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Maxwell’s theory extended (Part 1)

Empirical reasons for questioning the completeness of Maxwell’s theory
Effects demonstrating the physical significance of the A potentials
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ABSTRACT. This paper examines critically the treatment of the
vector and scalar potentials in classical Maxwell theory as mere
mathematical conveniences with no physical significance. In Part
1 the experimental evidence is reviewed for a number of well-
established effects, demonstrating that the A fields do have physical
significance as local-to-global operators or gauge fields, in precisely
constrained topologies. The A fields are physically meaningful in
topologies of SU(2), and higher, symmetry form. The conventional
classical Maxwell theory is of U(1) symmetry with Abelian com-
mutation relations. Extended to SU(2), or higher, symmetry form,
Maxwell’s theory possesses non-Abelian commutation relations. In
Part 2, this paper applies an adapted Yang-Mills interpretation of
low energy fields – an approach previously applied to high energy
fields. This adaptation is permitted by precise definition of the
boundary conditions of those low energy electromagnetic fields.

RESUME. Cet article présente une étude critique de la manière
dont sont traités, en théorie classique de Maxwell, les potentiels
scalaire et vecteur, comme de simples commodités mathématiques,
sans signification physique. Dans la partie 1, on rappelle les preuves
expérimentales d’un certain nombre d’effets bien établis, démontrant
que les champs A ont vraiment une signification physique en tant
qu’opérateurs permettant de passer du point de vue local au point de
vue global, ou champs de jauge, dans des topologies contraintes de
façon précise. Les champs A ont un sens physique dans des topolo-
gies de type de symétrie SU(2) ou supérieure. La théorie classique
conventionnelle de Maxwell est de symétrie U(1), avec des relations
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de commutation abéliennes. Etendue à une symétrie de type SU(2),
ou supérieure, la théorie de Maxwell possède des relations de com-
mutatin non abéliennes. Dans la partie 2, cet article applique une
interprétation de type Yang-Mills à des champs de basse énergie –
une approche utilisée jusqu’ici pour les hautes énergies. Cette adap-
tation est permise grâce à une définition précise des conditions aux
limites de ces champs électromagnétiques de basse énergie.

PROLEGOMENA

In this Part 1 of a two part examination of Maxwell’s theory, effects
demonstrating the physical significance of the Aµ potentials are exam-
ined. Part 2 (Barrett, 1990) adresses the theoretical and pragmatic
reasons for questioning the completeness of Maxwell’s theory.

A number of physical effects strongly suggest that the Maxwell
field theory of electromagnetism is incomplete. These effects ad-
dress fields(s)-free electron (F-FE), field(s)-conducting electron (F-CE),
field(s)-particle (F-P), wave-guide-field (WG-F), conducting electron-
field(s) (CE-F) and rotating frame-field(s) (RF-F) interactions. A list
of these experimentally observed effects, all of which involve the Aµ po-
tentials in a physically effective role, includes: 1. The Aharonov-Bohm
and Altshuler-Aronov-Spivak effects (F-FE & F-CE): Ehrenberg and Si-
day, Aharonov and Bohm, and Altshuler, Aronov and Spivak predicted
experimental results by attributing physical effects to the Aµ potentials.
Most commentaries in classical field theory still show these potentials as
mathematical conveniences without gauge invariance and with no phys-
ical significance. However, many experiments have demonstrated the
phase changes predicted.

2. The Berry-Aharonov-Anandan-Pancharatnam phase rotation ef-
fect (WG-F) and (F-P): In the WG-F version, the polarization of light
is changed by changing the spatial trajectory adiabatically. The Berry-
Aharonov-Anandan phase has also been demonstrated at the quantum,
as well as the classical level. This phase effect in parameter (momentum)
space is the correlate of the Aharonov-Bohm effect in metric (ordinary)
space, both involving adiabatic transport.

3. The Josephson effect (CE-F): both at the quantum and macro-
physical level, the free energy of the barrier is defined with respect to an
Aµ potential variable (phase).

4. The quantum Hall effect (F-CE): gauge invariance of the Aµ
vector potential, being an exact symmetry, forces the addition of a flux
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quantum to result in an excitation without dependence on the electron
density.

5. The De Haas-Van Alphen effect (F-CE): the periodicity of os-
cillations in this effect is determined by Aµ potential dependency and
gauge invariance.

6. The Sagnac effect (RF-F): exhibited in the well-known and well-
used ring laser gyro, this effect demonstrates that the Maxwell theory, as
presently formulated, does not make explicit the constitutive relations
of free space, and does not have a built-in Lorentz invariance as its field
equations are independent of metric.

The Aµ potential has been demonstrated to be a physically mean-
ingful construct at the quantum level (Effects 1-5), at the classical level
(Effects 2,3 and 6), and at relatively long range in Effect 2. In the F-CE
and CE-F cases (Effects 1,3-5), the effect is limited by the temperature-
dependent electron coherence length with respect to the device/antenna
length.

Formerly, treatment of the Aµ potentials as anything more than
mathematical conveniences was prevented by their obvious lack of gauge
invariance. However, gauge invariance for the Aµ potentials results from
situations in which fields, firstly, have a history of separate spatiotem-
poral conditioning and then, secondly, are mapped in a many-to-one,
or global-to-local, fashion (in holonomy). Such conditions are satisfied
by Aµ potentials with boundary conditions, i.e., the usual empirically
encountered situation. Thus, with the correct geometry and topology
(i.e., with stated boundary conditions) the Aµ potentials always have
physical meaning. This indicates that Maxwell’s theory can be extended
by the appropriate use of topological and gauge symmetrical concepts.

The Aµ potentials are local operators mapping global spatiotempo-
ral conditions onto the local e.m. fields. The effect of this operation is
measurable as a phase change, if there is a second comparative mapping
of differentially conditioned fields in a many-to-one (global-to-local sum-
mation). With coherent fields the possibility of measurement (detection)
after the second mapping is maximized. The question of whether Aµ po-
tentials can be propagated to long range can be answered affirmatively
if dual field coherence is maintained.

SYNOPSIS FOR PARTS 1 and 2

1. Maxwell’s theory is a linear theory in which the scalar and vec-
tor potentials are arbitrary, defined by choice of gauge, and have only
mathematical, not physical, significance.
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2. However, in quantum theory, potentials do have physical signifi-
cance, and a number of physical phenomena –both classical and quantum
mechanical– indicate that the Aµ, µ = 0, 1, 2, 3, do possess physical sig-
nificance and have physical effects.

3. Maxwell’s linear theory is of U(1) symmetry form with Abelian
commutation relations. It can be extended to include physically mean-
ingful Aµ effects by its reformulation in SU(2) or nonAbelian form. The
theory is then nonlinear.

4. When reformulated in nonAbelian form, Maxwell’s theory ad-
dresses not only local phenomena, but also global phenomena, by means
of the Aµ potentials used as local-to-global operators.

5. The approach presented in this paper adopts a Yang-Mills ori-
entation –previously applied to high energy fields– to low-energy fields.
The adaptation is permitted by precise definition of boundary conditions
on the low-energy fields.
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1. INTRODUCTION

There are a number of different reasons for questioning the com-
pleteness of Maxwell’s theory of electromagnetism (Maxwell, 1871). It
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is well known that there is an arbitrariness in the definition of the A
vector and scalar potentials, which, nevertheless, have been found very
useful when used in calculations with boundary conditions known. The
reasons for questioning completeness are due to experimental evidence
(section 3, Part 1), theoretical (section 2, Part 2), and pragmatic (section
3, Part 2).

An examination of the Maxwell theory may begin with the well-
known Maxwell equations: Coulomb’s Law:

∇ ·D = 4πρ; (1.1)

Maxwell’s generalization of Ampère’s Law:

∇×H = (4π/c)J + (1/c)∂D/∂t; (1.2)

the absence of free local magnetic poles postulate:

∇ ·B = 0; (1.3)

and Faraday’s Law:

∇× E + (1/c)∂B/∂t = 0. (1.4)

The constitutive relations of the medium-independent fields to matter
are well-known to be:

D = εE, (1.5)

J = σE, (1.6)

B = µH. (1.7)

Because of the postulate of an absence of free local magnetic monopoles
(Equ.(1.3)), the following is permitted:

B = ∇×A, (1.8)

but the vector potential is thus always arbitrarily defined, because the
gradient of some scalar function, Λ, can be added leaving B unchanged,
i.e., B is unchanged by the gauge transformations:

A→ A′ = A+∇Λ , φ→ φ′ = φ− (1/c)∂Λ/∂t. (1.9)
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This arbitrary definition of the potentials means that any gauge chosen
is arbitrary, or, an appeal must be made to boundary conditions for any
choice.

Now Equ. (1.8) permits a redefinition of Equ. (1.4):

∇× (E + (1/c)∂A/∂t) = 0 (Faraday’s law rewritten), (1.10)

which means the quantity in brackets is the gradient of a scalar function,
φ, so:

E + (1/c)∂A/∂t = −∇φ , or E = −∇φ− (1/c)∂A/∂t; (1.11)

and the Maxwell equations (1.3) and (1.4) can be redefined by (1.8) and
(1.11).

Maxwell equations (1.1) and (1.2) can also be written as:

∇2φ+ (1/c)∂(∇ ·A)/∂t = −4πρ, (1.12)

∇2A− (1/c2)(∂2A/∂t2)−∇(∇ ·A+ (1/c)∂φ/∂t) = −(4π/c)J. (1.13)

Since the gauge conditions (Equ.s (1.9)) are arbitrary, a set of potentials
(A, φ) can be chosen so that:

∇ ·A+ ((1/c)∂φ/∂t) = 0. (1.14)

This choice is called the Lorentz condition or the Lorentz gauge. Equ.s
(1.12) and (1.13) can then be decoupled to obtain:

∇2φ+ (1/c2)∂2φ/∂t2 = −4πρ, (1.15)

∇2A− (1/c2)∂2A/∂t2 = −(4π/c)J, (1.16)

which is useful, because the Maxwell equations are then independent of
the coordinate system chosen. Nonetheless, as A and φ are not gauge
invariant, the original choice of the Lorentz gauge is arbitrary –a choice
which is not an inevitable consequence of the Maxwell theory– and the
resultant from that choice, namely Equ.s (1.15) and (1.16) is equally
arbitrary.

Then again, the arbitrariness of Equ.s (1.9) is useful because it
permits the choice:

∇ ·A = 0. (1.17)
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Equ. (1.12), which is Maxwell equation (1.1), then permits:

∇2φ = −4πρ, (1.18)

which is the instantaneous Coulomb potential, and hence condition (17)
is called the Coulomb or transverse gauge because the wave equation for
A can be expressed in terms of the transverse current:

∇2A− (1/c2)∂2A/∂t2 = −(4π/c)Jt (1.19)

where Jt = J − Jl. This is a useful thing to do when no sources are
present, but, again, as A and φ are not gauge invariant, i.e., considered
to have no physical meaning, the original choice of the Coulomb gauge is
arbitrary, and so is the resultant from that choice, namely Equ. (1.19).

For all that, the absence of gauge invariance (physical meaning)
of the A vector potential and the φ scalar potential may seem a fortu-
nate circumstance to those using the Maxwell theory to calculate predic-
tions. These potentials have long been considered a fortunate mathemat-
ical convenience, but just a mathematical convenience, with no physical
meaning. These constructs lack gauge invariance, a defining characteris-
tic of physical, rather than merely mathematical, constructs. What then
is meant by a gauge and gauge invariance?

2. WHAT IS A GAUGE?

In 1918 Weyl (1918, see also Yang, 1986) treated Einstein’s general
theory of relativity as if the Lorentz symmetry were an example of global
symmetry but with only local coordinates defineable, i.e., the general
theory was considered as a local theory. A consequence of Weyl’s theory
is that the absolute magnitude or norm of a physical vector is not treated
as an absolute quantity but depends on its location in space-time. This
notion was called scale (Mass-stab) or gauge invariance.

This concept can be understood as follows. Consider a vector at
position x with norm given by f(x). If the coordinates are transformed,
so that the vector is now at x + dx, the norm is f(x + dx). Using the
abbreviation ∂µ = ∂/∂µ, µ = 0, 1, 2, 3 and expanding to first order:

f(x+ dx) = f(x) + ∂µfdx
µ. (2.20)

If a gauge change is introduced by a multiplicative scaling factor, S(x),
which equals unity at x, then

S(x+ dx) = 1 + ∂µSdx
µ. (2.21)
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If a vector is to be constant under change of location then:

Sf = f + [∂µS]fdxµ + [∂µf ]dxµ, (2.22)

and, on moving, the norm changes by an amount

[∂µ + ∂µS]fdxµ. (2.23)

Weyl identified ∂µS with the electromagnetic potential Aµ.

However, this suggestion was rejected (by Einstein) because the
natural scale for matter is the Compton wavelength, λ, and as the wave
description of matter is λ = h/mc, then if, as is always assumed, the
wavelength is determined by the particle’s mass, m, and with h and c
constant (according to the special theory of relativity), λ cannot depend
on position without violating the special theory. When made aware of
this reasoning, Weyl abandoned his proposal. So the term: gauge change,
originally meant: change in length, and was withdrawn from considera-
tion for this particular metric connotation shortly after its introduction.

But the term did not die. “Gauge invariance” managed to survive
in classical mechanics because, with the potentials arbitrary, Maxwell’s
equations for the E,B,H and D fields have a built-in symmetry and such
arbitrary potentials became a useful mathematical device for simplify-
ing many calculations in electrodynamics, as we have seen. Nevertheless,
the gauge invariance in electromagnetism for the E,B,H and D fields
was regarded as only an “accidental” symmetry, and the lack of gauge
invariance of the electromagnetic vector and scalar potentials was inter-
preted as an example of the well known arbitrariness of the concept of
the potential in classical mechanics.

But this arbitrariness in the concept of the potential did, and does
not, exist in quantum mechanics. The electromagnetic vector and scalar
potentials were viewed in quantum mechanics in yet another way. Upon
the development of quantum mechanics, Weyl and others realized that
the original gauge theory could be given a new meaning. They realized
that the phase of a wavefunction could be a new local variable. Instead
of a change of scale or metric, for which it was originally introduced, a
gauge transformation was reinterpreted as a change in the phase of the
wavefunction:

ψ → ψe−ieλ, (2.24)
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and the gauge transformation for the potential Aµ became:

Aµ → Aµ − ∂λ/∂xµ. (2.25)

Equ.s (2.24) and (2.25) together ensure that the Schrödinger formula-
tion for a single charged particle in an electromagnetic field remains
invariant to phase changes because they self-cancel. Thus any change in
location, for that single charged particle, which produces a change in the
phase (Equ. (2.24)), is compensated by a corresponding change in the
potential (Equ. (2.25)). Therefore Weyl’s original idea, reinterpreted,
was accepted, and the potential in quantum mechanics was viewed as
a connection which relates phases at different locations. Nevertheless,
this use and interpretation did not carry over into classical mechanics
and a schizoid attitude exists to this day regarding the physical meaning
of the potentials in classical and quantum mechanics. In classical me-
chanics the potentials were, up until recently, viewed as having only an
arbitrary mathematical, not physical, meaning, as they seemed to lack
gauge invariance. In quantum mechanics, however, they are viewed as
gauge invariant and as possessing a physical meaning. It is an aim of
the present review to show that in classical mechanics the potentials can
also be taken to have, under special circumstances, a physical meaning,
i.e., possess the required gauge invariance.

A major impetus to rethink the physical meaning of the potentials
in classical mechanics came about from the experiments examined in the
next section.

3. EMPIRICAL REASONS FOR QUESTIONING THE
COMPLETENESS OF MAXWELL’S THEORY

3.1 Aharonov-Bohm and Altshuler-Aronov-Spivak effects

Beginning in 1959 Aharonov and Bohm (1959, 1961-3) challenged
the view that the classical vector potential produces no observable phys-
ical effects by proposing two experiments. The one which is most dis-
cussed is shown in Figure 3.1.1. A beam of monoenergetic electrons exits
from the source at X and is diffracted into two beams by the two slits in
the wall at Y 1 and Y 2. The two beams produce an interference pattern
at Z which is measured. Behind the wall is a solenoid, S, the B field
of which points out of the paper. The absence of a free local magnetic
monopole postulate (Maxwell equation (3) above) predicts the magnetic
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field outside the solenoid to be zero. Before the current is turned on in
the solenoid, there should be the usually expected interference patterns
seen at Z. Aharonov-Bohm predicted that if the current is turned on
and due to the differently directed A fields in paths 1 and 2 indicated
by the arrows in Figure 1, additional phase shifts should be discernible
at Z. This prediction was confirmed experimentally (Chambers, 1960;
Boersch et al, 1960; Möllenstedt et al, 1962; Matteucci & Pozzi, 1985;
Tonomura et al, 1982, 1983, 1986; Tonomura & Callen, 1987) and the
evidence has been reviewed by Berry (1980), Peshkin (1981), Olariu &
Popescu (1985) and Horvathy (1986). Aharonov and Casher (1984) have
extended the theoretical treatment of the AB effect to neutral particles
with a magnetic moment; and Botelho and de Mello (1985) have analyzed
a non-Abelian Aharonov-Bohm effect in the framework of pseudoclassi-
cal mechanics.

Figure 3.1.1. Two-slit diffraction experiment of the Aharonov-Bohm
effect. Electrons are produced by a source at X, diffracted by the slits at
Y 1 and Y 2 and their diffraction pattern is detected at Z. The solenoid is
between the slits and directed out of the page. The different orientations
of the A field at the points of interaction with the two paths are indicated
by the arrows > and < following the right-hand rule.

One explanation of the effect is as follows. Let ψ0 be the wavefunc-
tion when there is no current in the solenoid. After the current is turned
on the Hamiltonian is:

H = (1/2m)(−ih∇− eA)2, (3.1.1)
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and the new wavefunction is:

ψ = ψ0 exp[−ieS/h], (3.1.2)

where, S, the flux, is:

S =

∫
C

A · dx, (3.1.3)

which is the quantum analog of the classical action evaluated along the
paths 1 and 2. At point Z the wavefunctions of the two electron beams
are:

ψ1 = ψ0 exp[−eS1/h],

ψ3 = ψ0 exp[−eS2/h],
(3.1.4)

and the phase difference is:

(e/h)(S1 − S2) = (e/h)
[∫

1

A · dx−
∫

2

A · dx
]

= 2π(e/h)φ. (3.1.5)

By Stoke’s theorem, this is directly proportional to the magnetic flux,
φ =

∫
C
A · dx, in the solenoid.

However, the phase difference given by Equ. (3.1.5) is not single-
valued. Therefore, the value of the phase change will only be determined
to within an arbitrary multiple, n of 2πeφ/h, where n is the number of
times the measured charge circulated the solenoid.

The Aharonov-Bohm (AB) effect was confirmed experimentally in
the originally proposed field-free electron (F-FE) situation (cf. Cham-
bers, 1960). More recent experiments address the appearance of the
effect in the field-conduction electron (F-CE) situation. This situation
is also not strictly the same as in the originally proposed Aharonov-
Bohm experiment in another respect –the magnetic flux is produced by
a large solenoid surrounding the influenced condensed matter, usually
a loop or a cylinder– so that the B field is not set to zero within the
material. However, the preponderance of the B field is always in the hole
encompassed by that cylinder or ring, and the magnetic field causes only
secondary effects in the material. Under these conditions the Aharonov-
Bohm effect is seen in normal metal (Webb et al, 1985, 1987; Benoit et
al, 1986; Washburn et al, 1985, 1987; Chandrasekhar et al, 1985; Datta
et al, 1985; Tonomura et al, 1982, 1983, 1986; Cavalloni & Joss, 1987),
bulk Mg (Sandesara & Stark, 1984); semiconductors (Datta et al, 1986,
Datta & Bandyopadhyay, 1987); and on doubly connected geometries
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on GaAs/AlGaAs heterostructures (Timp et al, 1987). The effect has
been seen in structures such as: cylindrical Mg films (Sharvin & Sharvin,
1981; Gijs et al, 1984) and Li films (Altshuler et al, 1982), wire arrays
(Pannetier et al, 1984; Bishop et al, 1985), arrays of Ag loops (Umbach
et al, 1986), small metal loops (Webb et al, 1985; Chandrasekhar et al,
1985) and MBE-grown double quantum wells (Datta et al, 1985).

Bandyopadhyay et al (1986) and Datta & Bandyopadhyay (1987)
have also discussed a novel concept for a transistor based on the elec-
trostatic Aharonov-Bohm effect in MBE-grown quantum wells, where
the current is modulated by quantum interference of electrons in two
contiguous channels of a gate voltage. They predict that transistors
based on this effect will have power-delay products orders of magnitude
better than those of existing devices such as MODFETs and Josephson
junctions. The transconductance will also be much higher than that
of MODFETS. Unlike previous experimental treatments which assumed
diffusive transport with negligible inelastic scattering. Datta & Bandy-
padhyay (1987) assume ballistic transport and perfect symmetry in the
arms of the interferometer and in the voltage along the interferometer
or two channel structure.

Now, the AB (F-CE) effect is temperature-dependent as coherent
transport is required. The effect has only been seen at very low tem-
perature. Measurements were made on parallel GaAs quantum wells at
4.2K and below (Datta et al (1985)); on 860nm−i.d. Au loops at 0.003K
(Webb et al, 1987) and 0.05K < T < 0.7K (Webb et al, 1985; Washburn
et al, 1985), on 75nm− o.d. Sb loops at 0.01 < T < 1K (Milliken et al,
1987) and at 0.04K (Washburn et al, 1987) and on Ag loop arrays at
4.2K (Umbach et al, 1986). Measurements on 1.5−2.0 micron diameter
Mg cylinders of length 1 cm were made at 1.12K (Sharvin & Sharvin,
1981). The Thouless scaling parameter, V , or the sensitivity of energy
levels to a change in the phase of the wavefunctions at the boundaries
(Edwards & Thouless, 1972; Lee et al, 1987) implies that the necessary
energy correlation range for small rings is accessible in the temperature
range 0.0001− 10K (Stone & Imry, 1986).

What is remarkable is that these experiments on the (F-CE)
Aharonov-Bohm effect demonstrate that the effect can occur in disor-
dered electrical conductors if the temperature is low enough. The ef-
fect in metals is a small magnetoresistance oscillation superimposed on
the ohmic resistance in multiply-connected conductors at low temper-
atures (Altshuler et al, 1981; Sharvin & Sharvin 1981; Stone & Imry,
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1986). This means that the conducting electrons must possess a high de-
gree of phase coherence (internal correlation) over distances larger than
the atomic spacing or the free path length. It was initially thought that
the effects of finite temperature and the scattering from, and collision
with, impurities, would cause incoherence and prevent the observation
of the Aharonov-Bohm effect in bulk samples (Imry, 1986). The metal
loops used measure, e.g., less than a micron in diameter and less than
0.1 microns in line thickness. Therefore, the electron is thought to be
represented by a pair of waves –one traveling around the ring in the
clockwise direction, and the other in the opposite direction, but follow-
ing the time-reversed path of the first wave. Thus, although each wave
has been scattered many times, each wave collides with the same im-
purities, i.e., acquires the same phase shifts, resulting in constructive
interference at the origin. The total path length of both waves is twice
the circumference of the ring, meeting the requirement that the phase co-
herence of the electrons be larger than the circumference of the ring, or,
the transport through the metals arms considered as disordered systems
is determined by the eigenvalues of a large random matrix (Imry, 1986).

Thus, the conductance, G, of a one-dimensional ring in the presence
of elastic scattering is (Landauer, 1970):

G =
2e2

h

t

1− t
, (3.1.6)

and an Aharonov-Bohm flux applied to the ring results in periodic os-
cillations of G, provided that the phase coherence length of the ring is
longer than the size of the system.

A related effect is the Altshuler, Aronov and Spivak (AAS) effect
(Altshuler, Aronov & Spivak, 1981). These authors considered an ul-
trathin normal metal cylindrical shell of moderate length but very small
transverse dimensions at low temperature and how the magnetoresis-
tance would depend on the intensity of magnetic flux axially threading
the cylinder. They concluded that it would be an oscillating function
of the total flux with a period of h/2e, i.e., the same as the flux of the
superconductive state. The analogous “flux quantum” of the Aharonov-
Bohm effect is h/e (Webb et al, 1985, 1987) and differs from the AAS
situation which involves coherent “backscattering”. The AAS effect has
been observed in a 1000Å thick magnesium layer on a quartz fiber several
millimeters long (Sharvin & Sharvin, 1981). More recent treatments of
the AAS effect (Büttiker et al, 1983, 1985; Stone & Imry, 1986) are based
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on the quantum mechanical transmission (t) coefficients of electrons and,
unlike the original AAS treatment, find an h/e periodic component as
well as the h/2e harmonic. Raising the temperature above a crossover,
Tc, changes the flux periodicity of magnetic resistance oscillations from
h/e to h/2e, where Tc is determined by the energy correlation range
hD/L2, where D is the elastic diffusion constant, L is the length of sam-
ple and the quantity hD/L2 is the Thouless scaling parameter V for a
metal.

The AAS effect arises because of a special set of trajectories –time-
reversed pairs which form a closed loop– which have a fixed relative
phase for any material impurity configuration. These trajectories do
not average to zero and contribute to the reflection coefficients which
oscillate with period h/2e. The h/e oscillations of the AB effect, on the
other hand, arise from oscillations in the transmission coefficients and
can at higher temperature average to zero. Below Tc both contributions
are of order e2/h (Stone & Imry, 1986).

Xie and DasSarma (1987) studied both the AB and AAS effects
in the transport regime of a strongly disordered system in which elec-
tron transport is via a hopping process, specifically, via variable-range-
hopping transport. Their numerical results indicate that only the h/2e
(AAS) flux-periodic oscillations survive at finite temperatures in the
presence of any finite disorder.

The results of the metal loop experiments demonstrated that elastic
scattering does not destroy the phase memory of the electron wave func-
tions (Webb et al, 1987; Washburn & Webb, 1986). Although the flux
periodicity in a condensed matter system due to the Aharonov-Bohm ef-
fect would not be surprising in a superconductor, the same periodicities
in finite conductors is remarkable (Xie & DasSarma, 1987). Numeri-
cal simulation of variable-range-hopping conduction (Xie & DasSarma,
1987) only finds AB oscillations (Φ0 = h/e) in hopping conductance
when a metal ring is small and at low temperature. At the large ring
limit and higher temperature AAS (Φ0 = h/2e) oscillations survive –
a finding consistent with the experimental findings of Polyarkov et al
(1986). A suggested reason for the retention of long range phase coher-
ence is that the phase memory is only destroyed exponentially as e−L/Li ,
where Li is a “typical inelastic scattering length” and the destruction de-
pends on the energy changes in the hopping process dependent on long
wavelength, low energy acoustic phonons. Search for an explanation
for both AB and AAS effects has resulted in consideration of systems
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neither precisely quantum mechanical nor classical, but inbetween, i.e.,
“mesoscopic”.

“Mesoscopic” systems have been studied by Stone (1985) in which
the energy and spacing is only a few orders of magnitude smaller than kT
at low temperatures. The prediction was made, (Stone, 1985), that large
Aharonov-Bohm oscillations should be seen in the transport coefficients
of such systems. Such systems have a sample length which is much longer
than the elastic mean free path, but shorter than the localization length.
The magnetic field through a loop connected to leads changes the relative
phase of the contribution from each arm of the loop by 2πφ/φ0, where
φ0 = hc/e is the one electron flux quantum and φ is the flux through the
hole in the loop –but only if the phase dependent terms do not average
to zero. In the mesoscopic range, if inelastic scattering is absent, these
phase-dependent contributions do not self-average to zero.

Washburn et al (1985) and Stone & Imry (1986) demonstrated ex-
perimentally that the amplitude of aperiodic and periodic conductance
fluctuations decrease for the F-CE Aharonov-Bohm effect with increas-
ing temperature. There is a characteristic correlation energy:

EC = πhD/2L2, (3.1.7)

where D is the diffusion constant of the electrons, L is the minimum
length of the sample length. If thermal energy kBT > EC , the conduc-
tance fluctuations decrease as (EC/kBT )1/2. The conductance fluctua-
tions also decrease when LΦ, the phase coherence length, is shorter than
the length, L or the distance between voltage probes, the decrease being
described by a factor exp(−L/LΦ) (Milliken et al, 1987). This gives a
conductance fluctuation:

∆Gn(LΦ/L)3/2. (3.1.8)

In condensed matter, therefore, the Aharonov-Bohm effect appears as
the modulation of the electron wave functions by the Aµ potential. The
phase of the wave function can also be changed by the application of
an electric field (Washburn et al, 1987), in which case the electric field
contributes to the fourth term in the four-vector product Aµ(dx)µ which
contains the scalar potential φ associated with transverse electric fields
and time. The phase shift in the wavefunction under field influence is:

∆ϕ =

∫
eφdt/h. (3.1.9)
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Experiments on Sb metal loop devices on silicon substrate have demon-
strated that the voltage on capacitative probes can be used to tune the
position (phase) of h/e oscillations in the loop. Thus, there appears two
ways to modulate the phase of electrons in condensed matter : applica-
tion of the Aµ potential by threading magnetic flux between two paths
of electrons; and also by application of a scalar potential by means of
a transverse electric field. Aharonov-Bohm fluctuations in metal loops
are also not symmetric about H = 0. Four probe measurements yield
resistances which depend on the lead configurations (Benoit et al, 1986).

In summary, the AB and AAS effects, whether F-FE or F-CE,
demonstrate that the phase of a composite particle’s wavefunction is
a physical degree of freedom which is dependent on differences in Aµ
potential influences on the space-time position or path of a first par-
ticle’s wave function with respect to that of another, second, particle’s
wavefunction. But the connection, or mapping, between spatiotempo-
rally different fields or particles which originated at, or passed through,
spatiotemporally separated points or paths with differential Aµ potential
influences, is only measurable by many-to-one mapping of those differ-
ent fields or particles. By interpreting the phase of a wavefunction as
a local variable instead of the norm of a vector, electromagnetism can
be interpreted as a local gauge (phase) theory, if not exactly, then very
close to the way Weyl originally envisioned it to be.

Below, the interaction of the Aµ field, whether vector or potential,
with field-free electron, field-conducting electron, field-wave guide, field-
neutral particle and field-rotating frame will be referred to as (F-FE),
(F-CE), (F-WG), (F-P) and (F-RF) interactions. Whereas the AB and
AAS effects are either F-FE and F-CE effects and might be considered
“special” in that they involve quantum mechanical particles, i.e., elec-
trons, in the next section we examine a phase rotation which can only
be considered classical. Nonetheless, the same conclusion, that the Aµ
potentials possess physical effects, applies.

3.2 Berry-Aharonov-Anandan-Pancharatnam phase rotation
effect

Wu & Yang (1985), when addressing the Aharonov-Bohm effect,
argued that the wave function of a system will be multipled by a non-
integrable (path-dependent) phase factor after its transport around a
closed curve in the presence of an Aµ potential in ordinary space. The
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Berry-Aharonov-Anandan-Pancharatnam (BAAP) phase, another non-
integrable phase factor, arises from the adiabatic transport of a system
around a closed path in parameter (momentum) space, i.e., the BAAP
phase is the Aharonov-Bohm effect in parameter space (Pancharatnam,
1956; Berry, 1984a,b; 1985; 1987a,b; Wilkinson, 1984a,b; Chiao & Wu,
1986; Haldane, 1987; Chiao & Tomita, 1987). The WG-F version of this
effect has been experimentally verified (Tomita & Chiao, 1986) and the
phase effect in general interpreted as due to parallel transport in the
presence of a gauge field (Simon, 1983). The effect exists at both the
classical and quantum levels (cf. Thomas, 1988).

There has been, however, an evolution in understanding concern-
ing what causes the BAAP effect. Berry (1984) originally proposed a
geometrical (beside the usual dynamical) phase acquisition for a non-
degenerate quantum state which varies adiabatically through a circuit
in parameter space. Later, the constraint of adiabaticity was removed
(Berry, 1987b) and also the constraint of degenerate states (Wilczck &
Zee, 1984). Then Aharonov and Anandan (1987) showed that the effect
can be defined for any cyclic evolution of a quantum system. Bhandari
and Samuel (1988) have also pointed out that Berry’s phase is closely
connected with a phase discovered by Pancharatnam (1956). These au-
thors also demonstrated that unitary time evolution of a system is not
essential for the appearance of the phase by the measurement of the
phase change in one beam of a laser interferometer as the polarization
state of light is taken along a closed circuit on the Poincaré sphere. Thus
current thought is that the history of “windings” of a particle is “remem-
bered”, or registered and indicated, by changes in phase in a quantum
mechanical particle’s state, or in a classical wave’s polarization.

The BAAP effect, in its F-P version, has been observed in NMR
interferometry experiments (Suter et al, 1987, 1988) and using ultracold
neutrons (Richardson et al, 1988); in coherent states (Giavarini et al,
1989a,b); optical resonance (Ellinas et al, 1989); and the degenerate
parametric amplifier (Gerry, 1989). The BAAP effect is also seen in a
classical waveguide-field (WG-F) version.

In its classical WG-F version, the helicity or polarization state, σ,
is (Chiao & Wu, 1986):

σ = s · k, (3.2.1)

where s is a spin or helicity operator and k is the direction of propaga-
tion (kx, ky, kz). If τ is the optical path length, then | k(τ), σ > is the
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spin or polarization state. Interpreted classically, the constrainment of k
to remain parallel to the axis of a waveguide is due to the linear momen-
tum being in that direction. This means that a waveguide can act as a
polarization rotator. Furthermore, as helicity (polarization), σ, is adia-
batically conserved, s is also constrained to remain parallel to the local
axis of the waveguide. Therefore, the topology of a waveguide, e.g., a
helix-shape, will constrain k and also s to perform a trajectory C on the
surface of a sphere in the parameter space (kx, ky, kz) which prescribes
the linear momentum. Thus the topology of the constrained trajectory
of radiation progressing between two local positions has a global effect in-
dicated by a polarization (spin) change. If γ(C) is the BAAP phase, and
β = exp[iγ(C)] is a phase factor, the final polarization state after pro-
gression along a constrained trajectory, i.e., “momentum conditioning”
instigated by changes in topological trajectories, is:

σ2 = β · s · k, (3.2.2)

where the subscript indicates a second location on the trajectory.
Whether the “momentum conditioning” is merely a concomitant effect
to the topological progression differences along the waveguide, has yet
to be determined.

As a monopole is theoretically required at k = 0, due to the radial
symmetry of the parameter space and resulting singularity, a solid angle,
Ω(C), can be defined on a parameter space sphere with respect to the
origin k = 0. Thus, Ω(C) can be said to define the “excited states” of
the monopole at k = 0. Therefore:

σ2 − σ1 = β · s · k · σ1 = σ1Ω(C)− σ1 = γ(C). (3.2.3)

The question can then be asked: what conservation law underlies the
BAAP phase? A clue is provided by Kitano et al (1987), who point out
that the BAAP phase can also be seen in discrete optical systems which
contain no waveguides at all, e.g., in a configuration of (ideal or infinitely
conducting) mirrors. Now mirrors do not conserve helicity; they reverse
it and the local tangent vector, t, must be replaced by −t on alternate
segments of the light path. Mirror configurations of this type have been
used in a laser gyro (Chow et al, 1985). This suggests that changes of
acceleration –whether along a waveguide, or in mirror reflection– un-
der equivalence principle conditions is the compensatory change which
matches changes in the BAAP phase, giving the conservation equation:

γ(C) +

∫
C

A · dl = 0 (3.2.4)
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Figure 3.2.1. (a) Experimental setup; (b) geometry used to calculate
the solid angle in momentum space of a nonuniformaly wound fiber on
a cylinder. After Tomita & Chiao, 1986.

That the effect can occur in classical mechanical form is witnessed
by changes in polarization rotation resulting from changes in the topolog-
ical path of a light beam. Tomita & Chiao (1986) demonstrated effective
optical activity of a helically wound single-mode optical fiber in confir-
mation of Berry’s prediction. The angle of rotation of linearly polarized
light in the fiber gives a direct measure of the BAA phase at the classical
level. (Hannay (1985) has also discussed the classical limit of the BAAP
phase in the case of a symmetric top). This classical effect arises from
the overall geometry of the path taken by the light and is thus a global
topological effect independent of the material properties of the fiber. The
optical rotation is independent of geometry and therefore may be said to
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quantify the “topological charge” of the system, i.e., the helicity of the
photon, which is a relativistic quantum number.

Referring to Figure 3.2.1, the fiber length is:

s = [p2 + (2πr)2]1/2, (3.2.5)

and the solid angle in momentum space Ω(C) spanned by the fiber’s
closed path C, a circle in the case considered, is:

Ω(C) = 2π(1− cos θ). (3.2.6)

The BAAP phase is:

γ(C) = −2πσ(1− p/s), (3.2.7)

where σ = ±1 is the helicity quantum number of the photon.

By wrapping a piece of paper with a computer generated curve on
a cylinder to which the fiber is fitted, and then unwrapping the paper,
the local pitch angle, or tangent to the curve followed by the fiber can
be estimated to be (Figure 3.2.1(b)):

θ(ϕ) = tan−1(rdϕ/dz), (3.2.8)

which is the angle between the local waveguide and the helix axes. In
momentum space, θ(ϕ+π/2) traces out a closed curve C, the fiber path
on the surface of a sphere. The solid angle subtended by C to the center
of the sphere is:

Ω(C) =

∫ 2π

0

[1− cos θ(ϕ)]dϕ. (3.2.9)

The BAAP phase is then, more properly:

γ(C) = −σΩ(C). (3.2.10)

Tomita & Chiao thus demonstrated the linear relation between the angle
of rotation of linearly polarized light, and the solid angle Ω(C) subtended
by C at the origin of the momentum space of the photon.

More recently, Chiao et al (1988) have demonstrated a topological
phase shift in a Mach-Zehnder interferometer in which light travels along
nonplanar paths in two arms. They interprete their results in terms of
the Aharonov-Anandan phase and changes in projective Hilbert space,



Maxwell’s theory extended 163

i.e., the sphere of spin directions of the photon, rather than parameter
(momentum) space. The hypothesis tested was that the evolution of
the state of a system is cyclic, i.e., that it returns to its starting point,
adiabatically or not. Thus the C in Equ. (3.2.10) is to be interpreted as
a closed circuit on the sphere of spin directions.

Chiao & Wu (1986) consider the BAAP phase rotation effects to be
“topological features of the Maxwell theory which originate at the quan-
tum level, but which survive the correspondence principle limit (h→ 0)
into the classical level”. The effect is viewed as a classical effect by other
authors (e.g., Berry (1987) and Segert (1987a,b)). Segert (1987a,b) views
the evolution of the polarization vector as determined by a connection
on the tangent bundle of the two-dimensional sphere. The effect is then
viewed as non-Abelian. Segert (1987b) describes the situation with a
family of Hamiltonian operators, H0 + k · V , where H0 is rotationally
invariant, V is a vector operator and k varies over the unit vectors in
R3.

The BAAP effect even appears in quantum systems constrained by
molecular geometry. For example, Delacrétaz et al (1986) verified the
BAAP phase in the molecular system Na3. They supposed a system in
an eigenstate C(r, t) responding to slowly varying changes in its param-
eters R(t), such that the system remains in the same eigenstate apart
from an acquired phase. If the parameters, R(t), completed a circuit
in parameter space, then that acquired phase is not simply the familiar
dynamical phase, [(ih)−1E(R(t)]dt, but is, rather, an additional geo-
metrical phase factor γn(c). The origins of this additional phase factor
depend only on the geometry of the parameter space and the topology
of the circuit traversed. Therefore, adiabatic excursions of molecular
wave functions in the neighborhood of an electronic degeneracy results
in a change of phase. That is, if the internuclear coordinates of a wave
function traverse a circuit in which the state is degenerate with another,
then the electronic wave function acquires an additional phase, i.e., it
changes its sign. This change was predicted by Herzberg & Longuet-
Higgins (1963; Longuet-Higgens, 1975; Mead & Truhlar, 1979) and is a
special case of the BAAP phase applying to a large class of molecular
systems exhibiting conical intersections. Delacrétaz et al (1986) reported
the evidence for half-odd quantization of free molecular pseudorotation
and offered the first experimental confirmation of the sign-change theo-
rem and a direct measurement of the phase. The BAAP phase has also
been observed in fast-rotating superfluid nuclei, i.e., oscillations of pair-
transfer matrix elements as a function of the angular velocity (Nikam &
Ring, 1987) and in neutron spin rotation (Bitter & Dubbers, 1987).
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The BAAP effect thus gives credence to the view that the Aµ poten-
tials register physical effects both at the classical and quantum mechan-
ical levels. That such a role for these potentials exists at the quantum
mechanical level is not new. It is new to consider the Aµ potentials
for such a role at the classical level. One may ask how the schism in
viewing the Aµ potentials came about; that is, why are they viewed
as physical constructs in quantum mechanics, but as merely arbitrary
mathematical conveniences in classical mechanics? The answer is that
whereas quantum theory is defined with respect to boundary conditions,
in the formal presentation of Maxwell theory boundary conditions are
undefined. Stoke’s theorem demonstrates this.

3.3 Stoke’s theorem re-examined

Let us examine Stoke’s theorem of classical electromagnetism which
relates diverging potentials on line elements to rotating potentials on
surface elements. Thus, Stoke’s theorem describes a local-to-global field
relationship.

If A(x) is a vector field, S is an open surface, C is the closed curve
bounding S, dl is a line element of C, n is the normal to S and C is
traversed in a right-hand screw sense relative to n it is well-known that:∫

C

A · dl =

∫
S

(∇×A) · nda. (3.3.1)

From which it can be seen that Stoke’s theorem, as described, takes no
account of: (i) spacetime overlap in a region with fields derived from
different sources; and (ii) boundary conditions.

This neglect of boundary conditions in the Stoke’s theorem of classi-
cal mechanics can be contrasted with the situation in quantum mechan-
ics. In quantum mechanics the wave function satisfies a partial differ-
ential equation coupled to boundary conditions because the Schrödinger
equation describes a minimum path solution to a trajectory between two
points. The boundary condition in the doubly connected (overlap) region
outside of the shielded volume in an Aharonov-Bohm experiment is the
reason for the single valuedness of the wavefunction, and also the reason
for quantization. The situation is also different with spatial symmetries
other than the usual, Abelian, spatial symmetry.

A non-Abelian Stokes theorem is (Goddard & Olive, 1978):

h−1(dh/ds) = ie

∫ 1

0

g−1Gijg(∂ri/∂t)(∂rj/∂s)dt (3.3.2)
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where h(s) is a path-dependent phase factor associated with a closed
loop and defines a closed loop r(s, t), 0 ≤ t ≤ 1, s fixed, in the U(1)-
symmetry space, H (equivalent to Aµ); G is a gauge field tensor for the
SU(2) non-Abelian group; and g is magnetic charge. Here, the boundary
conditions, i.e., the path dependencies, are made explicit, and we have a
local field (with U(1) symmetry) to global field (with SU(2) symmetry)
connection.

In classical electromagnetism therefore, Stoke’s theorem appears
merely as a useful mathematical relation between a vector field and its
curl. In gauge theory, on the other hand, an amended Stoke’s theorem
would provide the value for the net comparative phase change in the in-
ternal direction of a particle traversing a closed path, i.e., a local-to-global
connection.

Lest it be thought that the Aharonov-Bohm effect exists only as a
quantum effect with no relevance to classical behavior, the relation of
the Aµ potential to the properties of bulk condensed matter is examined
in the following section. A more complete definition of Stoke’s theorem
is given in section 4 below (Equ. 4.10).

Therefore use of Stoke’s theorem has a price: that of the (covert)
adoption of a gauge for local-to-global connections. Stoke’s theorem
applies directly to propagation issues, which are defined by local-to-
global connections. Such connections are also required in propagation
through matter. Thus there is a requirement for Stoke’s theorem in any
realistic definition of macroscopic properties of matter, and in the next
section we see that the physical effects of the Aµ potentials exist not
merely in fields traversing through various connecting topologies, but in
radiation-matter interactions.

3.4 Properties of bulk condensed matter. Ehrenberg & Siday’s
observation

In the Aharonov-Bohm F-FE situation, when the size of the solenoid
is much larger than the de Broglie wavelength of the incident electrons,
the scattering amplitude is essentially dominated by simple classical tra-
jectories. But the classical manifestation of quantum influences is not
peculiar to the Aharonov-Bohm effect. For example, macroscopic quan-
tum tunneling is observable in Josephson tunnel junctions in which the
phase difference of the junction can be regarded as a macroscopic degree
of freedom, i.e., a classical variable (Martinis et al, 1987; Clarke et al,
1988).
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Even without known quantum influences or quantum mechanical
explanation, there is a classical justification for the Aµ potential as a
physical effect. For example, on the basis of optical arguments, and
seeking a definition of the refractive index, a macroscopic variable, the
Aµ potential must be chosen so as to satisfy Stoke’s theorem, thereby
removing any arbitrariness with respect to gauge. Furthermore, an argu-
ment, originating with Ehrenberg and Siday (1949), shows that a gauge-
invariant Aµ potential is presupposed in any definition of the refractive
index.

This argument is a derivation of the refractive index based on Fer-
mat’s Principle: in any optical medium, a scalar quantity, e.g., the re-
fractive index, finite everywhere in space, can be defined so that the line
integral in the three-dimensional space taken between any fixed points
must be an extremum which passes through these points. The optical
path along a given line connecting a point 1 and 2 is:∫ 2

1

mds =

∫ 2

1

[mv + (Aµn)]ds, (3.4.1)

where n is the unit vector in the direction of the line; v is the velocity of
the electron; and m is its mass. Defined in this way, an unambiguous def-
inition of the refractive index indicates the necessity of a unique (gauge
invariant) definition of the Aµ potential. Stated differently: an unam-
biguous definition of the refractive index implies defining the boundary
conditions through which test radiation moves. These boundary condi-
tions define a definite gauge and thereby definite Aµ potentials.

This is an example of physical Aµ-dependent effects (the refractive
index) in radiation propagating through matter from, say, a point A to
a point B. In the next section we see that Aµ effects can occur when
two fields, say A and B, are in sufficient close proximity. This is the
Josephson effect, and we see again that the Aµ potential functions as a
local-to-global operator.

3.5 Josephson effect

Josephson (1962, 1964, 1965, 1974) predicted that a d.c. voltage,
V , across the partitioning barrier of a superconductor gives rise to an
alternating current of frequency:

ω = 2eV/h. (3.5.1)
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The equivalent induced voltage is (Bloch, 1968):

V = (1/c)dφ/dt, (3.5.2)

where φ is the magnetic flux through a superconducting ring containing
a barrier. The circulating current, I, exhibits a periodic dependence
upon φ:

I(α) = Σnan sin 2πα, (3.5.3)

where
α = φ/(hc/e). (3.5.4)

The validity of Equ. (3.5.4) depends upon the substitution of

p− eA/c (3.5.5)

for the momentum, p, of any particle with charge and with a required
gauge invariance for the A potential.

The phase factor existing in the junction gap of a Josephson Junc-
tion is an exponential of the integral of the A potential. The fluxon,
or the decrementlessly conducting wave in the long Josephson Junction
and in a SQUID is the equivalent of an A-wave in one dimensional phase
space. The phenomenological equations are:

∂ϕ/∂x = (2ed/hc)Hy; (3.5.6)

∂ϕ/∂t = (2e/h)V ; (3.5.7)

Jz = j sinϕ+ σV, (3.5.8)

where ϕ is the phase difference between two superconductors; H is the
magnetic field in the barrier; V is the voltage across the barrier; d =
2λ+ l; λ is the penetration depth; and l is the barrier thickness.

If the barrier is regarded as having a capacitance, C, per unit area,
then Equ. (3.5.6) and Maxwell’s equations give:[ ∂2

∂x2
− 1

c2

∂2

∂t2
− β

c2

∂

∂t

]
ϕ =

1

λ2
0

sinϕ, (3.5.9)

where c2 = c2/4πdC is the phase velocity in the barrier, λ2
0 = hc2/δπedj

is the penetration depth and β = 4πdc2σ = σ/C is the damping con-
stant. Anderson (1964) demonstrated that solutions of this equation,
representing votex lines in the barrier, are obtained as solutions of:

∂ϕ2/∂x2 = (1/λ2
0) sinϕ, (3.5.10)
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which, except for sign, is the equation of a pendulum.

The Josephson effect is remarkable in the present context for three
reasons: (i) with well-defined boundary conditions (the barrier), the
phase, ϕ, is a well-defined gauge-invariant variable; and (ii) an equation
of motion can be defined in terms of the well-studied pendulum (cf Bar-
rett, 1987a), relating a phase variable to potential energy; (iii) the “free”
energy in the barrier is (Lebwohl and Stephen, 1967):

F = (hj/2e)

∫
dx[(1− cosϕ) + 1/2λ2

0(∂ϕ/∂x)2 + 1/2(λ0/c)
2(∂ϕ/∂t)2],

(3.5.11)
an equation which provides a (free) energy measure in terms of the dif-
ferential of a phase variable. The Josephson effect, like the A-B effect,
demonstrates the registration of physical influences by means of phase
changes. The Josephson phase, also like the AB phase, registers field
influences.

Jaklevic et al (1965) studied multiply-connected superconductors
utilizing Josephson junction tunneling and modulated the supercurrent
with an applied magnetic field. The interference “fringes” obtained were
found to occur even when the magnetic flux is confined to a region not
accessible to the superconductor, i.e., there occurs vector potential mod-
ulation of superconducting electron drift velocity. As always, the super-
conductive state had global phase coherence, indicating that the mod-
ulation effect studied was a local (Aµ) influence on global phase effects
(i.e., the phase order parameter in the barrier).

In the next effect examined, the quantized Hall effect, we see that
the effect is crucially dependent upon the gauge invariance of the Aµ
potential. The result of this Aµ gauge invariance is powerfully significant:
an independence of the quantization condition on the density of mobile
electrons in a test sample.

We saw this independence, above, in examining the remarkable in-
dependence in preservation of phase coherence in electrons over distances
larger than the atomic spacing or the free path length in the F-CE
Aharonov-Bohm effect. In both cases, the primacy and importance of
macroscopic, and “mesoscopic”, effects are indicated.

3.6 Quantized Hall effect

The quantized Hall effect (von Klitzing et al, 1980; Stormer & Tsui,
1983) has the following attributes: (1) there is the presence of a Hall
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conductance σxx in a two-dimensional gas within a narrow potential well
at a semiconductor-heterostructure interface e.g., in MOS, quantum well
and MOSFET; (2) the temperature is low enough that the electrons are
all in the ground state of the potential well and with the Fermi level being
between the Landau levels; (3) the conductance is quantized with plateau
having σxy = nh/e2 (n an integer) for finite ranges of the gate voltage in
which the regular conductance is severely reduced; (4) together with the
well-known Hall effect (1879) condition (a magnetic field perpendicular
to the plane and an electric field in the plane and the electrons drifting
in the direction EXB) the energy associated with the cyclotron motion
of each electron takes on quantized values (n+ 1/2)hωc, where ωc is the
cyclotron frequency at the imposed magnetic field and n is the quantum
number corresponding to the Landau level.

The Aharonov-Bohm flux, or A-wave, can be generated in such 2-
dimensional systems and be increased by one flux quantum by changing
the phase of the ground state wave function around the system. The
quantized Hall effect is thus a macroscopic quantum Hall phenomenon
related to the fundamental role of the phase and the Aµ potential in
quantum mechanics.

An important and crucial feature of the quantized Hall effect is the
lack of dependence of quantization (integral multiples of e2/h on the
density of the mobile electrons in the sample tested (but rather on the
symmetry of the charge density wave, cf. Tsui et al 1982). Underlying
this lack of dependence is a required gauge invariance of the Aµ poten-
tial. For example, Laughlin (1981) has shown that the current around a
metallic loop is equal to the derivative of the total electronic energy, U ,
of the system with respect to the magnetic flux through the loop, i.e.,
with respect to the Aµ potential pointing around the loop:

I = (c/L)∂U/∂A. (3.6.1)

As this derivative is nonzero only with phase coherence around the loop,
i.e., with an extended state, Equ. (3.6.1) is valid only if:

A = nhc/(eL), (3.6.2)

i.e., only with a gauge invariance for A.

With a gauge invariance defined for A, and with the Fermi level in
a mobility gap, a vector potential increment changes the total energy, U ,
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by forcing the filled states toward one edge of the total density of states
spectrum and the wave functions are affected by a vector potential in-
crement only through the location of their centers. Therefore, gauge
invariance of the A potential, being an exact symmetry, forces the addi-
tion of a flux quantum to result in only an excitation or deexcitation of
the total system (Laughlin, 1981). Furthermore, the energy gap exists
globally between the electrons and holes affected by such a perturbation
in the way described, rather than in specific local density of states. Thus,
the Fermi level lies globally in a gap in an extended state spectrum and
there is no dependence of Hall conductivity on the density of mobile
electrons.

Post (1982a,b, 1983) has also implicated the vector potential in the
conversion of the voltage/current ratio of the quantized Hall effect into
a ratio of period integrals. If V is the Hall voltage observed transversely
from the Hall current I, the relation is:

V/I =

∫
C

A/

∫
C

G = ZH = quantized Hall impedance, (3.6.3)

where G defines the displacement field D and the magnetic field H. The
implication is that:

V/I =

∫ T

0

V dt/

∫ T

0

Idt, (3.6.4)

where∫ T

0

V dt =

∫
C

A – the quantization of magnetic flux, (3.6.5)

∫ T

0

Idt =

∫
C

G – the quantization of electric flux, (3.6.6)

and T is the cyclotron period.

Aoki & Ando (1986) also attribute the universal nature of the quan-
tum Hall effect, i.e., the quantization in units of e2/h at T = 0 for every
energy level in a finite system, to a topological invariant in a mapping
from the gauge field to the complex wave function. These authors as-
sume that in the presence of external Aharonov-Bohm magnetic fluxes,
the vector potential A0, is replaced by A0 + A, where A = (Ax, Ay).
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In cylindrical geometry, a magnetic flux penetrates the opening of the
cylinder and the vector potential is thought of as two magnetic fluxes,
(φx, φy) = (AxL,AyL) penetrating inside and through the opening of a
torus when periodic boundary conditions are imposed in both x and y
directions for a system of size L. According to the Byers-Yang theorem
(Byers & Yang, 1961), the physical system assumes its original state
when Ax or Ay increases by Φ0/L, where Φ0 = hc/e, the magnetic flux
quantum.

The next effect examined, the De Haas-Van Alphen effect, also piv-
ots on Aµ potential gauge invariance.

3.7 De Haas-Van Alphen Effect

In 1930 W.J. de Haas and P.M. van Alphen observed what turned
out to be susceptibility oscillations with a changing magnetic field which
were periodic with the reciprocal field. Landau showed in the same year
that for a system of free electrons in a magnetic field, the motion of the
electrons parallel to the field is classical, while the motion of the electrons
perpendicular to the field is quantized; and Peierls showed in 1933 that
this holds for free electrons in a metal (with spherical Fermi surface).
Therefore, the free energy of the system and thus the magnetic moment
M = ∂F/∂H oscillates with the magnetic field H. This oscillation is the
major cause of the de Haas-van Alphen effect.

In 1952 Onsager showed that the frequencies of oscillations are di-
rectly proportional to the extremal cross-sections of the Fermi surface
perpendicular to the magnetic field. If p is the electronic momentum
and

[p− (e/c)A] (3.7.1)

is the canonical momentum (cf. Equ.s (3.5.5), section 3.5 Josephson
effect), then: ∫

C

(p− (eA/c) · dl) = (n+ γ)h, (3.7.2)

where n is an integer and γ is a phase factor. The relation of the A
vector potential and the real space orbit is:∫

C

A · dl =

∫
∇×A · dA = HA, (3.7.3)

where A is the area of the orbit in real space. Furthermore, electron
paths in momentum space have the same shape as those in real space
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but changed in scale and turned through 90◦, due to the Lorentz force
relation: ∂p/∂t = (e/c)(v ×H).

Therefore, as (i) the area of the orbit in momentum space is A =
(n + γ)(ehH/c), and (ii) the susceptibility is −(1/H)(∂F/∂H) which
is periodic in (1/H) with period ∆(1/H) = 2πe/chA, there is a direct
influence of the A vector potential on the de Haas-van Alphen effect due
to the phase factor dependence (Equ. (3.7.2)). Thus the validation of
Equ.s (3.7.1) and (3.7.2) requires Aµ potential gauge invariance.

We have now examined two effects pivoting on Aµ potential gauge
invariance. This gauge invariance implies flux conservation, i.e., a global
conservation law. The next effect examined, the Sagnac effect, makes
explicit the consequences of this global conservation.

3.8 Sagnac effect

G. Sagnac in 1913 (Sagnac 1913, 1914) demonstrated a fringe shift
by rotating an interferometer (with a polygonal interference loop tra-
versed in opposite senses) at high speed (Figure 3.8.1).

Figure 3.8.1. The Sagnac interferometer in which the center of rotation
coincides with the beam splitter location. The Sagnac phase shift is
independent of the location of the center of rotation and the shape of
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the area. The phase shift along L is independent of r. After Silvertooth,
1986.

Einstein’s general theory of relativity predicts a phase shift propor-
tional to the angular velocity and to the area enclosed by the light path
–not because the velocity of the two beams is different, but because they
each have their own time. However, the AB, AAS and the Berry’s phase
rotation effects deny Lorentz invariance to the electromagnetic field as
any field’s natural and inevitable implication, i.e., Lorentz invariance is
not “built-in” to the Maxwell theory– it is a gauge implied by special
Aµ potential conditions, i.e., special boundary conditions imposed on
the electromagnetic field. Therefore, the Einstein interpretation pivots
on unproven boundary conditions and the effect is open to other, com-
peting, explanations (cf. Forder, 1984).

A different explanation is offered by the Michelson & Gale (1925;
Michelson, 1924, 1925) experiments. These investigators predicted a
phase shift more simply on the basis of a difference in the velocity of
the counter propagating beams and the earth rotating in a stationary
ether without entrainment. (It should be noted that the beam path in
the well-known Michelson-Morley 1886 interferometer does not enclose a
finite surface area. Therefore this experiment cannot be compared with
the experiments and effects examined in the present review, and, in fact,
according to these recent experiments, no fringe shift can be expected as
an outcome of a Michelson-Morley experiment, i.e., the experiment was
not a test for the presence of an ether).

Post (1967) argues that the Sagnac effect demonstrates that the
space-time formulations of the Maxwell equations do not make explicit
the constitutive properties of free space. The identification: E = D, H =
B, in the absence of material polarization mechanisms in free space is the
socalled Gaussian field identification (Post, 1978). This identification is
equivalent to an unjustified adoption of Lorentz invariance. However,
the Sagnac effect and the well-used ring laser gyro on which it is based
indicate that in a rotating frame the Gaussian identity does not apply.
This requirement of metric independence was proposed by Van Dantzig
(1934). In order to define the constitutive relations between the fields
E and B constituting a covariant six-vector Fλν , and the fields D and
H, constituting a contravariant six-vector, Gλν , the algebraic relation
(Post, 1978):

Gλν = 1/2χλνσκFλν (3.8.1)
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was proposed, where χλνσκ is the constitutive tensor and Equ. (3.8.1)
is the constitutive map. The generally invariant vector d’Alembertian
(wave equation) is:

∂νχ
λνσκ∂σAκ = 0, (3.8.2)

indicating the vector potential dependence.

The pivotal role of the vector potential is due to the flux conserva-
tion, which is a global conservation law (Post, 1974, 1982a). The local
conservation law of flux:

dF = 0 (3.8.3)

excludes a role for the A potential (F is inexact). Only if:∫
c

F = 0 (3.8.4)

is it possible to state dA = F (F is exact). In other words, dF = 0
implies

∫
c
F = 0 only if the manifold over which F is defined is compact

and simply connected, e.g., 1-connectedness (contractable circles), 2-
connectedness (contractable spheres), and 3-connectedness (contractable
3-spheres).

Post (1972) argues that the constitutive relations of the medium-
free fields E and H to the medium left out treatment of free space as a
“medium”. If C is the differential 3-form of charge and current density,
then the local conservation of charge is expressed by:

dC = 0 (3.8.5)

and the global definition is:
C = dG. (3.8.6)

The Post relation is in accord with the symmetry of space-time and
momentum-energy required by the reciprocity theory of Born (1949)
and, more recently, of Ali (1985) and Ali & Prugovecki (1986).

In summary, we have examined now

(i) The Aharonov-Bohm and Altshuler-Aronov-Spivak effect in which
changes in the Aµ potential at a third location indicates differences
in the Aµ field along two trajectories at two other locations.

(ii) The BerryAharonovAnandanPancharatnam effect in which changes
in polarization defined by the Aµ potential at a point A is different
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from a point B due to topological winding of the trajectory between
two points A and B.

(iii) Stoke’s theorem which requires precise boundary conditions for two
fields: the local and global fields, for exact definition in term of the
Aµ potential.

(iv) Ehrenberg and Siday’s derivation of the refractive index which de-
scribes propagation between two points in matter and which requires
gauge-invariance of the Aµ potential.

(v) The Josephson effect which requires the Aµ potential as a local-to-
global operator connecting two fields.

(vi) The quantized Hall effect which requires gauge invariance of the Aµ
potential in the presence of two fields.

(vii) The De Haas-van Alphen effect which requires gauge invariance of
the Aµ potential in the presence of two fields.

(viii) The Sagnac effect which requires flux conservation, i.e., gauge in-
variance of the Aµ potential in the comparison of two fields: before
and after movement.

Therefore all these effects pivot on a physical definition of Aµ poten-
tials. In the next section we examine theoretical reasons for questioning
the completeness of Maxwell’s theory and the reason for the physical
effectiveness of the Aµ potential in the presence of two fields.

4. Conclusions

The Aµ potentials have an ontology or physical meaning as local
operators mapping onto global spatiotemporal conditions the local e.m.
fields. This operation is measurable if there is a second comparative
mapping of the conditioned local fields in a many-to-one fashion (mul-
tiple connection). In the case of a single local (electromagnetic) field,
this second mapping is ruled out –but such an isolated local field is only
imaginary, because the imposition of boundary conditions implies the
existence of separate local conditions and thereby always a global con-
dition. Therefore, practically speaking, the Aµ potentials always have a
gauge-invariant physical existence. The Aµ potentials’ gauge invariance
implies the theoretical constructs of a magnetic monopole and magnetic
charge, but with no singularities. These latter constructs are, however,
confined to SU(2) field conditioning, whereas the Aµ potentials have an
existence in both U(1) and SU(2) symmetries.
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The physical effects of the Aµ potentials are observable empirically
at the quantum level (Effects 1-5) and at the classical level (Effects 2,3
and 6). The question of whether the Aµ potentials can propagate to a
distance is a proper question and answerable inasmuch as questions of
maintaining field coherence over large distances can be answered. Co-
herent fields can be obtained at low temperature in condensed matter
systems and also in cavities (e.g., Mach-Zehnder). Coherency over large
distances is maintained in the case of the laser. “Local” coherence could
also be maintained by a wave packet propagating without dispersion or
decrement.
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