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Facoltà di Ingegneria, Bologna, Italy

ABSTRACT. A simple and self-contained treatment of the basic
mathematics of two component quantum systems is presented. First,
the main general properties of tensor product spaces and of linear
operators on these spaces are analysed. Then, von Neumann’s treat-
ment of density operators on the tensor product of two Hilbert spaces
is simplified and complemented with some additional theorems. A
rigorous proof of the impossibility of superluminar transmissions by
wave-packet-reduction is presented.

RESUME. On présente un développement simple et se suffisant à
lui-même des mathématiques de base des systèmes quantiques à deux
composantes. Premièrement, on analyse les principales propriétés
générales des produits tensoriels de deux espaces et des opérateurs
linéaires sur ces espaces. Ensuite, le développement de von Neumann
des opérateurs densité sur le produit tensoriel de deux espaces de
Hilbert est simplifié et complété avec des théorèmes supplémentaires.
On présente une démonstration rigoureuse de l’impossibilité de
transmissions supra-lumineuses au moyen de la réduction du paquet
d’ondes.

1. Introduction

The aim of this paper is to present a rigorous, simple and suffi-
ciently complete treatment of the basic mathematical theory of the ten-
sor product of two Hilbert spaces and of linear operators on this space,
with particular reference to density operators (self-adjoint, non-negative,
unit-trace operators). The paper has been conceived to provide a clear
and self-contained mathematical basis for a deep intrepretative analysis
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of some problems of the foundations of quantum mechanics which con-
cern composite systems, such as the Einstein-Podolsky-Rosen (in short
E.P.R.) paradox [1] and the theory of measurement [2].

A rigorous, self-contained, sufficiently complete and simple treat-
ment of the mathematical formalism of two-component quantum systems
does not seem to be available in the literature. Traditional textbooks on
quantum mechanics either do not deal with the mathematical theory of
tensor products of Hilbert spaces [3], or contain just some introductory
remarks [4]. More recent books and papers deal only with particular
aspects of this subject [5]. Some books of mathematics [6], or on the
mathematical bases of quantum mechanics [7], present a rigorous ap-
proach to linear operators on the tensor product of Hilbert spaces, but
do not discuss in detail density operators. The most complete treat-
ment of the properties of density operators on the tensor product of two
Hilbert spaces is still that presented by von Neumann [8] ; this, how-
ever, does not, contain the basic theory of tensor products of spaces and
operators and, moreover, is rather involved.

In the present paper, von Neumann’s treatment is simplified and
complemented with a deeper insight into the structure of tensor prod-
uct spaces and with some theorems which yield interesting results for a
conceptual analysis of the foundations of quantum mechanics and ther-
modynamics. Among results not available in Ref.[8], we can point out
rigorous proofs of some properties of linear operators on the tensor prod-
uct of two Hilbert spaces (theorems 6, 7, 8 and 12 of section 3) and of
the following statements.

a) The partial traces of any linear operator on the tensor product of
two Hilbert spaces Hu and Hv are independent of the choices of the
bases of Hu and Hv.

b) Two systems U and V , in states ρu and ρv, are uncorrelated if and
only if the composite system W is in state ρw = ρu ⊗ ρv ;

c) Two non-interacting systems which are uncorrelated (or correlated)
at the initial instant t = 0 remain uncorrelated (or correlated) at
any instant t.

d) For every composite system W = U + V , the ideal measurement of
an observable A of U does not modify the state of system V . This
point shows that no superluminar transmission can be obtained as a
consequence of von Neumann’s wave-packet-reduction rule applied
to composite systems. A different proof of this theorem, based on
the “cyclic property of the partial trace”, is presented in Ref.[9].



Some Basic Theorems on Two-Component Quantum Systems 331

The paper is organized as follows. In section 2 we define the tensor
product of two linear, euclidean and Hilbert spaces, and prove some
properties of these spaces. In section 3 we prove some properties of
linear operators on the tensor product of two Hilbert spaces and of their
matrix representations, handling only continuous operators defined on
the whole space. In section 4 we deal with the relations between density
operators on the tensor product of two Hilbert spaces and their partial
traces. In section 5 we analyse correlations between subsystems, and
prove statements b) and c) listed above. In section 6 we prove statement
d).

2. Tensor product of two Hilbert spaces

In this Section, we present a self contained introduction to the lin-
ear and metric properties of tensor product spaces, with reference to
separable spaces of finite or infinite dimension.

2a. Tensor product of two linear spaces

Let Lu and Lv be two linear spaces. We will denote by |u1〉, . . . ,|ui〉,
. . . ,|uk〉, . . . the elements of Lu and by |v1〉, . . . ,|vj〉, . . . ,|vl〉, . . . the
elements of Lv. Let us consider the Cartesian product Lu × Lv, which
has as elements all pairs {|ui〉, |vj〉}, and define in Lu×Lv the following
equivalence relation. a) {|ui〉, |vj〉} ∼ {|uk〉, |vl〉} if and only if |uk〉 =
c|ui〉 and |vl〉 = 1/c|vj〉, for some c ∈ C.

It is easily proved that a) is indeed an equivalence relation and
therefore defines equivalence classes in Lu × Lv. We will denote by
|ui〉 ⊗ |v〉 the equivalence class which corresponds to {|ui〉, |vj〉} and by
W ′ the set of all equivalence classes so obtained. The elements of W ′ will
be denoted also by the symbols |w′1〉, . . . , |w′n〉, . . . or |w1j〉, . . . , |wkl〉, . . .,
where |wij〉 = |ui〉 ⊗ |vj〉, and will be called simple tensors [6,7]. On
account of a), the following equality holds in W ′:

a|ui〉 ⊗ |vj〉 = |ui〉 ⊗ a|vj〉 , for every a ∈ C. (2.1)

In fact : {a|ui〉, |vj〉} ∼ {(1/a)a|ui〉, a|v〉} = {|ui〉, a|v〉}. Let us define
the product by a scalar in W ′ as follows :

a(|ui〉 ⊗ |vj〉) = a|ui〉 ⊗ |vj〉 = |ui〉 ⊗ a|v〉 , a ∈ C. (2.2)
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Let us call zero element of W ′ the following element :

|0〉 = |0〉 ⊗ |vj〉 = |ui〉 ⊗ |0〉 , for every |ui〉 and |vj〉. (2.3)

On account of (2.2), 0(|ui〉 ⊗ |vj〉) = |0〉 for every |ui〉 and |vj〉.
Let us now consider the family F of all ordered sets of elements of

W ′, i.e., the family of all sets f = (|w′1〉, . . . , |w′n〉), with any n and any
choice of |w′1〉, . . . , |w′n〉. Let us define the following equivalence relations
in F :

i) f1 ∼ f2 if all non-zero simple tensors which belong to f1 belong also
to f2 and vice-versa, independently of the order.

ii) (|u1〉 ⊗ |v1〉, . . . , |u1〉 ⊗ |vm〉) ∼ (|u1〉 ⊗ |vm+1〉, . . . , |u1〉 ⊗ |vn〉) if
|v1〉+ . . .+ |vm〉 = |vm+1〉+ . . .+ |vn〉 ;

iii) (|u1〉 ⊗ |v1〉, . . . , |um〉 ⊗ |v1〉) ∼ (|um+1〉 ⊗ |v1〉, . . . , |un〉 ⊗ |v1〉) if
|u1〉+ . . .+ |um〉 = |um+1〉+ . . .+ |un〉.
In particular, ii) yields (|u1〉 ⊗ |v1〉, . . . , |u1〉 ⊗ |vm〉) ∼ |u1〉 ⊗ |v1 +

. . .+ vm〉, and a similar result holds for iii).

It is easily verified that i)-iii) are reflexive, symmetric and transitive,
i.e., are equivalence relations.

We can now define an equivalence relation R in F as follows :
f1 ∼ f2 if either one of i)-iii) holds between f1 and f2, or if f1 and
f2 can be connected by a chain of equivalence relations of the set i)-iii).
For instance, if f1 ∼ f3 according to i) and f3 ∼ f2 according to ii),
then f1 ∼ f2 according to R. Reflexivity of R is ensured by i), transitiv-
ity by the definition of R, symmetry by symmetry of i)-iii). Therefore
R is an equivalence relation, which generalizes that between complex
polynomials employed in elementary algebra.

We will denote by W the set of all equivalence classes so obtained,
and by |w〉 = [|w′1〉, . . . , |w′n〉] the equivalence class which corresponds to
f = (|w′1〉, . . . , |w′n〉).

Let us define in F the following operations of sum and of product
by a scalar. If f1 = (|w′1〉, . . . , |w′m〉), f2 = (|w′m+1〉, . . . , |w′n〉) and c ∈ C,
then :

f1 + f2 = (|w′1〉, . . . , |w′m〉, . . . , |w′n〉), (2.4)

cf1 = (c|w′1〉, . . . , c|w′m〉). (2.5)

It can be easily proved that (2.4) and (2.5) leave invariant the equivalence
classes, i.e. : if f1 ∼ g1 and f2 ∼ g2 then f1 +f2 ∼ g1 +g2 and cf1 ∼ cg1.



Some Basic Theorems on Two-Component Quantum Systems 333

Therefore, (2.4) and (2.5) yield the following operations of sum and of
product by a scalar in W :

|w1〉+ |w2〉 = [|w′1〉, . . . , |w′m〉, . . . , |w′n〉], (2.6)

c|w1〉 = [c|w′1〉, . . . , c|w′m〉]. (2.7)

It is easily proved that (2.6) and (2.7) satisfy the axioms which define
the operations of sum and product by a scalar in a linear space [7.10].
In fact, commutativity and associativity of (2.6) follow directly from i).
Moreover, on account of i) there exists a zero element for the sum, which
is given by (2.3). Finally, the following properties hold for (2.7) :

a) c(|w1〉+ |w2〉) = [c|w′1〉, . . . , c|w′n〉] = c|w1〉+ c|w2〉.

b) (c1 + c2)|w1〉 = [(c1 + c2)|w′1〉, . . . , (c1 + c2)|w′m〉]
= [(c1 + c2)|u1〉 ⊗ |v1〉, . . . , (c1 + c2)|um〉 ⊗ |vm〉]
= [c1|u1〉 ⊗ |v1〉, c2|u1〉 ⊗ |v1〉, . . . , c1|um〉 ⊗ |vm〉, c2|um〉 ⊗ |vm〉]
= c1|w1〉+ c2|w1〉.

c) (c1c2)|w1〉 = [c1c2|w′1〉, . . . , c1c2|w′m〉] = c1(c2|w1〉).

d) 1|w1〉 = |w1〉.

As a consequence, the set W endowed with operations (2.6) and
(2.7) is a linear space, which will be denoted by Lw = Lu ⊗ Lv and will
be called tensor product of linear spaces Lu and Lv. To every element
of W ′, |wij〉, there corresponds an element of W, [|wij〉], which will be
denoted by the same symbol |wij〉 = |u1〉⊗ |vj〉 and will be called simple
tensor of Lw. Every element of Lw can be written as a sum or a linear
combination of simple tensors. Therefore, Lw is the linear space spanned
by the simple tensors |wij〉.

Theorem 1. If {|εi〉} and {|νj〉} are linearly independent systems of two
linear spaces Lu and Lv, then {|ζij〉 = |εi〉⊗|ν〉} is a linearly independent
system of Lw = Lu ⊗ Lv.

Proof. The linear subspace Lw spanned by {|ζij〉} is the tensor product
of the linear subspaces Lu and Lv spanned by {|εi〉} and {|νj〉} : Lw =
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Lu⊗Lv. Let us consider a linear combination of the vectors |ζij〉, |w〉 =∑
ij cij |ζij〉, and prove that if |w〉 = |0〉 then cij = 0 for every {i, j}.

If |w〉 = |0〉, then |w〉 is a simple tensor of Lw. Therefore, there exist
|u〉 ∈ Lu and |v〉 ∈ Lv such that :

|0〉 = |w〉 = |u〉⊗|v〉 =
∑
i

ai|εi〉⊗
∑
j

bj |νj〉 =
∑
ij

aibj |ζij〉 =
∑
ij

cij |ζij〉.

But |u〉 ⊗ |v〉 = |0〉 if and only if either |u〉 = |0〉 or |v〉 = |0〉, i.e., since
{|εi〉} and {|νj〉} are linearly independent systems, if and only if either
every ai = 0 or every bj = 0, i.e., if and only if every cij = 0.

Theorem 2. If {|εi〉} and {|νj〉} are bases [11] of Lu and Lv, then {|ζij〉 =
|εi〉 ⊗ |νj〉} is a basis of Lw = Lu ⊗ Lv.

Proof. On account of Theorem 1, {|ζij〉} is a linearly independent system.
Moreover, every |w〉 ∈ Lw can be expressed as a finite linear combination
of vectors of {|ζij〉}. In fact, by definition of basis of a linear space,
every |u〉 ∈ Lu and every |v〉 ∈ Lv can be expressed as finite linear
combinations of vectors of {|εi〉} and of {|νj〉} respectively. Therefore, for
every simple tensor |wp〉 ∈ Lw : |wp〉 =

∑
i=1,m ai|εi〉 ⊗

∑
j=1,n bj |νj〉 =∑

ij aibj |ζij〉. Finally, every vector |w〉 ∈ Lw can be expressed as a finite
linear combination of simple tensors and therefore of elements of {|ζij〉}.

Corollary of Theorem 2. If Lu has dimension m and Lv has dimension
n, then Lw = Lu ⊗ Lv has dimension mn.

Proof. By definition of dimension, a basis {|εi〉} of Lu and a basis {|νj〉}
of Lv have m and n elements respectively. On account of theorem 2, a
basis of Lw is {|εi〉 ⊗ |νj〉} and has, therefore, mn elements.

2b. Tensor product of two euclidean spaces

Let Eu and Ev be two euclidean spaces, in which distance is defined
by means of the natural norm. We will define tensor product of Eu and
Ev the euclidean space Ew = Eu ⊗ Ev given by the linear space Lw =
Lu⊗Lv endowed with the following scalar product : if {|εi〉} and {|νj〉}
are two orthonormal bases of Eu and Ev and if |w1〉 =

∑
ij cij |εi〉⊗ |νj〉,

|w2〉 =
∑

ij dij |εi〉 ⊗ |νj〉 (where sums are finite), then we define :

〈w1|w2〉 =
∑
ij

∑
kl

c∗ijdkl〈εj |εk〉〈νj |νl〉 =
∑
ij

c∗ijdij . (2.8)
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The euclidean space Ew will be considered as endowed with the distance
defined by means of the natural norm.

It is easily verified that (2.8) has the properties which define the
scalar product of two vectors.

1) 〈w1|w1〉 ≥ 0, and 〈w1|w1〉 = 0 if and only if |w1〉 = 0〉.
Proof. 〈w1|w1〉 =

∑
ij c
∗
ijcij =

∑
ij |cij |2 ≥ 0, and 〈w1|w1〉 = 0 if and

only if cij = 0 for every {i, j}.
2) 〈w1|w2〉 = 〈w2|w1〉∗.
Proof. 〈w2|w1〉∗ =

∑
ij(d

∗
ijcij)

∗ =
∑

ij c
∗
ijdij = 〈w1|w2〉.

3) 〈w1|cw2〉 = c〈w1|w2〉.
Proof. 〈w1|cw2〉 =

∑
ij c
∗
ijcdij = c

∑
ij c
∗
ijdij = c〈w1|w2〉.

4) 〈w1|w2 + w3〉 = 〈w1|w2〉+ 〈w1|w3〉.
Proof. If we denote by cij , dij and eij the coordinates of |w1〉, |w2〉 and
|w3〉 with respect to the basis |ε1〉 ⊗ |νj〉, we have :

〈w1|w2 + w3〉 =
∑
ij

c∗ij(dij + eij) =
∑
ij

c∗ijdij +
∑
ij

c∗ijeij

= 〈w1|w2〉+ 〈w1|w3〉.

On account of properties 1) - 4), (2.8) actually defines a scalar prod-
uct in Ew. Therefore, it has all the other properties of scalar product.
For instance, we have :

〈w1 + w2|w3〉 = 〈w1|w3〉+ 〈w2|w3〉, (distributivity from the left)

〈cw1|w2〉 = c∗〈w1|w2〉,
|〈w1|w2〉|2 ≥ 〈w1|w1〉〈w2|w2〉, (Schwarz inequality)

where the equality holds if and only if |w2〉 = c|w1〉.

Theorem 3. If {|εi〉} and {|ν〉} are orthonormal bases of Eu and Ev,
then {|ζij〉 = |ε1〉 ⊗ |νj〉} is an orthonormal basis of Ew.

Proof. The completeness of {|ζij〉} in Ew is a direct consequence of its
completeness in Lw. In fact, the linear space spanned by {ζij} coincides
with Lw and thus contains all the elements of Ew. The orthonormality
of {|ζij〉} follows from the definition of scalar product in Ew :

|ζij |ζkl〉 = 〈ε1| ⊗ 〈νj |εk〉 ⊗ |νl〉 = 〈εi|εk〉〈νj |νl〉 = δikδjl.
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Theorem 4. If {|ui〉}, {|ũk〉} are sets of elements of Eu and {|vj〉},
{|ṽ1〉} are sets of elements of Ev, and if w1 =

∑
ij cij |ui〉 ⊗ |vj〉, w2 =∑

kl dkl|ũk〉 ⊗ |ṽl〉, then :

〈w1|w2〉 =
∑
ijkl

c∗ijdkl〈ui|ũk〉〈vj |ṽ1〉. (2.9)

Proof. Let {|εp〉} and {|νq〉} be orthonormal bases of Eu and Ev. We
have :

|ui〉 =
∑
p

eip|εp〉 , |vj〉 =
∑
q

hjq|νq〉

|ui〉 ⊗ |v〉 =
∑
pq

eiphjq|εp〉 ⊗ |νq〉

|w1〉 =
∑
ij

cij
∑
pq

eiphjq|εp〉 ⊗ |νq〉 =
∑
pq

(
∑
ij

cijeiphjq)|εp〉 ⊗ |νq〉

|w2〉 =
∑
kl

dkl
∑
pq

ẽkph̃lq|εp〉 ⊗ |νq〉 =
∑
pq

(
∑
kl

dklẽkph̃lq)|εp〉 ⊗ |νq〉

By applying definition (2.8) :

〈w1|w2〉 =
∑

pqijkl

c∗ijdkle
∗
ipẽkph

∗
jqh̃lq.

Let us now evaluate 〈w1|w2〉 by (2.9).

〈ui|ũk〉 = 〈
∑
p

eipεp|
∑
r

ẽkrεr〉 =
∑
pr

e∗ipẽkr〈εp|εr〉 =
∑
p

e∗ipẽkp

〈vj |ṽl〉 = 〈
∑
q

hjqνq|
∑
s

h̃lsνs〉 =
∑
qs

h∗jqh̃ls〈νq|νs〉 =
∑
q

h∗jqh̃lq

〈w1|w2〉 =
∑
ijkl

c∗ijdkl
∑
p

e∗ipẽkp
∑
q

h∗jqh̃lq =
∑

pqijkl

c∗ijdkle
∗
ipẽkph

∗
jqh̃lq.

2c. Tensor product of two Hilbert spaces.

Let Hu and Hv be complete euclidean spaces, i.e., Hilbert spaces,
and let Ew = Hu ⊗Hv be the tensor product space defined in 2b. The
completion Hw of Ew will be called tensor product of the Hilbert spaces
Hu and Hv. In symbols we will write Hw = Hu⊗Hv, where the bar
means that the tensor product space has been completed.
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Theorem 5. If {|εi〉} and {|ηj〉} are orthonormal bases of the Hilbert
spaces Hu and Hv, then {|ζij〉 = |εi〉 ⊗ |ηj〉} is an orthonormal basis of
Hw = Hu⊗Hv.

Proof. It is sufficient to prove that {|ζij〉} is a complete system ofHw, i.e.,
that the closure of the linear space spanned by {|ζij〉} is Hw : [L{|ζij〉}] =
Hw. On account of theorem 3, L{|ζij〉} = Ew = Hu ⊗Hv. Since Ew is
dense in Hw, i.e. [Ew] = Hw, then [L{|ζij〉}] = [Ew] = Hw.

3. Linear operators on the tensor product of two Hilbert spaces

In this section, we prove some basic properties of linear operators
on the tensor product of two Hilbert spaces, Hw = Hu⊗Hv, and of their
partial traces. For simplicity sake, we will assume that all the linear
operators considered in this paper and their adjoints are continuous and
defined on the whole spaces Hu, Hv and Hw respectively.

The linear operators on Hw = Hu⊗Hv are defined in the same way
as those on any Hilbert space H. This definition will not be repeated.
Among the linear operators on Hw, there are the tensor products of pairs
of linear operators on Hu and on Hv.

If Au and Av are linear operators on Hu and Hv respectively, then
we define as tensor product of Au and Av the following linear operator
on Hw :

(Au ⊗Av)|u〉 ⊗ |v〉 = Au|u〉 ⊗Av|v〉,

and, more generally :

(Au ⊗Av)
∑
ij

cij |ui〉 ⊗ |vj〉 =
∑
ij

cijAu|ui〉 ⊗Av|vj〉. (3.1)

The linearity of Au⊗Av follows directly from definition (3.1). In fact, if
{|εi〉 ⊗ |ηj〉} is an orthonormal basis of Hw, w1 =

∑
ij cij |εi〉 ⊗ |ηj〉 and

w2 =
∑

ij dij |εi〉 ⊗ |ηj〉 are two vectors of Hw and a ∈ C :

1) (Au ⊗Av)a|w1〉 = (Au ⊗Av)
∑
ij

(acij)|εi〉 ⊗ |η〉

= a
∑
ij

cijAu|εi〉 ⊗Av|ηj〉 = a(Au ⊗Av)|w1〉;
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2) (Au ⊗Av)(|w1〉+ |w2〉) = (Au ⊗Av)
∑
ij

(cij + dij)|εi〉 ⊗ |ηj〉

=
∑
ij

(cij + dij)Au|εi〉 ⊗Av|ηj〉

= (Au ⊗Av)|w1〉+ (Au ⊗Av)|w2〉.

Theorem 6.
(Au ⊗Av)† = A†u ⊗A†v.

Proof. If |w1〉 =
∑

ij cij |εi〉 ⊗ |ηj〉 and |w2〉 =
∑

kl dkl|εk〉 ⊗ |ηl〉 are any
two vectors of Hw :

〈w1|(Au ⊗Av)w2〉 =
∑
ij

c∗ij〈εi| ⊗ 〈ηj |
∑
kl

dkl|Auεk〉 ⊗ |Avηl〉

=
∑
ijkl

c∗ijdkl〈εi|Auεk〉〈ηj |Avηl〉 =
∑
ijkl

c∗ijdkl〈A†uεi|εk〉〈A†vηj |ηl〉

=
∑
ij

c∗ij〈A†uεi| ⊗ 〈A†vηj |
∑
kl

dkl|εk〉 ⊗ |ηl〉 = 〈(A†u ⊗A†v)w1|w2〉.

Corollary of theorem 6. If Au and Av are linear self-adjoint operators
on Hu and Hv, then Au ⊗Av is a linear self-adjoint operator on Hw.

Proof. On account of theorem 6 : (Au ⊗Av)† = A†u ⊗A†v = Au ⊗Av.

Theorem 7. If Au and Bu are linear operators on Hu, and Av and Bv

are linear operators on Hv, then :

(Au ⊗Av)(Bu ⊗Bv) = AuBu ⊗AvBv,

and

(Au +Bu)⊗ (Av +Bv) = Au ⊗Av +Au ⊗Bv +Bu ⊗Av +Bu ⊗Bv.

Proof. If |w〉 =
∑

ij cij |ui〉 ⊗ |vj〉 is any vector of Hw :

(Au ⊗Av)(Bu ⊗Bv)
∑
ij

cij |ui〉 ⊗ |vj〉 =

= (Au ⊗Av)
∑
ij

cijBu|ui〉 ⊗Bv|vj〉

=
∑
ij

cijAuBu|uj〉 ⊗AvBv|vj〉 = (AuBu ⊗AvBv)
∑
ij

cij |ui〉 ⊗ |vj〉;
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(Au +Bu)⊗ (Av +Bv)
∑
ij

cij |ui〉 ⊗ |vj〉 =

=
∑
ij

cij(Au +Bu)|ui〉 ⊗ (Av +Bv)|vj〉

=
∑
ij

cij(Au|ui〉+Bu|ui〉)⊗ (Av|vj〉+Bv|vj〉)

=
∑
ij

cij [(Au|ui〉)⊗ (Av|vj〉) + (Au|ui〉)⊗ (Bv|vj〉)

+ (Bu|ui〉)⊗ (Av|vj〉) + (Bu|ui〉)⊗ (Bv|vj〉)]

= (Au ⊗Av +Au ⊗Bv +Bu ⊗Av +Bu ⊗Bv)
∑
ij

cij |ui〉 ⊗ |vj〉.

Corollary of theorem 7. If Uu and Uv are unitary operators on Hu and
Hv, then Uu ⊗ Uv is a unitary operator on Hw.

Proof.

(Uu⊗Uv)†(Uu⊗Uv) = (U†u⊗U†v )(Uu⊗Uv) = U†uUu⊗U†vUv = Iu⊗Iv = I;

(Uu⊗Uv)(Uu⊗Uv)† = (Uu⊗Uv)(U†u⊗U†v ) = UuU
†
u⊗UvU

†
v = Iu⊗Iv = I.

Theorem 8. If Au and Av are linear operators on Hu and Hv, and Iu
and Iv are the identity operators on these spaces, then :

eAu⊗IveIu⊗Av = eAu ⊗ eAv.

Proof.

eAu⊗IveIu⊗Av =
∑

n,m=0,∞
1/n!m!(Au ⊗ Iv)n(Iu ⊗Av)m

=
∑

n,m=0,∞
1/n!m!An

u ⊗Am
v = (

∑
n=0,∞

1/n!An
u)⊗ (

∑
m=0,∞

1/m!Am
v )

= eAu ⊗ eAv.

Theorem 9. If A is a linear operator on Hw and {|ζij〉 = |εi〉 ⊗ |ηj〉} is
an orthonormal basis of Hw, then :

A =
∑
ijkl

Aijkl|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|, (3.2)
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A =
∑
ijkl

Aijkl|εi〉〈εk| ⊗ |ηj〉〈ηl|, (3.3)

where Aijkl = 〈εi| ⊗ 〈ηj |A|εk〉 ⊗ |ηl〉.
The matrix Aijkl will be called matrix of A with respect to the basis

{|ζij〉}.
Proof. Expression (3.2) is simply the application to Hw of the usual
matrix representation of an operator on a Hilbert space H. The direct
proof in Hw is :

A = IAI =
∑
ij

|ζij〉〈ζij |A
∑
kl

|ζkl〉〈ζkl| =
∑
ijkl

〈ζij |A|ζkl〉|ζij〉〈ζkl|

=
∑
ijkl

〈εi| ⊗ 〈ηj |A|εk〉 ⊗ |ηl〉|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|.

Expression (3.3) holds because |εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl| = |εi〉〈εk| ⊗ |ηj〉〈ηl|.
Let us show that the matrix elements of these operators with respect to
the basis {|ζij〉} coincide.

〈εr| ⊗ 〈ηs|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|εr〉 ⊗ |ηs〉 = 〈εr|εi〉〈ηs|ηj〉〈εk|εr〉〈ηl|ηs〉
= δriδsjδrkδsl.

〈εr| ⊗ 〈ηs|εi〉〈εk| ⊗ |ηj〉〈ηl|εr〉 ⊗ |ηs〉 = 〈εr|εi〉〈ηs|ηj〉〈εk|εr〉〈ηl|ηs〉
= δriδsjδrkδsl.

Corollary of theorem 9. Every linear operator A on W can be ex-
pressed as a linear combination of tensor products of operators on Hu

and on Hv :

A =
∑
mn

amnAum ⊗Avn.

Proof. The proof is already contained in expression (3.3), because |εi〉〈εk|
and |ηj〉〈ηl| are linear operators on Hu and Hv.

Matrix representation of a linear operator on Hw. As a consequence
of theorem 9, every linear operator on Hw can be represented by a matrix
which has as elements the coefficients Aijkl. The pair {i, j} is the row
index and the pair {k, l} is the column index. The matrix must be
written by holding fixed in each row the row index and in each column
the column index. Moreover, the order in the set {i, j} must be the same
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as in the set {k, l}, so that the diagonal elements have i = k and j = l,
i.e. are of the kind Aijij .

For instance, if Hw = C2 ⊗C2, the matrix of a linear operator A is
4× 4 and the row and column indexes can be chosen either in the order
{1, 1}, {1, 2}, {2, 1}, {2, 2} or in the order {1, 1}, {2, 1}, {1, 2}, {2, 2}.
With the first choice, we have :

[A] =


A1111 A1112 A1121 A1122

A1211 A1212 A1221 A1222

A2111 A2112 A2121 A2122

A2211 A2212 A2221 A2222


Matrix [A] can be considered as the union of 4 blocks 2 × 2. In each
block, the indexes i and k, which refer to basis {|εi〉}, remain constant.

Theorem 10. If A and B are linear operators on Hu and Hv, then
the matrix elements of A ⊗ B with respect to an orthonormal basis
{|εi〉 ⊗ |ηj〉} of Hw are : (A⊗B)ijkl = AikBjl.

Proof.

A⊗B =
∑
ijkl

〈εi| ⊗ 〈ηj |A⊗B|εk〉 ⊗ |ηl〉|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|

=
∑
ijkl

〈εi| ⊗ 〈ηj |Aεk〉 ⊗ |Bηl〉|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|

=
∑
ijkl

〈εi|A|εk〉〈ηj |B|ηl〉|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|

=
∑
ijkl

AikBjl|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|.

Corollary of theorem 10. If A and B are linear operators on Hu and
Hv, then : Tr(A⊗B) = TrATrB.

Proof. On account of theorem 10, for any orthonormal basis of Hw :

Tr(A⊗B) =
∑
ij

(A⊗B)ijij =
∑
ij

AiiBjj = TrATrB.
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Partial traces of a linear operator on Hw = Hu⊗Hv.

Let A be a linear operator on Hw = Hu⊗Hv, and let {|εi〉 ⊗ |ηj〉}
be an orthonormal basis of Hw. Then :

A =
∑
ijkl

Aijkl|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|

=
∑
ijkl

Aijkl|εi〉〈εk| ⊗ |ηj〉〈ηl|.

We define partial trace of A in Hu (or, with respect to U) the linear
operator on Hv :

TruA =
∑
ijkl

AijklTr(|εi〉〈εk|)|ηj〉〈ηl|

=
∑
ijl

Aijil|ηj〉〈ηl| =
∑
jl

(
∑
i

Aijil)|ηj〉〈ηl|.
(3.4)

Similarly, we define partial trace of A in Hv (or, with respect to V ) the
linear operator on Hu :

TrvA =
∑
ijkl

Aijkl|εi〉〈εk|Tr(|ηj〉〈ηl|)

=
∑
ijk

Aijkj |εi〉〈εk| =
∑
ik

(
∑
j

Aijkj)|εi〉〈εk|.
(3.5)

Theorem 11. The partial trace of A in Hu (or, in Hv) is independent of
the choice of the bases {|εi〉} and {|ηj〉}.
Proof. Let |εi〉 ⊗ |ηj〉 and |αi〉 ⊗ |βj〉 be two bases of Hw. The second
basis can be obtained from the first by means of a unitary operator :
|αi〉 ⊗ |βj〉 = (Uu ⊗Uv)|εi〉 ⊗ |ηj〉 = Uu|εi〉 ⊗Uv|ηj〉. The linear operator
A and its partial trace on Hu can be written as :

A =
∑
ijkl

Aijkl|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|, (3.6)

TrvA =
∑
ijk

Aijkj |εi〉〈εk|, (3.7)
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A =
∑
ijkl

A′ijkl|αi〉 ⊗ |βj〉〈αk| ⊗ 〈βl|, (3.8)

(TrvA)′ =
∑
ijk

A′ijkjUu|εi〉〈εk|U†u. (3.9)

Let us prove that for every p and q :

〈εp|TrvA|εq〉 = 〈εp|(TrvA)′|εq〉.

〈εp|TrvA|εq〉 =
∑
ijk

Aijkj〈εp|εi〉〈εk|εq〉 =
∑
j

Apjqj .

〈εp|(TrvA)′|εq〉 =
∑
ijk

〈εi| ⊗ 〈ηj |(U†u ⊗ U†v )A(Uu ⊗ Uv)|εk〉

⊗ |ηj〉〈εp|Uu|εi〉〈εk|U†u|εq〉.

On account of (3.6) we have :

〈εp|(TrvA)′|εq〉 =∑
ijk

∑
rsmn

Arsmn〈εi| ⊗ 〈ηj |(U†u ⊗ U†v )|εr〉 ⊗ |ηs〉

〈εm| ⊗ 〈ηn|(Uu ⊗ Uv)|εk〉 ⊗ |ηj〉〈εp|Uu|εi〉〈εk|U†u|εq〉

=
∑
ijk

∑
rsmn

Arsmn(U†u)ir(U†v )js(Uu)mk(Uv)nj(Uu)pi(U
†
u)kq

=
∑
rsmn

Arsmn[
∑
i

(Uu)pi(U
†
u)ir][

∑
j

(Uv)nj(U
†
v )js][

∑
k

(Uu)mk(U†u)kq]

=
∑
rsmn

Arsmnδprδnsδmq =
∑
s

Apsqs = 〈εp|TrvA|εq〉.

Since the operators TrvA and (TrvA)′ have the same matrix elements
with respect to the basis {|εi〉}, they coincide. Obviously, the proof can
be repeated for TruA.

Theorem 12. If Au and Av are linear operators on Hu and Hv, and
Aw = Au ⊗Av, then : TruAw = (TrAu)Av and TrvAw = (TrAv)Au.
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Proof. Let {|εi〉} and {|ηj〉} be orthonormal bases of Hu and Hv.

Au =
∑
ik

〈εi|Au|εk〉|εi〉〈εk|

Av =
∑
jl

〈ηj |Av|ηl〉|ηj〉〈ηl|

Aw = Au ⊗Av =
∑
ijkl

〈εi|Au|εk〉〈ηj |Av|ηl〉|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|

TruAw =
∑
ijl

〈εi|Au|εi〉〈ηj |Av|ηl〉|ηj〉〈ηl|

=
∑
jl

(
∑
i

〈εi|Au|εi〉)〈ηj |Av|ηl〉|ηj〉〈ηl| = (TrAu)Av.

T rvAw =
∑
ijk

〈εi|Au|εk〉〈ηj |Av|η〉|εi〉〈εk|

=
∑
ik

(
∑
j

〈ηj |Av|ηj〉)〈εi|Au|εk〉|εi〉〈εk|

= (TrAv)Au.

In particular, if Au and Av have trace 1, theorem 12 yields :

TruAw = Av and TrvAw = Au.

4. Density operators on the tensor product of two Hilbert
spaces and their partial traces.

In this Section, we deal with the basic relations between density
operators on the tensor product of two Hilbert spaces and the partial
traces of these operators. In particular, we point out the conditions in
which a density operator on a tensor-product-space is determined, or is
not determined, by its partial traces, i.e., under which conditions the
state of a composite system is determined, or is not determined, by the
states of its subsystems.

The concepts of state and of measurement will refer exclusively to
ensembles [12] and the name state will be used both for pure and mixed
states. We will assume as valid the following postulate :

If A is an observable of system U and A is the corresponding op-
erator on Hu, then A is also an observable of the compound system
W = {U, V } and the corresponding operator on Hw = Hu⊗Hv is A⊗Iv,
where Iv is the identity operator on Hv.
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Theorem 13. If a compound system W = {U, V } is in the state repre-
sented by the density operator ρw on Hw = Hu⊗Hv, then systems U
and V are in the states represented by ρu = Trvρw and ρv = Truρw.

Proof. We will prove that Tr[(A ⊗ Iv)ρw] = Tr(Aρu) for every linear
self-adjoint operator A on Hu, and that, as a consequence, ρu is a density
operator on Hu and represents the state of system U . The proof can be
repeated for system V .

Let {|εi〉 ⊗ |ηj〉} be an orthonormal basis of Hw, chosen so that
{|εi〉} is the eigenbasis of A in Hu. This choice keeps the generality of
the proof, because ρu is independent of the choice of the basis. Then,
we have :

ρw =
∑
ijkl

ρijkl|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|;

(A⊗ Iv)ρw =
∑
ijkl

ρijkl|Aεi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|

=
∑
ijkl

ρijklai|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|,

where ai is the eigenvalue of A which corresponds to |εi〉 ;

Tr[(A⊗ Iv)ρw] =
∑
ij

ρijijai.

ρu = Trvρw =
∑
ijk

ρijkj |εi〉〈εk|;

Aρu =
∑
ijk

ρijkjai|εi〉〈εk|;

Tr(Aρu) =
∑
ij

ρijijai = Tr[(A⊗ Iv)ρw]. (4.1)

Let us now prove that ρu is a density operator, i.e., Trρu = 1 and ρu is
positive definite.

Trρu =
∑
i

ρuii =
∑
ij

ρijij = Trρw = 1. (4.2)

Let {|αi〉} be the eigenbasis of ρu ; then ρu can be written as :
ρu =

∑
k λkPk, where Pk = |αk〉〈αk|. To every Pi there corresponds
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a projection operator Pi ⊗ Iv on Hw and an observable Pi of W [13].
The mean value of Pi is non-negative because Pi⊗Iv is positive definite.
Therefore, on account of (4.1) we have :

0 ≤ 〈Pi〉 = Tr[(Pi ⊗ Iv)ρw] = Tr(Piρu) = Tr(
∑
k

λkPiPk)

=
∑
k

λkTr(PiPk) = λi , for every i.
(4.3)

Equations (4.2) and (4.3) prove that ρu is a density operator.

Moreover, on account of (4.1) ρu is such that the mean value of any
observable A of U in this state equals the mean value of A for system
W in state ρw. Therefore, ρu represents the state of U .

On account of theorem 13, the state of a compound system always
determines uniquely the states of the constituent subsystems.

Theorem 14. If ρu and ρv are density operators on Hu and Hv, and
ρu = ρ2u (i.e., it represents a pure state), then ρw = ρu⊗ρv is the unique
density operator on Hw which has as partial traces ρu and ρv.

Proof. On account of theorem 12, ρw = ρu ⊗ ρv has as partial traces ρu
and ρv. We must prove the uniqueness of ρw.

Let ρw be any density operator on Hw, and let {pn} and {|ψn〉} be
its eigenvalues and eigenvectors. Then :

ρw =
∑
n

pn|ψn〉〈ψn|.

Let {|εi〉} and {|ηj〉} be two orthonormal bases of Hu and Hv, chosen so
that ρu = |ε1〉〈ε1|. Then :

|ψn〉 =
∑
ij

cnij |εi〉 ⊗ |ηj〉,

ρw =
∑
nijkl

pnc
n
ij(c

n
kl)
∗|εi〉 ⊗ |ηj〉〈εk| ⊗ 〈ηl|

=
∑
ijkl

(
∑
n

pnc
n
ij(c

n
kl)
∗)|εi〉〈εk| ⊗ |ηj〉〈ηl|.

(4.4)
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Therefore, it will be :

Trvρw =
∑
ik

(
∑
jn

pnc
n
ij(c

n
kj)
∗)|εi〉〈εk|. (4.5)

However, by hypothesis :

Trvρw = ρu = |ε1〉〈ε1|. (4.6)

By comparing expressions (4.5) and (4.6), we deduce that the internal
sum in (4.5) must equal 1 for i = k = 1 and 0 for any other pair {i, k}. By
considering the pairs {i, k} with k = i 6= 1, we obtain :

∑
jn pn|Cn

ij |2 = 0.
Since all coefficients are non-negative : cnij = 0, for every i 6= 1.

Therefore, all the coefficients cnij and cnkl which appear in (4.4) are
zero, except those in which the first index equals 1. By setting in (4.4)
i = k = 1 we obtain :

ρw =
∑
jl

(
∑
n

pnc
n
1j(c

n
1l)
∗)|ε1〉〈ε1| ⊗ |ηj〉〈ηl|

= |ε1〉〈ε1| ⊗
∑
jl

(
∑
n

pnc
n
1j(c

n
1l)
∗)|ηj〉〈ηl| = ρu ⊗ ρv.

Theorem 15. If ρu = ρ2u and ρv 6= ρ2v, then ρw 6= ρ2w.

Proof. On account of theorem 14, ρw = ρu ⊗ ρv. Therefore :

ρ2w = (ρu ⊗ ρv)(ρu ⊗ ρv) = ρ2u ⊗ ρ2v = ρu ⊗ ρ2v.

As a consequence of corollary of theorem 10 :

Trρ2w = (Trρu)(Trρ2v) = Trρ2v < 1 , hence ρw 6= ρ2w.

As a consequence of theorems 14 and 15, if ρw represents a pure
state the following alternatives are possible :

a) both ρu and ρv represent pure states, and ρw = ρu ⊗ ρv ;

b) both ρu and ρv represent mixed states.

In case b), ρw 6= ρu ⊗ ρv, as it can be proved by noting that :

Tr(ρu ⊗ ρv)2 = Tr(ρ2u ⊗ ρ2v) = Tr(ρ2u)Tr(ρ2v) < 1.
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Theorem 16. If ρu and ρv are density operators on Hu and Hv, and none
of them is a projector, then there exist infinite density operators on Hw

which have as partial traces ρu and ρv.

Proof. Let us consider the operator ρ̃w = ρu ⊗ ρv, which has as partial
traces ρu and ρv. Let {|εi〉} and {|ηj〉} be the eigenbases of ρu and ρv.
Then {|εi〉 ⊗ |ηj〉} is the eigenbasis of ρ̃w, and the representation of ρw
with respect to this basis is the diagonal matrix which has as elements :
ρ̃ijij = ρuiiρ

v
jj . Since neither ρu nor ρv is a projector, then each of them

has at least two non-zero eigenvalues. By properly ordering the bases
{|εi〉} and {|ηj〉}, the coefficients ρu11, ρu22, ρv11, ρv22 will be non-zero and
it will result :

ρ̃1111 = ρu11ρ
v
11 = ã

ρ̃1212 = ρu11ρ
v
22 = b̃

ρ̃2121 = ρu22ρ
v
11 = c̃

ρ̃2222 = ρu22ρ
v
22 = d̃

where ã, b̃, c̃, d̃ belong to the real open interval (0, 1).

By properly modifying the coefficients ã, b̃, c̃, d̃ and leaving the
others unchanged it is possible to obtain infinite different density oper-
ators ρw on Hw which have as partial traces ρu and ρv and commute
with ρu⊗ρv. In fact, let us consider the diagonal matrix representation,
[ρw]d, of a density operator ρw on Hw, and let us suppose that it contains
elements ρijij = ρ̃ijij except :

ρ1111 = a , ρ1212 = b , ρ2121 = c , ρ2222 = d.

By considering the definitions of the partial traces,

Trvρw =
∑
i

(
∑
j

ρijij)|εi〉〈εi| and Truρw =
∑
j

(
∑
i

ρijij)|ηj〉〈ηj |,

it is easily verified that ρw has the same partial traces as ρ̃w if :

a+ b = ã+ b̃ = p

a+ c = ã+ c̃ = q

b+ d = b̃+ d̃ = r

c+ d = c̃+ d̃ = s

(4.7)
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The given coefficients p, q, r, s belong to the open interval (0, 1) and the
variables a, b, c, d must belong to the closed interval [0, 1]. System (4.7)
has infinite solutions {a, b, c, d} in that interval. In fact, the determinant
of the coefficients is zero and by substitution we obtain :

b = p− a , c = q − a , d = r − p+ a (4.8)

while the fourth equation is linearly dependent on the others and reduces
to the identity : q + r − p = s. The variable a remains undetermined.
Since a, b, c, d must belong to the interval [0, 1], the following conditions
must hold :

0 ≤ a ≤ 1 (I)

p− a ≥ 0→ a ≤ p (II)

p− a ≤ 1→ a ≥ p− 1 (III)

q − a ≥ 0→ a ≤ q (IV)

q − a ≤ 1→ a ≥ q − 1 (V)

r − p+ a ≥ 0→ a ≥ p− r (VI)

r − p+ a ≤ 1→ a ≤ 1 + p− r (VII)

Condition (I) implies (III) and (V), because p−1 and q−1 are negative.
Condition (II) implies (VII), because 1− r > 0 and thus 1 + p− r > p.
Therefore, the relevant conditions are (I), (II), (IV), (VI), which can be
rewritten as :

0 ≤ a ≤ 1 , p− r ≤ a ≤ p , p− r ≤ a ≤ q (4.9)

Since r > 0, the second condition allows values of a contained in an
interval of non-zero measure. The same holds for the third condition,
because : q − (p− r) = a+ c− a− b+ b+ d = c+ d = s > 0. Moreover,
the two intervals have the same first extreme and the second extreme
contained in (0, 1). Therefore, the intersection of the three intervals
defined by (4.9) is an interval I of non-zero measure. While a varies in I,
we obtain the diagonal matrix representations [ρw]d of infinite different
density operators ρw which have as partial traces ρu and ρv.

5. Correlations and separability

In this section, we prove that the necessary and sufficient condition
for the statistical independence (non-correlation) of two systems U and
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V at an instant t is ρw(t) = ρu(t)⊗ρv(t), and that two separable systems
initially uncorrelated (or correlated) remain uncorrelated (or correlated).

Uncorrelated, perfectly correlated observables. Two commuting ob-
servables A and B of a system U will be called uncorrelated, at an instant
t, if at that instant : the frequency of every pair of eigenvalues {ai, bj}
of A and B in simultaneous measurements equals the product of the
frequencies of the eigenvalues ai and bj in separated measurements of
A and B. In symbols : w(ai, bj) = w(ai)w(bj). On the contrary, A
and B will be called perfectly correlated if for every eigenvalue ai of A
there exists an eigenvalue bi of B such that : w(ai, bl) = w(ai) = w(bl),
w(ai, bj) = 0 if j 6= l.

Uncorrelated, or statistically independent, systems. Two systems U
and V will be called uncorrelated, or statistically independent, at an
instant t, if at that instant every observable A of U is uncorrelated with
every observable B of V .

Theorem 17. Two systems U and V are statistically independent at an
instant t if and only if, at that instant : for every pair of observables A
of U and B of V the mean value of the observable AB equals the product
of the mean values of A and B. In symbols : 〈AB〉 = 〈A〉〈B〉.
Proof. If U and V are statistically independent, then 〈AB〉 = 〈A〉〈B〉
for every pair {A,B}. In fact : 〈A〉 =

∑
i w(ai)ai, 〈B〉 =

∑
j w(bj)bj ,

〈AB〉 =
∑

ij w(ai, bj)aibj =
∑

ij w(ai)w(bj)aibj = 〈A〉〈B〉.
If 〈AB〉 = 〈A〉〈B〉 for every pair {A,B}, then U and V are statisti-

cally independent. Let us consider the following observables (question-
observables) :

Q(ai) : if a measurement of A yields the outcome ai, then it yields
the outcome 1 of Q(ai) ; otherwise it yields the outcome 0.

Q(bj) : if a measurement of B yields the outcome bj , then it yields
the outcome 1 of Q(bj) ; otherwise it yields the outcome 0.

The product Q(ai)Q(bj) has the measurement outcome 1 if the re-
sult of a simultaneous measurement of A and B is the pair {ai, bj}, and
0 in any other case. Therefore :

〈Q(ai)Q(bj)〉 = w(ai, bj) , 〈Q(ai)〉 = w(ai) , 〈Q(bj)〉 = w(bj),

and thus :

〈Q(ai)Q(bj)〉 = 〈Q(ai)〉〈Q(bj)〉 only if w(ai, bj) = w(ai)w(bj).
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Theorem 18. Two systems U and V are uncorrelated, at an instant t, if
and only if, at that instant, ρw = ρu ⊗ ρv.

Proof. If A and B are observables of U and V respectively, with cor-
responding operators A and B, then the operator which corresponds to
AB is (A⊗ Iv)(Iu ⊗B) = A⊗B. Therefore, U and V are uncorrelated,
at an instant of time t, if and only if for every pair of linear self-adjoint
operators A on Hu and B on Hv which correspond to observables :

Tr[(A⊗B)ρw] = Tr(Aρu)Tr(Bρv). (5.1)

It is easily proved that ρw = ρu ⊗ ρv implies (5.1). In fact :

Tr[(A⊗B)(ρu ⊗ ρv)] = Tr(Aρu ⊗Bρv) = Tr(Aρu)Tr(Bρv).

as a consequence of theorem 7 and corollary of theorem 10.

Let us now prove that (5.1) implies ρw = ρu⊗ρv [13]. If {|εi〉⊗|ηj〉}
is an orthonormal basis of Hw, then, for every density operator ρw on
Hw and pair {A,B} of linear self-adjoint operators on Hu and Hv :

ρw =
∑
ijkl

ρijkl|εi〉〈εk| ⊗ |ηj〉〈ηl|,

(A⊗B)ρw =
∑
ijkl

ρijkl|Aεi〉〈εk| ⊗ |Bηj〉〈ηl|,

and, on account of the linearity of the trace and of corollary of theorem
10 :

Tr[(A⊗B)ρw] =
∑
ijkl

ρijklTr(|Aεi〉〈εk|)Tr(|Bηj〉〈ηl|).

Let us denote by ρu and ρv the partial traces of ρw. Then :

ρu =
∑
ik

ρuik|εi〉〈εk| , Aρu =
∑
ik

ρuik|Aεi〉〈εk|,

T r(Aρu) =
∑
ik

ρuikTr(|Aεi〉〈εk|).

ρv =
∑
jl

ρvjl|ηj〉〈ηl| , Bρv =
∑
jl

ρvjl|Bηj〉〈ηl|,
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Tr(Bρv) =
∑
jl

ρvjlTr(|Bηj〉〈ηl|).

Condition (5.1) can be written as :∑
ijkl

ρijklTr(|Aεi〉〈εk|)Tr(|Bηj〉〈ηl|)

=
∑
ijkl

ρuikρ
v
jlTr(|Aεi〉〈εk|)Tr(|Bηj〉〈ηj |),

i.e. : ∑
ijkl

(ρijkl − ρuikρvjl)Tr(|Aεi〉〈εk|)Tr(|Bηj〉〈ηl|) = 0. (5.2)

By suitable choices of A and B it is possible to prove that (5.2) implies
ρijkl = ρuikρ

v
jl for every i, j, k, l, i.e., ρw = ρu⊗ρv. In fact, let us consider

the linear self-adjoint operators :

Amn = |εm〉〈εn|+ |εn〉〈εm| , Bpq = |ηp〉〈ηq|+ |ηq〉〈ηp|,

A′mn = i(|εm〉〈εn| − |εn〉〈εm|) , B′pq = i(|ηp〉〈ηq| − |ηq〉〈ηp|).

By substituting the pair (Amn, Bpq) in (5.2) we obtain :

0 =
∑
ijkl

(ρijkl − ρuikρvjl)Tr[(|εm〉〈εn|+ |εn〉〈εm|)|εi〉〈εk|]

Tr[(|ηp〉〈ηq|+ |ηq〉〈ηp|)|ηj〉〈ηl|]

=
∑
ijkl

(ρijkl − ρuikρvjl)Tr(〈εn|εi〉|εm〉〈εk|+ 〈εm|εi〉|εn〉〈εk|)

Tr(〈ηq|ηj〉|ηp〉〈ηl|+ |ηp|ηj〉|ηq〉〈ηl|)

=
∑
ijkl

(ρijkl − ρuikρvjl)(δinδkm + δimδkn)(δjqδlp + δjpδlq)

= ρnqmp − ρunmρvqp + ρnpmq − ρunmρvpq
+ ρmqnp − ρumnρ

v
qp + ρmpnq − ρumnρ

v
pq

= 2Re(ρmpnq) + 2Re(ρmqnp)− 4Re(ρumn)Re(ρvpq),

therefore :

Re(ρmpnq) +Re(ρmqnp) = 2Re(ρumn)Re(ρvpq). (5.3)
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Similarly, by substituting the pairs (A′mn, B
′
pq), (Amn, B

′
pq) and

(A′mn, Bpq) in (5.2) we obtain respectively :

Re(ρmpnq)−Re(ρmqnp) = −2Im(ρumn)Im(ρvpq), (5.4)

Im(ρmpnq)− Im(ρmqnp) = 2Re(ρumn)Im(ρvpq), (5.5)

Im(ρmpnq) + Im(ρmqnp) = 2Im(ρumn)Re(ρvpq). (5.6)

By summing (5.3) and (5.4), (5.5) and (5.6) we get :

Re(ρmpnq) = Re(ρumn)Re(ρvpq)− Im(ρumn)Im(ρvpq), (5.7)

Im(ρmpnq) = Re(ρumn)Im(ρvpq) + Im(ρumn)Re(ρvpq). (5.8)

On account of identities :

Re(uv) = Re(u)Re(v)− Im(u)Im(v),

Im(uv) = Re(u)Im(v) + Im(u)Re(v),

which hold for every pair of complex numbers (u, v), (5.7) and (5.8) yield
: ρmpnq = ρumnρ

v
pq, for every m,n, p, q.

Separable system. A system will be called separable if its time evo-
lution is uniquely determined by a hamiltonian which depends only on
the generalized coordinates and momenta of the system.

The time evolution equation ensures that the energy of a separa-
ble system is conserved. Moreover, the following property holds : if
W = {U, V } is a compound system and U and V are separable, then
W is separable and its hamiltonian is the sum of the hamiltonians of U
and V . In quantum mechanics, the operator which corresponds to this
hamiltonian is Hw = Hu ⊗ Iv + Iu ⊗Hv.

If U and V are separable, they are also called non-interacting. In
fact, their time evolutions are completely independent.

Theorem 19. Let U and V be non-interacting systems, and W = {U, V }.
If, at the instant t = 0, ρw(0) = ρu(0)⊗ ρv(0), then :

ρw(t) = ρu(t)⊗ ρv(t)

for every t.
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Proof. ρw(t) = Uw(t)ρw(0)U†w(t), where :

Uw(t) = e−iHwt = e−i(Hu⊗Iv+Iu⊗Hv)t = e−i(Hu⊗Iv)te−i(Iu⊗Hv)t.

On account of theorem 8 :

Uw(t) = e−iHut ⊗ e−iHvt = Uu(t)⊗ Uv(t).

Therefore :

ρw(t) = [Uu(t)⊗ Uv(t)][ρu(0)⊗ ρv(0)][Uu(t)⊗ Uv(t)]†.

On account of theorems 6 and 7 :

ρw(t) = [Uu(t)⊗ Uv(t)][ρu(0)⊗ ρv(0)][U†u(t)⊗ U†v (t)]

= [Uu(t)ρu(0)U†u(t)]⊗ [Uu(t)ρv(0)U†v (t)] = ρu(t)⊗ ρv(t).

Corollary of theorem 19. If U and V are non-interacting systems
and ρw(0) 6= ρu(0)⊗ ρv(0), then ρw(t) 6= ρu(t)⊗ ρv(t) for every t.

Proof. Let us suppose that ρw(t) = ρu(t) ⊗ ρv(t). On account of the
time-reversibility of the equation of motion, there would exist a time
evolution of W = {U, V } from the state ρw(t) = ρu(t) ⊗ ρv(t) to the
state ρw(0) 6= ρu(0)⊗ ρv(0), in contrast with theorem 19.

6. Wave-packet-reduction for a compound system, due to a
measurement on a subsystem

In this section we study the changes of the states of a compound
system W and of its subsystems U and V which are due to an ideal
measurement of an observable of U according to von Neumann’s wave-
packet-reduction rule. In particular, we prove that for any compound
system W the measurement of an observable of U does not change the
state of V .

Theorem 20. For any compound system W = U+V in any state ρw, the
wave-packet-reduction due to the ideal measurement of an observable of
U never changes the state of V . The post-measurement state of U can
be determined by applying the wave-packet-reduction rule to U only,
independently of the presence of V .

Proof. Let A be an observable of U and A be the linear self-adjoint
operator on Hu which corresponds to A. We will assume that A has a
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discrete spectrum, but can have degenerate eigenvalues ai. If {|aip〉} is
the orthonormal eigenbasis of A in Hu, where p is a degeneracy index
ranging from 1 to ri, and {|ηj〉} is any orthonormal basis of Hv, then
{|aip〉 ⊗ |ηj〉} is an orthonormal eigenbasis of A⊗ Iv. In fact :

(A⊗ Iv)|aip〉 ⊗ |ηj〉 = ai|aip〉 ⊗ |ηj〉.

Every eigenvalue ai of A ⊗ Iv is degenerate, and its degeneracy equals
the dimension of Hv times the degeneracy of ai as eigenvalue of A.

If ρw is any state of W , we have, with respect to the basis {|aip〉 ⊗
|ηj〉} :

ρw =
∑
ijkl

∑
p=1,ri
q=1,rk

αip,j,kq,l|aip〉〈akq| ⊗ |ηj〉〈ηl| (6.1)

ρv = Truρw =
∑
jl

(
∑
i

∑
p=1,ri

αip,j,ip,l)|ηj〉〈ηl| (6.2)

ρu = Trvρw =
∑
ik

∑
p=1,ri
q=1,rk

(
∑
j

αip,j,kq,j)|aip〉〈akq| (6.3)

According to von Neumann’s wave-packet-reduction rule [8], the state of
W after measurements is ρ̂w =

∑
i PiρwPi, where Pi is the projector on

the eigenspace which corresponds to eigenvalue ai. Therefore, we have :

Pm =
∑

s=1,rm

|ams〉〈ams| ⊗ Iv,

PmρwPm = (
∑

s=1,rm

|ams〉〈ams| ⊗ Iv)

(
∑
ijkl

∑
p=1,ri
q=1,rk

αip,j,kq,l|aip〉〈akq| ⊗ |ηj〉〈ηl|)(
∑

t=1,rt

|amt〉〈amt| ⊗ Iv)

=
∑
ijkl

∑
s=1,rm;p=1,ri
q=1,rk;t=1,rm

(αip,j,kq,l|ams〉〈ams|aip〉〈akq|amt〉〈amt|)⊗ (|ηj〉〈ηl|)

=
∑
jl

∑
p=1,rm
q=1,rm

αmp,j,mq,l|amp〉〈amq| ⊗ |ηj〉〈ηl|.

ρ̂w =
∑
i

PiρwPi =
∑
ijl

∑
p=1,ri
q=1,ri

αip,j,iq,l|aip〉〈aiq| ⊗ |ηj〉〈ηl|, (6.4)
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ρ̂v = Truρ̂w =
∑
jl

(
∑
i

∑
p=1,ri

αip,j,ip,l)|ηj〉〈ηl|. (6.5)

ρ̂u = Trvρ̂w =
∑
i

∑
p=1,ri
q=1,ri

(
∑
j

αip,j,iq,j)|aip〉〈aiq|. (6.6)

Equations (6.1) – (6.6) prove that the wave-packet-reduction of ρw due
to the measurement of A does not change ρv, but normally changes ρw
and ρu. We must still prove that ρ̂u can be determined also by applying
the wave-packet-reduction rule to ρu alone, i.e., by the expression:

ρ̂u =
∑
i

PuiρuPui,

where Pui is the projector on the subspace of Hu spanned by the eigen-
vectors of A which correspond to ai. By this method, we obtain :

PumρuPum = (
∑

s=1,rm

|ams〉〈ams|)(
∑
ik

∑
p=1,ri
q=1,rk

(
∑
j

αip,j,kq,j)|aip〉〈akq|)

(
∑

t=1,rm

|amt〉〈amt|)

=
∑
ik

∑
s=1,rm;p=1,ri
q=1,rk;t=1,rm

(
∑
j

αip,j,kq,j)|ams〉〈ams|aip〉〈akq|amt〉〈amt|

=
∑

p=1,rm
q=1,rm

(
∑
j

αmp,j,mq,j)|amp〉〈amq|.

Therefore :

ρ̂u =
∑
i

PuiρuPui =
∑
i

∑
p=1,ri
q=1,ri

(
∑
j

αip,j,iq,j)|aip〉〈aiq|,

in agreement with (6.6).

Restriction of theorem 20 to the case of no degeneracy of the eigenvalues
of A.

If A has no degenerate eigenvalues, the proof of theorem 20 is for-
mally simpler, as it can be easily checked. Obviously, the results of the
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wave-packet-reduction can be obtained by reducing (6.1) – (6.6) to the
particular case of no degeneracy, and are as follows.

ρw =
∑
ijkl

αijkl|ai〉〈ak| ⊗ |ηj〉〈ηl|, (6.7)

ρv =
∑
jl

(
∑
i

αijil)|ηj〉〈ηl|, (6.8)

ρu =
∑
ik

(
∑
j

αijkj)|ai〉〈ak|, (6.9)

ρ̂w =
∑
ijl

αijil|ai〉〈ai| ⊗ |ηj〉〈ηl|, (6.10)

ρ̂v =
∑
jl

(
∑
i

αijil)|ηj〉〈ηl|, (6.11)

ρ̂u =
∑
i

(
∑
j

αijij)|ai〉〈ai|. (6.12)

7. Conclusions

We have presented a rigorous treatment of the main general prop-
erties of the tensor product of two Hilbert spaces and of linear operators
thereon. Then, we have simplified von Neumann’s treatment of density
operators on such a space, and we have complemented it with some addi-
tional theorems. In particular, we have proved the following statements.
The condition ρw = ρu⊗ ρv is necessary and sufficient for the statistical
independence of U and V ; the time evolution of non-interacting systems
cannot create or destroy correlations ; the wave-packet-reduction due to
an ideal measurement of an observable of system U does not change the
state of system V .

The authors are grateful to Prof. S. Bergia and Dr. S. Oggioni for
useful discussions on the topics presented in this paper.
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