dimensional space emerging from Hopf maps, i.e.
mappings of three dimensional space onto the surface of a sphere. The
topology of the resulting stable field structures is well known, it is char-
acterized by an integer, the Hopf index. Explicite solutions yielding the
detailed structure are not known, however. Therefore these interesting
structures [4] will be discussed only briefly in this paper.
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The ideas advocated here are not an attempt to return to a classical
description of particles in the sense of classical mechanics, on the con-
trary they are intended to uncover a deeper level of particle structure and
to reach a synthesis of particle aspects and wave aspects. At the outset,
the concept differs fundamentally from both classical point mechanics
and quantum mechanics. We do not suppose, as a basic assumption, the
existence of pointlike particles as given entities with given properties in
the way it is done in both of these theories. The notion particle does
not enter as a basic element, but the particle emerges as a result of the-
ory : as an extended stable field structure. The wave aspects and the
proper energy levels are inherent in the model as well, they follow as a
consequence of the transformation properties of the extended structures.

Breather dynamics

In this chapter we treat the sine-Gordon breather, which we consider
as a particle in a one dimensional space. Our starting point is the sine-
Gordon equation, written in the form

uxx − c−2utt = d−2 sinu. (1)

The function u(x, t) is introduced as a classical scalar field depending on
the space like coordinate x and the time t. Eq.(1) governs the evolution
of this field in space and time. If we identify c with the velocity of light
and interpret d as an elementary length, eq.(1) represents a classical
field theory of particles. No additional notions like particle, interaction,
or matter field are introduced from the outset, all physical properties
of the model follow as a consequence of the properties of eq.(1) and its
solutions. Eq.(1) is attractive as a model theory in one dimension for
several reasons : it is of second order in x and t and reduces to the linear
Klein Gordon equation in the limit of u� 1, it is Lorentz invariant, and
its solutions are well known.

Eq.(1) represents the Euler equation of the minimum action princi-
ple

δ

∫
[d2(u2x − c−2u2t ) + 4 sin2(u/2)]dxdt = 0. (2)

The structures relevant for our concept are stable structures of minimum
action. The energy density is made up of terms in u2x, u2c , and sin2 u/2.
The corresponding total energy is given by the integral [5]

E =
1

2
G

∫
[d2(u2x + c−2u2t ) + 4 sin2(u/2)]dx, (3)
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taken over the entire x-axis. A constant G with the dimension of a force
is introduced in eq.(3) for dimensional reasons.

The complete solutions [6] of the sine-Gordon equation can be in-
terpreted as a multitude of (anti)solitons and (anti)breathers, moving
with various velocities along the x-axis. Here we focus on a single, iso-
lated breather in motion, to which we ascribe, according to our concept,
physical significance. The breather solution [7] of eq.(1) reads

u = 4 tan−1
[s sin((r/d)(c(t− t0)− βx)(1− β2)−1/2)

r cosh((s/d)(x− x0 − vt)(1− β2)−1/2)

]
. (4)

The velocity of the breather is v (β = v/c). A parameter q (s = sin q, r =
cos q) appears in eq.(4), which determines the internal structure, the size
and the oscillation frequency of the breather. We assume q to be con-
stant. Our model is therefore based on four constants : the elementary
length d, the velocity of light c, the constant G and the number q. The
position of the breather and its phase at time t = 0 are determined
by the integration constants x0 and t0. The solution given by eq.(4)
can be viewed to describe a bound soliton-antisoliton pair performing
an anharmonic yet periodic oscillation, the whole structure being in a
state of uniform motion. The structure is centred around the position
x = x0 + vt, which we define as its ‘site’. The maximum separation b
reached by the soliton-antisoliton pair during one periode is a measure
of the size of the breather. From eq.(4) we find the relation

r ≈ 2 exp[− b

2d
(1− β2)−1/2], (5)

which yields b in terms of r and d.

As seen from eq.(4), the oscillation frequency of the breather is given
by

ωb =
rc

d
(1− β2)−1/2. (6)

The anharmonicity of the oscillation is restricted to a region of the order
of b around the center of the breather. Far from the center the oscillation
is approximatively harmonic with an amplitude of the form f(x − vt).
The solution (4) yields a vector

kb =
rv

dc
(1− β2)−1/2, (7)
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being of great importance for our considerations. The dimension of kb is
that of a wave vector, its significance is more general, however : it governs
the transformation properties of the breather. During one oscillation
periode τ = 2πω−1b , the breather advances along the x-axis by an amount

x2 − x1 = 2πvω−1b ≈ 2π
d2

r2
kb, (8)

or, more precisely, the field structure representing the breather recon-
stitutes itself in identical shape at a position advanced by the above
amount. The vector kb thus defines breather positions of equal phase
and therefore describes what could be called a discrete translational in-
variance. The vector kb also determines a length

λb = 2πk−1b = 2π
dc

rv
(1− β2)1/2 ∼ 1

v
. (9)

The length (9) is not the wavelength of a planar wave, but rather de-
termines the distance of the knots u = 0, of the field at any time t. We
will see that this property of k enables us to construct bound breather
states.

The total energy of the moving breather is given by the integral (3).
According to Lamb [5] the result of this integration is

Eb = E0(1− β2)−1/2, (10)

where E0 is the energy of the breather at rest :

E0 = 16sGd. (11)

As s < 1, the energy (11) is always smaller than twice the energy of a
free soliton, confirming that the breather is a bound state of two solitons.
For the larger part, the energy (10) is localized in a space region of the
order of the size b centered around the position x = x0 +vt. A rest mass

mb = E0c
−2 (12)

can be ascribed to the breather. The mass density is finite for all values
of x and falls exponentially to zero far from the site of the breather. The
breather can therefore be viewed as a rather well localized amount of
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energy or mass moving with velocity v. The momentum corresponding
to this moving mass reads, according to relativistic mechanics,

pb = Ebvc
−2. (13)

Summarizing we observe that the moving breather is governed on the
one hand by a frequency ωb and a vector kb, representing its wave nature,
and on the other hand by an energy Eb and a momentum pb, representing
its particle character. The dual nature of the breather has also be em-
phasized by J.J. Klein [8]. It is very important to realize that there exist
proportionalities relating [1] these breather properties. The relations are

Eb = h̄bωb (14)

and
pb = h̄bkb, (15)

as becomes clear from eqs. (6), (7), and (10)...(13). The proportionality
constant, the action

h̄b =
16sGd2

rc
= E0

d

rc
= m0c

d

r
(16)

appearing in both of these relations is a function of the constants intro-
duced earlier. It may be called Planck’s constant of breather dynamics.
The analogy between the expressions (14) and (15), and the fundamen-
tal quantum mechanical laws expressing the wave nature of matter is
evident. We will discuss this analogy in detail in the next chapter.

Up to this point we have considered a breather in rectilinear uniform
motion. We now treat the breather as a particle confined [3] in a square
well potential. This type of potential is characterized by perfectly re-
flecting walls, in our one-dimensional case by two walls at positions x = 0
and x = L. We assume that u vanishes at those positions, which implies
for the free breather, according to eq.(4), that

πnk−1b = L, (17)

where n is an integer. Eq.(1) has thus to be solved for the boundary
condition u(0) = 0 and u(L) = 0. It is known that the sine-Gordon
equation has a special class of analytic solutions, the multisoliton solu-
tion, for which explicite expressions can be obtained by using the inverse
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scattering formalism [6,9]. We construct a solution by introducing two
trains of breathers of proper phase moving in opposite directions. Both
trains consist of an infinite number of equidistant breathers (distance
2L), one train moving with velocity +v, the other with velocity −v. The
breathers of each of the trains oscillate in phase, the phase of the two
trains being opposite. The breather sequences are such that the points
x = 0 and x = L, the positions of the walls, are centers of antisym-
metry. Periodic breather collisions occur at these positions (and at all
equidistant positions outside the domain 0 ≤ x ≤ L), where u = 0 at
all times. We interprete this result as a reflection of breathers at the
walls, whereby their phase is reversed. Within the domain, the region of
interest, one and only one breather is present at any time, so that our
construct indeed describes a confined ‘particle’, in fact a one particle
state.

The above procedure, which is discussed in somewhat more detail
elswhere [3], assures the existence of exact solutions with the proper
boundary conditions, a very important result for our considerations.
In the following we do not further persue the general solution or the
details of breather reflection, but restrict ourselves to large potential
wells and thus large interbreather distances, i.e. L � b. An especially
simple solution then results : except near the reflecting walls (at dis-
tances smaller than several times b), the solution describing the confined
breather is close to that describing a free breather, which is in accordance
with Bäcklund’s transformations [5]. The energy and the momentum are
found to be close to the free breather values as well, deviations falling
off exponentially with interbreather distance.

We now turn to the energy of a confined breather in a stationary
state. Similar to the familiar linear problem, a stationary state is defined
as a state of strict periodicity (periode 2L/v), for which the condition
(17) has to be fulfilled. We therefore have discrete values of the wave
vector according to

kb,n = πnL−1. (18)

As a consequence of the discreteness of the wave vector discrete energy
levels result. In our approximation L � b and for velocities v � c the
energy levels are

Eb,n − E0 = E0
d2π2n2

r22L2
=
h̄2bπ

2n2

mb2L2
, (19)
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as results from eqs.(7), (10), (12), (16), and (18). It should be kept in
mind that eq.(19) represent the approximate energy of an exact solu-
tion of eq.(1). The energy levels (19) are identical with those found in
quantum mechanics for a particle of mass m moving in a square well
potential. The physical implication of this analogy will be discussed in
the next chapter.

Confrontation of particle concepts

We now confront our particle concept with the particle concept un-
derlying quantum mechanics. This is done by comparing the assump-
tions made and the results obtained in both concepts when treating the
simple example of a particle in a square well potential.

We first recall the quantum mechanics of this problem. The
Schrödinger equation for a particle of mass m in such a potential yields

ψ ∼ (exp ikx− exp−ikx), (20)

with
kn = nπL−1. (21)

This solution meets the boundary conditions ψ(0, L) = 0. Eq.(20) can
be viewed as the superposition of two plane waves, representing a real
function of the type sin(kx). The expected mean value of the momentum
of the particle in our configuration is zero, a result generally valid for real
waves functions. The probability of finding the particle at the coordinate
x is

2L−1 sin2 knx. (22)

The energy levels corresponding to the above solution are

En − E0 =
h̄2

m

π2

2

n2

L2
. (23)

If we identify m with mb, and h̄ with h̄b, the energy levels (23) are
identical with the energies (19) of the breather in the same potential.

Comparing the concepts we see that both of them rely on scalar
functions, ψ and u, respectively. The difference in interpretation is ev-
ident, however. Whereas the wave (20) is a plane wave of constant
amplitude, governed by a linear equation and subject to a probabilistic
interpretation, the wave (4) represents a bunched field governed by the
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nonlinear equation (1) and interpreted entirely classical. Far from the
(moving) center of the breather, where u� 1, the solution (4) takes the
form

u ∼ f(x− vt) sin(kbx− ωbt), (24)

which represents a monochromatic wave with strongly varying ampli-
tude. Its wavelength is equal to the length (9), and, in the non relativistic
limit, also equal to the de Broglie wave length

λb = h̄bm
−1
b v−1 (25)

of the quantum mechanical description.

The identity of the eigenvalues follows directly from the equivalence
of ‘wave lengths’. Concerning energy levels, we thus have two descrip-
tions, quantum mechanics and the breather model, which lead to the
same answer. This result is remarkable in view of the widely hold opin-
ion that quantum mechanics is unique in discribing discrete energies.
It is interesting to note that measurements of energy levels would not
discern between the two models.

Concerning the position as well as the momentum of the particle
or breather, however, the two concepts differ in an essential way. The
quantum mechanical formalism deals with pointlike particles and as-
cribes to them, after measurement, a position at a point on the x-axis.
The breather concept, on the other hand, deals with an extended object.
The extension is infinite in principle for the free breather, and equal to
L for the confined breather. Nevertheless, as we have seen, the mass
is rather well localized, because far from the center of the breather the
intensity of the field and the corresponding energy density fall off expo-
nentially. We have defined the length b (� L) as the size of the breather,
so that we conclude that our particle, while being extended, possesses
a position determined with a precision of the order of ≈ b at any time.
Other definitions of size will lead to similar conclusions.

Except at the boundaries x = 0 and L = 0, there are, also for
higher orders n > 1, no fixed nodes inside the domain 0 < x < L.
(The footnote in ref.[3] on this point is in error). The confined ‘particle’,
represented by the breather, reaches all positions in the domain. A
hypothetical measurement of particle position would reveal the following
picture. A single measurement would deliver an arbitrary value of x in
the domain in both concepts. Repeated measurement would produce
a density according to eq.(22) in quantum mechanics, yet a uniform
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density in the breather concept. There are thus no sites inaccessable to
the breather, a result relevant in connection with the problem of particle
passage through nodes. D. Bohm and B.J. Hiley [10] recently adressed
this problem and concluded that in the quantum mechanics of a particle
in a box equiprobability of opposing velocities is not consistent with
nodes. In the breather picture this complication is not present.

The momentum of the breather is also well determined. In the
square well potential the motion is periodic, the breather momentum
is either +mv or −mv. Because the mass is localized, the momentum
is localized as well. A space region of size b carries the major part of
the momentum. We conclude that our ‘particle’ has a position and a
momentum, both of them well determined within the limits indicated.
The moving breather is monochromatic, i.e. it has an unique length
(9), and simultaneously a well defined position. Heisenbergs relation,
which is based on linear superposition, does not apply in our nonlinear
model. However, a measurement of position by confining the breather
to a region < L would destroy the stationary state in a way similar to
the quantum mechanical result.

Breather reflexion shows interesting details. The extension of the
breather implies that reflexion is not an instantaneous phenomenon but
has, if we focus on the main part of the mass, a duration of the order of
b/v. In view of the asymptotic parts of the structure u, reflection is, in
strict sense, even continuous. The breather interacts permanently with
both of the walls !

Expanding on breather extension we note that as an alternative
definition of particle size we may separate an inner region of size b′, the
particle, from the outside region, the field, by defining a fraction of the
total breather mass embraced by the length b′. This fraction of the mass
will be close to unity for e.g. b′ ≈ 2b. However, either the length b′

or the mass fraction is arbitrarily chosen, indicating that a meaningful
separation is not possible.

A further, more relevant definition of size concerns the length d/r.
This length governs the wave properties of the breather and represents
the direct analogue of the Compton wave length of the electron,

λc = hm−1c−1 (26)

We may equate d/r to λc and write the ‘Klein Gordon equation of the
breather’

ψxx − c−1ψtt =
m2
bc

2

h̄2b
ψ =

r2

d2
ψ. (27)
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Eq.(27) describes the quantum mechanics of a particle of mass mb and
thus represents the linear, relativistic invariant counterpart of eq.(1).
The results (20)...(23) follow, in the non relativistic approximation, di-
rectly from eq.(27) as well. Eq.(27) is not identical with the small field
limit of eq.(1), because the relevant length is d/r and not d.

We arrive at the conclusion that the concepts under discussion repre-
sent two valid descriptions, both internally consistent, of the motion of a
particle or breather. They are not equivalent, however. The Schrödinger
equation (or eq.(27)) describes a partial aspect only, i.e. the wave na-
ture, whereas the breather concept describes, apart from the wave na-
ture, also the internal structure, the stability and the discreteness of the
mass. Therefore the linear equation is a substitute for the more gen-
eral nonlinear concept, reproducing the wave aspects only. It has the
character of an artefact.

Hence we further conclude that there is a hierarchy (fig.1) of descrip-
tions of the phenomenon ‘particle’. The concept proposed is the most
fundamental one, special cases of limited validity follow by simplifying
assumptions, i.e. the classical relativistic particle picture by neglecting
the internal structure of the u-field and by concentrating the total mass
in one point ; and the quantum mechanical description by substituting
the plane ψ-wave while maintaining the proper phase of the u-wave.

Hopf maps

What has been presented so far is a model useful to exemplify and
discuss the particle concept we have in mind. The simplicity of the
mathematics used facilitates the discussion of the underlying physical
ideas. The model yields a unified description of a rather large number
of particle properties and therefore contains valid elements of a realistic
theory. Yet the model falls short in an important respect : it is one
dimensional. A direct identification of the structure described with a
known particle is therefore not possible. As an obvious way to generalize
the model to three spacelike dimensions one might think of replacing the
left side of eq.(1) by the d’Alambertian operator t̄u. However, Derrick’s
[11] (or Hobart’s [12]) theorema excludes stable static solutions of such
a three dimensional model. Hence such a direct generalization of eq.(1)
does not lead to the desired result.

A viable three dimensional model should meet the following postu-
lates : 1. The model is to be based on a non-linear Lorentz-invariant
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equation following from a least action principle. 2. The equation should
not be subject to Derrick’s theorema, thus allow for extended, stable
solutions free of singularities. 3. The stability may either be of the
non-topological type (like the breather), or, preferably, of the topologi-
cal type (like the sine-Gordon soliton). 4. The resulting field structure
should perform internal oscillations or rotations. 5. The interpretation
is classical.

A route to a three dimensional model meeting these postulates is
found if we recall that the sine-Gordon system represents a mapping of
the x-axis on a unit circle. The Hopf map is a direct generalization of
this map, i.e. the mapping of three dimensional space on the (two di-
mensional) surface of a sphere. The topological properties of Hopf maps
are characterized by the Hopf index, an invariant integer indicating the
number of times space is mapped on the sphere. We represent the Hopf
map by two angular variables, the spherical coordinates (or Eulerian an-
gles) θ(x, y, z, t) and φ(x, y, z, t), which we interpret as classical scalar
fields. The model is based on the minimum action principle [4]

δW = 0 , W = B

∫
w(D)d3ξdτ. (28)

In eq.(28) the ξ’s are dimensionless Cartesian coordinates expressed in
units of a fundamental length l(τ = ct/l, ξ1 = x/l, etc.). There are thus
three fundamental constants : the length l, the velocity of light c, and
the constant B having the dimension of an action. The dimensionless
scalar density D is defined as

D = (∇θ)2 − θ2τ + [(∇φ)2 − φ2τ ] sin2 θ. (29)

In the first instance the function w is assumed to read

w(D) = D +D2, (30)

but higher order terms of D are not excluded. If the quadratic term
in eq.(30) is ommitted, Derrick’s [11] reasoning applies, and stable field
structures are not obtained. Including a quadratic or higher order term
leads to the consequence that the energy density increases stronger than
the inverse of the volume element when the structures are scaled down,
and stability results. We therefore arrive at the expression (30) as the
simplest assumption. It may be remarked that Williams [13] showed that
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assuming w = D3/2 also leads to stable field structures, be it without
scale. From the minimum action principle defined by eq.(28, 29, 30), the
corresponding Euler equations (not reproduced here) are readily found
[14].

As yet, no detailed analytical or numerical solutions of these equa-
tions are known, the existence of solutions and their general structure
and topological properties is assured, however. The simplest of these
structures [14] can be viewed as a closed, twisted ‘string’ having a core
defined as the line θ = π. On a closed path both along and around
this line, the function φ varies by 2π. There are two of these structures,
characterized by the Hopf indices ±1, forming mirror images of each
other. One or more structures sharing the same sign of the Hopf index
are topologically stable, a pair of structures with indices +1 and −1 can
annihilate each other, because such a pair is topologically equivalent to
θ = 0. The boundary condition is such that far from the structure (at a
distance large compared with its radius) θ → 0.

The energy integral corresponding to eq.(11) has been evaluated by
Williams [13] for w = D3/2, and estimated [4] for w = D + D2. Both
results refer to static structures only. We expect that the minimum
action principle (28) will lead to a rotating structure. Further work
including numerical solutions of eq.(28) is therefore needed.

Conclusions

In conclusion, we advocate a particle concept based on stable, ex-
tended, oscillating field structures derived from a nonlinear action prin-
ciple and subject to classical interpretation as an alternative to the
presently accepted concept, which is based on pointlike particles with
fundamental properties not resulting from theory, but introduced as
labels. The most important difference between the concepts concerns
particle structure and particle extension. In a strict sense, notions like
structure or extension are without meaning in quantum mechanics, the
formalism presupposes pointlike particles. A structure is exclusivly as-
cribed to those particles, e.g. the proton, which are assumed to be built
up of more elementary, pointlike particles. In quantum mechanics there
is literally no room for particle structure. It is important to realize that
the theoretical framework determines to a large extent the interpretation
of experimental data. Concerning e.g. the electron, the experimental ev-
idence, interpreted within the quantum mechanical framework, confirms
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its pointlike character. In a different framework a quite different con-
clusion may result. Our particle concept is based on such an alternative
theoretical framework constituting a structural theory from the outset.
The resulting stable field configurations not only have a structure, they
are structures.

The moving breather is an example of these ideas. Indeed, our result
that the breather assumes discrete energy states is a direct consequence
of the spatial extension of the field. The interference is a consequence
of the simultaneous interaction of the extended field with both walls. In
this respect the particle is a non local phenomenon, an insight which
may be of relevance for the interpretation of certain recent experiments.

The model based on Hopf maps also fits into this classical theoret-
ical framework, and is expected to lead to analoguous results. (Our
model differs from that of Skyrme [15], which is interpreted in the
framework of quantum mechanics, although there is a close relation in
topological properties. His model is based on the mapping of space
on the three dimensional surface of a hypersphere, which leads to ex-
tended field structures having point symmetry). Summarizing we con-
clude that the concept presented unifies particle properties like discrete
mass (and built in interaction [14]) with the wave nature of the par-
ticle. It represents a new synthesis of discreteness and continuity.

Figure 1. Hierarchy of particle descriptions : The familiar picture
of the relativistic mass point on the one hand and the plane wave de-
scription of quantum mechanics on the other hand follow from the more
general nonlinear description by making the simplifying assumptions in-
dicated in the figure.
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