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Maxwell’s theory extended (Part 2)

Theoretical and pragmatic reasons
for questioning the completeness of Maxwell’s theory

T. W. Barrett

Boeing Aerospace & Electronics

P.O. Box 3999, MS 82-36 Seattle, WA 98124-2499, U.S.A.

ABSTRACT. In this Part 2 of a two part examination of Maxwell’s
theory, the theoretical and pragmatic reasons for questioning the
completeness of Maxwell’s theory are examined. Part 1 (Barrett,
1990) addresses empirical reasons for questioning the theory’s com-
pleteness, namely, effects demonstrating the physical significance of
the Aµ potentials.

The Wu-Yang theory attempted the completion of Maxwell’s theory
of electromagnetism by the introduction of a nonintegrable (path
dependent) phase factor (NIP) as a physically meaningful quan-
tity. The introduction of this construct permitted the demonstra-
tion of Aµ potential gauge invariance and gave an explanation of
the Aharonov-Bohm effect. The NIP is implied by the magnetic
monopole and magnetic charge constructs.

The recently formulated Harmuth Ansatz also addresses the incom-
pleteness of the Maxwell theory: an amended version of Maxwell’s
equations can be used to calculate e.m. signal velocities provided
that (a) a magnetic current density, and (b) a magnetic monopole,
are assumed.

The Aµ potentials are local operators mapping global spatiotempo-
ral conditions onto the local e.m. fields. The effect of this opera-
tion is measurable as a phase change, if there is a second compar-
ative mapping of differentially conditioned fields in a many-to-one
(global-to-local summation). With coherent fields the possibility of
measurement (detection) after the second mapping is maximized.
The question of whether Aµ potentials can be propagated to long
range can be answered affirmatively if dual field coherence is main-
tained.

∗ Originally presented at the Weekly Colloquium of the Department of Electri-
cal Engineering, Catholic University of America, Washington D.C., 3rd Febru-
ary 1988.
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The Maxwell theory is incomplete due to the neglect of (1) a defini-
tion of the Aµ potentials as gauge-invariant, topology-geometry- and
global-boundary-condition-dependent operators on the local fields of
intensity ; and (2) a definition of the constitutive relations, not be-
tween medium-independent fields and matter, but between medium-
independent fields and the topology of the vacuum. (1) and (2) are
related. Addressing these issues extends the Maxwell theory to cover
physical phenomena which cannot be presently explained by the the-
ory.

RESUME. Dans cette deuxième partie de l’examen de la théorie
de Maxwell, on étudie les raisons théoriques et pratiques de remet-
tre en cause la complétude de la théorie de Maxwell. La partie 1
(Barrett, 1990) aborde les raisons empiriques, c’est-à-dire les effets
démontrant le sens physique des potentiels Aµ.

La théorie de Wu-Yang tentait de rendre la théorie de Maxwell
complète en introduisant un facteur de phase non intégrable (NIP) –
dépendant du chemin – comme quantité physiquement significative.
Une telle construction permettait la démonstration de l’invariance de
jauge du potentiel Aµ et donnait une explication de l’effet Aharonov-
Bohm. La NIP est impliquée par les constructions du monopôle
magnétique et de la charge magnétique.

L’hypothèse récemment formulée par Harmuth s’adresses’attaque
aussi au caractère incomplet de la théorie de Maxwell: on peut
utiliser une version amendée des équations de Maxwell pour calculer
les vitesses d’un signal e.m. à condition de supposer (a) une densité
de courant magnétique, et (b) un monopôle magnétique.

Les potentiels Aµ sont des opérateurs locaux appliquant des condi-
tions spatiotemporelles globales sur les champs é.m. locaux. L’effet
de cette opération est mesurable comme changement de phase, s’il y a
une deuxième application des champs avec des conditions différentes
dans une sommation (glabal à local). Avec des champs cohérents on
maximise la possibilité de mesure (détection) après la deuxième ap-
plication. On peut répondre affirmativement à la question de savoir
si les potentiels Aµ peuvent se propager à grande distance, si la
cohérence du champ double est maintenue.

La théorie de Maxwell est incomplète parce qu’elle ne fournit pas (1)
une définition des potentiels Aµ comme opérateurs sur les champs
locaux d’intensité qui soient invariants de jauge et dépendent de la
topologie et des conditions aux limites globales, ; (2) ni une définition
des relations consitutives, non entre les champs indépendants du mi-
lieu et la matière, mais entre les champs indépendants du milieu et
la topologie du vide. (1) et (2) sont liés. Aborder ces questions étend
la théorie de Maxwell en lui permettant de couvrir des phénomènes
physiques qui ne peuvent pas être expliquées pour l’instant par cette
théorie.
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1. Introduction

In this Part 2, both the theoretical and pragmatic reasons for ques-
tioning the completeness of Maxwell’s theory are examined. It is found
that Maxwell’s theory is only exact for the steady state signal and
medium condition, and for local effects. The theory, unamended, is
misapplied to transient phenomena and phenomena involving energy ex-
change between local centers through a global medium, i.e., the propa-
gation of waves and wave packets, whether the initial and final states be
at different or the same locations.

2. Theoretical reasons for questioning the completeness of
Maxwell’s theory

Wu and Yang (1975 ; also : Yang, 1970, 1974 ; Yang & Mills, 1954)
interpreted the electromagnetic field in terms of a nonintegrable (i.e.,
path dependent) phase factor by an examination of Dirac’s monopole
field (Dirac, 1931, 1948). According to this interpretation, the Aharonov-
Bohm effect is due to the existence of this phase factor whose origin is
due to the topology of connections on a fiber bundle.

The phase-factor,

e
ie
hc

∫
C
Aµdx

µ

(2.1)

according to this view, is physically meaningful, but not the phase,

ie

hc

∫
C

Aµdx
µ, (2.2)
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which is ambiguous because different phases in a region may describe
the same physical situation. The phase factor, on the other hand, can
distinguish different physical situations having the same field strength
but different action.

Figure 2.1. (i) The overlap area (Z in (ii) and (iii)) showing a mapping
from location a to b. The phase factor ΦQaPa is associated with the e.m. field
which arrived at Z through path 1 in (ii) and (iii) and ΦQbPb with the e.m.
field which arrived at Z through path 2 in (ii) and (iii) ; (ii) In paths 1 and
2 the e.m. fields are conditioned by an A field between P and Q oriented in
the direction indicated by the arrows. Note the reversal in direction of the A
field in paths 1 and 2, hence S(P ) 6= S(Q) and ΦQaPa 6= ΦQbPb ; (iii) Here
the conditioning A fields are oriented in the same direction, hence there is
no noticeable gauge transformation and no difference noticeable in the phase
factors S(P ) = S(Q) and ΦQaPa = ΦQbPb . After Wu & Yang, 1975.

The phase factor for any path from, say, P to Q is :

ΦQP = e
ie
hc

∫ Q
P
Aµdx

µ

. (2.3)
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For a static magnetic monopole at an origin defined by the spherical
coordinate, r = 0, θ with azimuthal angle ϕ, and considering the region
R of all space-time other than this origin, the gauge transformation in
the overlap of two regions, a and b, is :

Sab = e−iα = e
2ige
hc ϕ , 0 ≤ ϕ ≤ 2π , (2.4)

where g is the monopole strength.

This is an allowed gauge transformation if, and only if :

2ge/hc = an integer = D (2.5)

which is Dirac’s quantization. Therefore

Sab = eiDφ. (2.6)

In the overlapping region there are two possible phase factors ΦQaPa and
ΦQbPb and

ΦQaPaS(P ) = S(Q)ΦQbPb , (2.7)

which states that (Aµ)a and (Aµ)b are related by a gauge transformation
factor.

The general implication is that for a gauge with any field defined on
it, the total magnetic flux through a sphere around the origin r = 0 is
independent of the gauge field and only depends on the gauge (phase) :∫ ∫

fµνdx
µdxν = (−ihc/e)

∫
∂/∂xµ(lnSab)dx

µ , (2.8)

where the integral is taken around any loop around the origin r = 0 in
the overlap between the Ra and Rb, as, for example, in an equation for
a sphere r = 1. As Sab is single valued, this integral must be equal to
an integral multiple of a constant (in this case 2πi).

Another implication is that if the Aµ potentials originating from, or
passing through, two or more different local positions are gauge invari-
ant when compared at another, again different, local position, then the
referent providing the basis or metric for the comparison of the phase
differences at this local position is a unit magnetic monopole. The unit
monopole, defined at r = 0, is unique in not having any internal de-
grees of freedom (Weinberg, 1980). Furthermore, both the monopole
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and charges are topologically conserved, but whereas electric charge is
topologically conserved in U(1) symmetry, magnetic charge is only con-
served in SU(2) symmetry.

Usually, there is no need to invoke the monopole concept as the Aµ
field is, as we have emphasized, treated as a mathematical, not physi-
cal, construct in contemporary classical physics. However, in quantum
physics the wave function satisfies a partial differential equation cou-
pled to boundary conditions. The boundary conditions in the doubly-
connected region outside of the solenoid volume in an Aharonov-Bohm
experiment results in the single valuedness of the wavefunction, which
is the reason for quantization. Usually, e.g., in textbooks explaining the
theory of electromagnetism as noted above, Stoke’s theorem is written :∫

C

Adx =

∫ ∫
H · ds =

∫
S

(∇×A) · n da, (2.9)

and no account is taken of spacetime overlap of regions with fields derived
from different sources having undergone different spatiotemporal condi-
tioning, and no boundary conditions are taken into account. Therefore,
no quantization is required.

There is not a lack of competing opinions on what the magnetic
monopole implied by gauge-invariant Aµ potentials is (Bogomol’nyi,
1976 ; Montonen & Olive, 1977 ; Goddard & Olive, 1978 ; Atiyah &
Hitchin, 1980 ; Craigie, 1986). The Dirac magnetic monopole is an
anomalously-shaped (string) magnetic dipole at a singularity (Dirac,
1931, 1948). The Schwinger magnetic monopole is essentially a dou-
ble singularity line (Schwinger, 1966, 1969). However, gauge-invariant
Aµ potentials are the local manifestation of global constructs. This pre-
cludes the existence of isolated magnetic monopoles, but permits them
to exist globally in any situation with the requisite energy conditioning.
Wu and Yang (1975a,b, 1976), t’Hooft (1971, 1974), Polyakov (1974)
and Prasad & Sommerfeld (1975) have described such situations.

Related to mechanisms of monopole generation is the Higgs field, Φ,
approach to the vacuum state (Higgs, 1964a,b, 1966). The field, in some
scenarios, breaks a higher-order symmetry field, e.g., SU(2), G, into H
of U(1) form. The H field is then proportional to the electric charge.

There are at least five types of monopoles presently under consider-
ation : (1) the Dirac monopole, a point singularity with a string source.
The Aµ field is defined everywhere except on a line joining the origin
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to infinity, which is occupied by an infinitely long solenoid, so that
B = ∇ · A. Dirac’s approach assumes that a particle has either elec-
tric or magnetic charge but not both. (2) Schwinger’s approach, on the
other hand, permits the consideration of particles with both electric and
magnetic charge, i.e., dyons (Schwinger, 1966), 1969). (3) The ’t Hooft-
Polyakov monopole, which has a smooth internal structure but without
the need for an external source. There is, however, the requirement for
a Higgs field (Higgs, 1964a,b, 1966). The ’t Hooft-Polyakov model can
be put in the Dirac form by a gauge transformation (Goddard & Olive,
1978). (4) The Bogomol’nyi-Prasad-Sommerfeld monopole in which the
Higgs field is massless, long range and with a force which is always attrac-
tive. (5) The Wu-Yang monopole requires no Higgs field, has no internal
structure and is located at the origin. It requires multiply-connected
fields. Brandt & Primack (1977) have shown that the singular string of
the Dirac monopole can be moved arbitrarily by a gauge transformation.
Therefore the Dirac and the Wu-Yang monopoles can be made compat-
ible. The Higgs field formalism can also be related to that of Wu-Yang
in which only the exact symmetry group appears.

Goddard & Olive (1978) demonstrated that there are two conserved
currents for a monopole solution : the usual Noether current whose
conservation depends on the equations of motion ; and a topological
current whose conservation is independent of the equations of motion.

Yang (1983) showed that if spacetime is divided into two overlap-
ping regions in both of which there is a vector potential A with gauge
transformation between them in the overlap regions, then the proper
definition of Stoke’s theorem when the path integral goes from region,
1, to another, 2, is (Wu & Yang, 1976) :∫ C

A

Adx =

∫ B

A

A1dx+

∫ C

B

A2dx+ β(B) (2.10)

The β function is defined by the observation that in the region of over-
lap the difference of the vector potentials A1 − A2 is curl-less as both
potentials give the same local electromagnetic field.

There are also general implications. Gates (1986) takes the position
that all the fundamental forces in nature arise as an expression of gauge
invariance. If a phase angle θ(x, t) = −(i/2)ln[ψ/ψ′] is defined for quan-
tum mechanical systems, then although the difference θ(x1 , t)−θ(x2 , t)
is a gauge-dependent quantity, the expression :

θ(x1 , t)− θ(x2 , t) + (e0/hc)

∫ x2

x1

dsA(s, t) (2.11)
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is gauge invariant, (according to the Wu-Yang interpretation, the last
expression should be exp[(e0/hc)

∫ x2

x1
dsA(s, t)]). Therefore, any mea-

surable quantity which is a function of such a difference in phase angles
must also depend on the vector potentials shown. Setting the expression
(2.11) to zero gives a general description of both the Aharonov-Bohm
and Josephson effects. Substituting exp[(e0/hc)

∫ x2

C x1
A · dl] for the final

term gives a description of the Berry phase.

The phenomena described above are a sampling of a range which
includes probably many yet to be discovered, or provided with the hon-
orific title of an “effect”. A unifying theme of all of them is that the
physical effect of the Aµ potentials is only describable (a) when two or
more fields undergo different spatiotemporal conditioning and there is
also a possibility of cross-comparison (many-to-one mapping) or, equiv-
alently, (b) in the situation of a field trajectory with a beginning (giving
the field before the spatiotemporal conditioning) and an end (giving the
field after the conditioning) and again a possibility of cross comparison.
Setting boundary conditions to an e.m. field gives gauge invariance but
without necessarily providing the conditions for detection of the gauge
invariance. The gauge-invariant Aµ potential field operates on an e.m.
field state to an extent determined by global symmetries defined by spa-
tiotemporal conditions, but the effect of this operation or conditioning
is only detectable under the global conditions (a) and (b). With no
interfield mapping or comparison, as in the case of the solitary electro-
magnetic field, the Aµ fields remain ambiguous, but this situation occurs
only if no boundary conditions are defined –an ambiguous situation even
for the electric and magnetic fields. Therefore the Aµ potentials in all
useful situations have a meaningful physical existence related to bound-
ary condition choice– even when no situation exists for their comparative
detection. What is different between the Aµ field and the electric and
magnetic fields is that the ontology of the Aµ potentials is related to the
spatiotemporal boundary conditions in a way in which the electric and
magnetic fields are not. Due to this spatiotemporal (boundary condi-
tion) dependence, the operation of the Aµ potentials is a one-to-many,
local to global mapping of individual e.m. fields, the nature of which is
examined in section 3.2. The detection of such mappings is only within
the context of a second comparative projection, but this time global-to-
local.

This section addressed a theoretical reason for questioning the com-
pleteness of U(1) symmetry, or Abelian, Maxwell Theory in the presence
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of two local fields separated globally. In the next section we examine a
pragmatic reason : propagating velocities of e.m. fields in lossy media
cannot be calculated in U(1) Maxwell Theory. In this next section we
show that the theoretical justification for physically defined Aµ poten-
tials lies in the application of Yang-Mills theory, not to high energy fields,
where the theory found its inspiration, but to low energy fields crafted
by boundary conditions. This is a new application for Yang-Mills theory.

3. Pragmatic reasons for questioning the completeness of
Maxwell’s theory

3.1 Harmuth’s Ansatz

According to Harmuth a satisfactory concept permitting the predic-
tion of the propagation velocity of e.m. signals does not exist within the
framework of Maxwell’s theory (Harmuth, 1986a-c ; see also : Harmuth
et al, 1987 ; Harmuth, 1987a,b ; Hussain, 1987 ; Wait, 1987 ; Kuester,
1987 ; Djordjvic & Sarkar, 1987 ; Hussain, 1987, Gray & Boules, 1987).
The calculated group velocity fails for two reasons :(i) it is almost al-
ways larger than the speed of light for r.f. transmission through the at-
mosphere ; (ii) its derivation implies a transmission rate of information
equal to zero. Maxwell’s equations also do not permit the calculation
of the propagation velocity of signals with bandwidth propagating in a
lossy medium and all the published solutions for propagation velocities
assume sinusoidal (linear) signals.

In order to remedy this state of affairs, Harmuth proposed an
amendment of Maxwell’s equations, which I shall call : the Harmuth
Ansatz (Barrett, 1988 ; 1989a,b). The proposed amended equations
are : Coulomb’s Law (Equ.(1)) :

∇ ·D = ρe (3.1.1)

Maxwell’s generalization of Ampère’s Law (Equ.(2)) :

∇×H =
4π

c
Je +

1

c

∂D

∂t
(3.1.2)

Presence of free magnetic poles postulate :

∇ ·B = ρm (3.1.3)
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Faraday’s Law with magnetic monopole :

∇× E +
1

c

∂B

∂t
+

4π

c
Jm = 0 (3.1.4)

Constitutive relations :

D = εE (1.5(Part 1) and 3.1.5)

B = µH (1.7(Part 1) and 3.1.6)

Je = σE (electric Ohm’s law) (1.6(Part 1) and 3.1.7)

Jm = sE (magnetic Ohm’s law) (3.1.8)

where (4π/c)Je is electric current density ; (4π/c)Jm is magnetic current
density ; ρe is electric charge density ; ρm is magnetic charge density ;
σ is electric conductivity and s is magnetic conductivity.

Setting ρe = ρm = ∇ · D = ∇ · B = 0, for free space propagation
gives :

∇×H = σE + ε
∂E

∂t
(3.1.9)

∇× E + µ
∂H

∂t
+ sH = 0 (3.1.10)

ε∇ ·B = µ∇ ·B = 0 (3.1.11)

and the following equations of motion :

∂E

∂y
+ µ

∂H

∂t
+ sH = 0, (3.1.12)

∂H

∂y
+ ε

∂E

∂t
+ σE = 0. (3.1.13)

Differentiating equ.s (3.1.12) and (3.1.13) with respect to y and t permits
the elimination of the magnetic field resulting in (Harmuth, 1986a, Equ.
(21)) :

∂2E

∂y2
− µε∂

2E

∂t2
− (µσ + εs)

∂E

∂t
− sσE = 0, (3.1.14)
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which is a two-dimensional nonlinear Klein-Gordon equation (without
boundary conditions) in the sine-Gordon form :

∂2E

∂y2
− 1

c2
∂2E

∂t2
− α sin(βE(y, t)) = 0 ; (3.1.15)

α sin(βE(y, t))n− [αβ
∂E

∂t
−O(E)] ; (3.1.16)

α = exp(+µσ) ; (3.1.17)

β = exp(+εσ), (3.1.18)

where (∂2E/∂y2−µε∂2E/∂t2) is the nonlinear term and (α sin(βE(y, t)))
is the dispersion term. This match of nonlinearity and dispersion permits
soliton solutions and the field described by Equ. (3.1.15) has a “mass”,
m = v(bαβ).

Equ. (3.1.15) may be derived from the Lagrangian density :

L =
1

2

[
(
∂E

∂y
)2 − (

∂E

∂t
)2
]
− V (E), (3.1.19)

where
V (E) = (α/β)(1− cosβE). (3.1.20)

The wave equation for E has a solution which can be written in the
form :

E(y, t) = EE(y, t) = E0[w(y, t) + F (y)], (3.1.21)

where F (y) indicates that an electric step function is the excitation.

A wave equation for F (y) is :

d2F

dy2
− sσF = 0 (3.1.22)

with solution :

F (y) = A00e
−yL +A01e

y/L , L = (sσ)−1/2 (3.1.23)

Boundary conditions require A01 = 0 and A00 = 1, therefore :

F (y) = e−y/L (3.1.24)
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Insertion of Equ. (3.1.21) into Equ. (3.1.14) gives (Harmuth, 1986a,
Equ. (40)) :

∂2w

∂y2
− µε∂

2w

∂t2
− (µσ + εs)

∂w

∂t
− sσw = 0, (3.1.25)

which we can again put into sine-Gordon form :

∂2w

∂y2
− 1

c2
∂2w

∂t2
− α sin(βw(y, t)) = 0 ; (3.1.26)

Harmuth (1986a) developed a solution of (3.1.21) by seeking a general
solution of w(y, t) using a separation of variables method (and setting s
to zero after a solution is found). This solution works well, but we can
now indicate another solution. The solutions to the sine-Gordon Equ.
(3.1.15) is the hyperbolic tangent :

E(y) = 8

√
αβ

β2
tan−1

[
e

[y−y0−ct]√
1−c2

]
(3.1.27A)

and

E(y) = −8

√
αβ

β2
tan−1

[
e

[y−y0−ct]√
1−c2

]
(3.1.27B)

c =

√
1

µε
.

It is also well-known that the sine-Gordon and the Thirring (Thirring,
1958, models are equivalent (Goddard & Olive, 1978) and that both
admit two currents : one a Noether current, and the other a topological.

The following remarks may now be made : the introduction of
F (y) = e−y/L, according to the Harmuth Ansatz (1986a, p. 253) pro-
vides integrability. It is well known that soliton solutions require com-
plete integrability. According to the present view, F (y) also provides
the problem with boundary conditions, the necessary condition for Aµ
potential invariance. Equ. (3.1.24) is, in fact, a phase factor (Equ.s
(2.1), (2.3), (2.4) and (2.6)). Furthermore, Equ. (3.1.21) is of the form
of Equ. (2.11). Therefore the Harmuth Ansatz amounts to a definition
of boundary conditions, i.e., obtains the condition of separate electro-
magnetic field comparison by overlapping fields, which permits complete
integrability and soliton solutions of Maxwell’s equations. Furthermore,
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it was already seen, above, that with boundary conditions defined, the
Aµ potentials are gauge invariant implying a magnetic monopole and
charge. It is also known that the magnetic monopole and charge con-
structs only exist under certain field symmetries. In the next section
methods are presented for conditioning fields into those higher-order
symmetries.

3.2 Conditioning the electromagnetic field to altered symme-
try : Stokes’ interferometers and Lie algebras

The theory of Lie algebras offers a convenient summary of the inter-
action of the Aµ potential operators with the E fields (Eisenhart, 1933 ;
Hodge, 1959). The relevant parts of the theory are as follows. A mani-
fold, L, is a set of elements in one-to-one correspondence with the points
of a vector manifold M. M is a set of vectors called : points of M. A
Lie group, L, is a group which is also a manifold on which the group
operations are continuous. There exists an invertible function, T , which
maps each point x inM to a group element X = T (x) in L. The group
M is a global parametrization of the group L.

If ∂ = ∂x is the derivative with respect to a point on a manifoldM,
then the Lie bracket is :

[a, b] = a · ∂b− b · ∂a = a · ∇b− b · ∇a, (3.2.1)

where a and b are arbitrary vector-valued functions. Furthermore, with
Λ signifying the outer product (Hestenes, 1987 ; Hestenes & Sobczyk,
1984), then :

[a, b] = ∂ · (aΛb)− b∂ · a+ a∂ · b, (3.2.2)

showing that the Lie bracket preserves tangency.

The fundamental theorem of Lie group theory is : the Lie bracket
[a, b] of differential fields on any manifold is again a vector field. A set
of vector fields, a, b, c... on any manifold form a Lie algebra if it is closed
under the Lie bracket and all fields satisfy the Jacobi identity :

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0. (3.2.3)

If c = 0, then

[a, b] = 0. (3.2.4)
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The Aµ potentials effect mappings, T1, from the global field to the E
local fields, considered as group elements in L ; and there must be a sec-
ond mapping, T2, of those separately conditioned E fields considered now
global, onto a single local field for the T1 mappings to be detected (mea-
surable). That is, in the Aharonov-Bohm situation (and substituting
fields for electrons), if the E fields traversing the two paths are E1 and
E2, and those fields before and after interaction with the Aµ field are E1i

and E1f and E2i and E2f respectively, then E1f +E2f = T (E1i +E2i),
where x1 = E1i and x2 = E2i are points in M, and X = (E1f + E2f )
is considered a group point in L and T = T1 + T2,T1 = T −11 . In the
same situation, although E1f − E2f = exp(ih/e)

∫
C
Aµdx

µ = Φ, (i.e.,
the phase factor detected at Z in a separate second mapping, T2, in
Figure 1 can be ascribed to a nonintegrable (path dependent) phase fac-
tor,) the influence of the first, T1, mapping or conditioning of E1i +E2i

by the Aµ operators along the separate path trajectories preceded that
second mapping, T2, at Z. Therefore the Aµ potential field operators
produce a mapping of the global spatiotemporal conditions onto local
fields, which, in the case we are considering, are the separate E1i + E2i

fields. Thus, according to this conception, the Aµ potentials are local
operator fields mapping the local-to-global gauge (T1 :M→ L), whose
effects are detectable at a later spatiotemporal position only at an over-
lapping (X group) point, i.e., by a second mapping (T2 : L → M),
permitting comparisons of the differently conditioned fields in a many-
to-one (global-to-local) summation.

If a = E1i and b = E2i where E1i and E2i are local field intensities
and c = Aµ, i.e., Aµ is a local field mapping (T1 : M → L) according
to gauge conditions specified by boundary conditions, then the field in-
teractions of a, b and c, or E1i, E2i and Aµ are described by the Jacobi
identity (Equ. 3.2.3). If c = Aµ = 0, then [a, b] = 0. With the Lorentz
gauge (or boundary conditions), the E1i, E1f , E2i and E2f field relations
are described by SU(2) symmetry. With other boundary conditions and
no separate Aµ conditioning, the E1i and E2i fields (there are no E1f and
E2f fields in this situation) are described by U(1) symmetry relations.

The T1, T2 mappings can be described by classical control theory
analysis and the Aµ potential conditioning can be given a physical waveg-
uide interferometer representation (cf. Han & Kim, 1988). The waveg-
uide system considered here is completely general in that the output can
be phase, frequency and amplitude modulated. It is an adiabatic sys-
tem (lossless) and only three of the lines are waveguides –the input, the
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periodically delayed line, and the output. Other lines shown are energy-
expending, phase-modulating lines. The basic design is shown in Figure
3.2.1. In this Figure, the input is E = E exp(iωt). The output is :

Figure 3.2.1. Waveguide system paradigm for polarization modulated
(∂Φ/∂t) wave emission. This is a completely adiabatic system in which oscil-
lating energy enters from the left and exits from the right. On entering from
the left, energy is divided into two parts equally. One part, of amplitude E/2,
is used in providing phase modulation, ∂Φ/∂t –this energy is spent (absorbed)
by the system in achieving the phase modulation ; the other part, of ampli-
tude E/2, is divided into two parts equally, so that two oscillating waveforms
of amplitude E/4 are formed for later superposition at the output. Due to the
phase modulation of one of them with respect to the other, 0 < ϕ < 360◦, the
output is of continuously varying polarization. The choice of wave division
into two parts equally is arbitrary (From Barrett, 1989c).

Eout(n=1) = (E/4) exp(iωt)+(E/4) exp{(i[ω+exp{(iϕt)}−1]t}, (3.2.5)

where ϕ = F (E/2) and ∂ϕ/∂t = Ḟ (E/2).

The waveguide consists of two arms –the upper (E/4) and the second
(E/4) with which the upper is combined. The lower, or third arm, merely
expends energy in achieving the phase modulation of the second arm with
respect to the first. This can be achieved by merely making the length
of the second arm change in a sinusoidal fashion (i.e. producing a ∂ϕ/∂t
with respect to the first arm), or it can be achieved electro-optically.
Whichever way is used, one half the total energy of the system (E/2)
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is spent on achieving the phase modulation in the particular example

shown in Figure 3.2.1. The entropy change from input to output of the

waveguide is compensated by energy expenditure in achieving the phase

modulation to which the entropy change is due.

One can nest phase modulations. The next order nesting is shown

in Figure 3.2.2, and other, higher order nestings of order n, for the cases

∂ϕn/∂tn, n = 2, 3... follow the same procedure. The input is again

E = E exp(iωt). The output is :

Figure 3.2.2. Waveguide system paradigm for polarization modulated
(∂ϕ2/∂t2) wave emission. This is a completely adiabatic system in which
oscillating energy enters from the left and exits from the right. On enter-
ing from the left, the energy is divided into two parts equally. One part, of
amplitude E/2, is used in providing phase modulation, ∂ϕ2/∂t2 –this energy
is spent (absorbed) by the system in obtaining the phase modulation ; the
other part, of amplitude E/2, is divided into two parts equally, so that two
oscillating waveforms of amplitude E/4 are formed for later superposition at
the output. Unlike the system shown in Figure 3.2.1, the energy expended
on phase modulating one of these waves is divided into two parts equally, of
amplitude E/4, one of which is phase modulated, ∂ϕ/∂t, with respect to the
other as in Figure 3.2.1. The energy of the superposition of these two waves
is then expended to provide a second phase modulated ∂ϕ2/∂t2 wave which is
superposed with the nondelayed wave. Due to the phase modulation of one of
them with respect to the other, 0 < ϕ < 360◦, the output is of continuously
varying polarization. The choice of wave division into two parts equally is
arbitrary (From Barrett, 1989c).
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Eout(n=2) =
E
4
eiωt +

E
4
ei[ω+exp{i(ϕ1+exp(iϕ2t)−1)t}−1]t (3.2.6)

where ϕ1 = F1(E/4) ; ϕ2 = F2(E/4) and ∂ϕ2/∂t2 = Ḟ1 · Ḟ2.

Again, the waveguide consists of two arms –the upper (E/4) and the
second (E/4) with which the upper is recombined. The lower two arms
merely expend energy in achieving the phase modulation of the second
arm with respect to the first. This again can be achieved by merely
making the length of the second arm change in a sinusoidal fashion (i.e.,
producing a ∂ϕ2/∂t2 with respect to the first arm), or it can be achieved
electro-optically for visible frequencies. Whichever way is used, one half
the total energy of the system (E/4 + E/4 = E/2) is spent on achieving
the phase modulation of the particular sample shown in Figure 3.2.2.

Both the systems shown in Figures 3.2.1 and 3.2.2, and all higher
order such systems, ∂ϕn/∂tn, n = 1, 2, 3..., are adiabatic with respect
to the total field and Poynting’s theorem applies to them all. However,
the Poynting description, or rather limiting condition, is insufficient to
describe these fields exactly and a more exact analysis is provided by the
control theory picture shown here.

These waveguides we shall call Stokes’ interferometers. The Stokes’
equation is (Equ. 3.31 (Part 1)) :∫

C

A · dl =

∫
S

(∇×A) · n da, (3.2.7)

and the energy-expending lines of the two Stokes’ interferometers shown
are normal to the two wave guide lines. l is varied sinusoidally so we
have :∫

C

A sinωtdl =

∫
S

(∇×A) · n da = Eout n=1 (Figure 3.2.1) (3.2.8)

∫
C

A sinωtdl =

∫
S

(∇×A) · n da = Eout n=2 (Figure 3.2.2) (3.2.9)

The gauge symmetry consequences of this conditioning are shown in
Figures 3.2.3 and 3.2.4. The potential, Aµ, in Taylor expansion along
one coordinate is :

A = 1/4 x4 + 1/2ax2 + bx+ c, (3.2.10)
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with b < 0 in the case of Ein and b > 0 in the case of Eout. A Stokes’ in-

terferometer permits the E field to restore a symmetry which was broken

before this conditioning. Thus the Ein field is in U(1) symmetry and the

Eout field is conditioned to be in SU(2) symmetry form. The condition-

ing of the E field to SU(2) symmetry form is the opposite of symmetry

breaking. It is well-known that the Mawell theory is in U(1) symme-

try form and the theoretical constructs of the magnetic monopole and

charge exist in SU(2) symmetry form (Barrett, 1987b, 1988, 1989a,b).

Figure 3.2.3. Plots of A = 1/4x4 + 1/2ax2 + bx + c. (A) b = 0 and various
values of a ; (B) b = 10 and various values of a ; (C) b = −10 and various
values of a ; (D) a = 2 and various values of b. After Barrett (1987a). For
positive values of a, SU(2) symmetry is restored. For negative values of a,
symmetry is broken and U(1) symmetry is obtained.
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Figure 3.2.4. A representative system defined in the (x, a, b)-space. Other
systems can be represented in the cusp area at other values of x, a and b. As in
Figure 3.2.3, for positive values of a, SU(2) symmetry is restored. For negative
values of a, symmetry is broken and U(1) symmetry is obtained. After Barrett
(1987a).

Other interferometric methods beside Stokes’ interferometer polar-
ization modulators which restore symmetry are cavity waveguide inter-
ferometers. For example, the Mach-Zehnder and the Fabry-Perot are
SU(2) conditioning interferometers (Yurke et al (1986)) (Figure 3.2.5).
The SU(2) group characterizes passive lossless devices with two inputs
and two outputs with the boson commutation relations :

[E1∗, E2∗] = [E
†
1∗, E

†
2∗] = 0, (3.2.11)

[E1∗, E
†
2∗] = δ12∗, (3.2.12)

where E† is the Hermitian conjugate of E and ∗ signifies both in (enter-
ing) and out (exiting) fields, i.e., before and after Aµ-conditioning. The
Hermitian operators are :

Jx =
1

2
(E
†
1E2∗ + E1∗E2†)

=
1

2
(A1 ×B1IN +B2IN ×A2)

= (A×B −B ×A),

(3.2.13a)
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Jy = − i
2

(E
†
1E2∗ − E1∗E

†
2 )

= − i
2

(A1 ×B1IN −B2IN ×A2)

= (A ·B −B ·A),

(3.2.13b)

Jz =
1

2
(E
†
1E1∗ − E2∗E

†
2 )

=
1

2
(A1 × E1OUT − E2OUT ×A2)

= (A× E − E ×A),

(3.2.13c)

iJz =
1

2
(E
†
1E1∗ + E2∗E

†
2 )

= − i
2

(A1 × E1OUT + E2OUT ×A2)

= (A · E − E ·A),

(3.2.13d)

where the substitutions are :

E1∗ = B2IN and × E1OUT ,

E2∗ = ×B1IN and E2OUT ,

E
†
1 = A1 ,

E
†
2 = ×A2 ,

(3.2.14)

satisfying the Lie algebra :

[Jx ,Jy] = iJz ,
[Jy ,Jz] = iJx ,
[Jz ,Jx] = iJy .

(3.2.15)

The analysis presented in this section is based on the relation of in-
duced angular momentum to the eduction of gauge invariance (see also
Paranjape, 1987). One gauge invariant quantity or observable in one
gauge or symmetry can be covariant with another in another gauge or
symmetry. The Wu-Yang condition of field overlap, permitting measure-
ment of Φ =

∫
C

expAµdx
µ, requires coherent overlap. All other effects

are observed either at low temperature where thermodynamic conditions
provide coherence, or is a self-mapping, which also provides coherence.
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Thus the question of whether classical Aµ wave effects can be observed
at long range, reduces to the question of how far coherency of the two
fields can be maintained.

Figure 3.2.5. SU(2) field conditioning interferometers : A. Fabry-Perot ;
B. Mach-Zehnder ; C. Stokes. (From Barrett, 1989a).

Recently, Oh et al (1988) have derived the nonrelativistic propa-
gator for the generalized Aharonov-Bohm effect, which is valid for any
gauge group in a general multiply connected manifold, as a gauge arte-
fact in the universal covering space. These authors conclude that (1), if
a partial propagator along a multiply connected space (M in the present
notation) is lifted to the universal covering space (L in the present no-
tation) i.e., T1 : M→ L, then (2), for a gauge transformation U(x) of
Aµ on the covering space L, an Aharonov-Bohm effect will arise if (3),
U(x) is not projectable to be a well-defined single-valued gauge transfor-



274 T. W. Barrett

mation onM, but (4), Aµ = U(x)∂µU(x)−1 (i.e., T1T −12 ) is nevertheless
projectable, i.e., for a T2 : T → M, in agreement with the analysis
presented here. We have stressed, however, that the Aµ = T1 :M→ L
have a physical existence, whether the T2 : L → M mapping is or can
be performed or not. Naturally, if this second mapping is not performed,
then no Aharonov-Bohm effect exists (i.e., no comparative mapping ex-
ists).

Although interferometric methods can condition fields into SU(2) or
other symmetric form, there is, of course, no control over the space-time
metric in which those fields exist. When the conditioned field leaves the
interferometer, at time t = 0, the field is in exact SU(2) form. At time
t > 0, the field will depart from SU(2) form inasmuch as it is scattered
or absorbed by the medium.

The gauge invariance of the phase factor requires a multiply con-
nected field. In the case of quantum particles, this would mean wave-
function overlap of two individual quanta. Classically, however, every
polarized wave is constituted of two polarized vectorial components.
Therefore, classically, every polarized wave is a multiply connected field
(cf. Merzbacher, 1962) in U(1) symmetry. However, the extension of
Maxwell’s theory to SU(2) form, i.e., nonAbelian Maxwell’s theory, de-
fines multiply connected local fields in a global covering space, i.e., in
simply connected form. We next examine the Maxwell’s equations rede-
fined in SU(2), nonAbelian, or simply-connected form.

3.3 Non-Abelian Maxwell equations

Using Yang-Mills theory (Yang-Mills, 1954), the non-Abelian
Maxwell equations which describe SU(2) symmetry conditioned radi-
ation are :

Coulomb’s Law :

no existence in SU(2) symmetry (3.3.1)

Ampère’s Law :

∂E

∂t
−∇×B + iq[A0 , E]− iq(A×B −B ×A) = −J (3.3.2)

Absence of free magnetic monopoles :

∇ ·B + iq(A ·B −B ·A) = 0 (3.3.3)
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Faraday’s Law :

∇× E +
∂B

∂t
+ iq[A0 , B] + iq(A× E − E ×A) = 0 (3.3.4)

Current relation :

∇ ·D − J0 + iq(A · E − E ·A) = 0 (3.3.5)

Coulomb’s law (3.3.1) amounts to an imposition of spherical symmetry
requirements, as a single isolated source charge permits the choice of
charge vector to be arbitrary at every point in space-time. Imposition of
this symmetry reduces the non-Abelian Maxwell equations to the same
form as electrodynamics, i.e., to Abelian form.

Harmuth’s Ansatz is the addition of a magnetic current density to
Maxwell’s equations, an addition which may be set to zero after comple-
tion of calculations (Barrett, 1988). With a magnetic current density,
Maxwell’s equations describe a space-time field of higher order symme-
try and consist of invariant physical quantities (e.g., the field ∂xF = J),
magnetic monopole and charge. Harmuth’s amended equations are (Har-
muth, 1986a, Equ.s (4)-(7)) :

∇×H = ∂D/∂t+ ge , (3.3.6a)

−∇× E = ∂B/∂t+ gm , (3.3.6b)

∇ ·D = ρe , (3.3.6c)

∇ ·B = ρm , (3.3.6d)

ge = σE, (3.3.6e)

gm = sH, (3.3.6f)

where ge, gm, ρe, ρm and s stand for electric current density, mag-
netic current density, electric charge density, magnetic charge density
and magnetic conductivity.

Comparing the SU(2) formulation of the Maxwell equations and the
Harmuth equations reveals the following identities (Barrett, 1988) :

U(1) symmetry , SU(2) symmetry

ρe = J0 , ρe = J0 − iq(A · E − E ·A) = J0 − qJz (3.3.7a)

ρm = 0 , ρm = −iq(A ·B −B ·A) = −iqJy (3.3.7b)
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ge = J , ge = iq[A0 , E]− iq(A×B −B ×A) + J

= iq[A0 , E]− iqJx + J (3.3.7c)

gm = 0 , gm = iq[A0 , B]− iq(A× E − E ×A)

= iq[A0 , B]− iqJz (3.3.7d)

σ = J/E , σ = {iq[A0 , E]− iq(A×B −B ×A) + J}/E
= {iq[A0 , E]− iqJx + J}/E (3.3.7e)

s = 0 , s = iq[A0 , B]− iq(A× E − E ×A)/H

= {iq[A0 , B]− iqJz}/H (3.3.7f)

It is well-known that only some topological charges are conserved (i.e.,
are gauge invariant) after symmetry breaking – electric charge is, mag-
netic charge is not (Weinberg, 1980). Therefore, the Harmuth Ansatz of
setting magnetic conductivity (and other SU(2) symmetry constructs)
to zero on conclusion of signal velocity calculations has a theoretical jus-
tification. It is also well-known that some physical constructs which exist
in both a lower and a higher symmetry form are more easily calculated
for the higher symmetry, transforming to the lower symmetry after the
calculation is complete. The observables of the electromagnetic field ex-
ist in a U(1) symmetry field. Therefore the problem is to relate invariant
physical quantities to the variables employed by a particular observer.
This means a mapping of space-time vectors into space vectors, i.e., a
space-time split.

This mapping is not necessary for solving and analyzing the ba-
sic equations. As a rule, it only complicates the equations needlessly.
Therefore, the appropriate time for a split is usually after the equations
have been solved. It is appropriate to mention here, the interpretation of
the Aharonov-Bohm effect offered by Bernido & Inomata (1981). These
authors point out that a path integral can be explicitly formulated as
a sum of partial propagators corresponding to homotopically different
paths. In the case of the A-B effect, the mathematical object to be
computed in this approach is a propagator expressed as a path integral
in the covering space of the background physical space. Therefore, the
path-dependence of the AB phase factor is wholly of topological origin
and the AB problem is reduced to showing that the full propagator can
be expressed as a sum of partial propagators belonging to all topological
inequivalent paths. The paths are partitioned into their homotopy equiv-
alence classes, Feynman sums over paths in each class giving homotopy
propagators, the whole effect of the gauge potential being to multiply
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these homotopy propagators by different gauge phase factors. The rel-
evant point, however, with respect to the Harmuth Ansatz, is that the
full propagator is expressed in terms of the covering space, rather than
the physical space. The homotopy propagators are related to propaga-
tors in the universal covering manifold, leading to an expansion of the
propagators in terms of eigenfunctions of a Hamiltonian on the covering
manifold.

The approach to multiply connected spaces offered by Dowker
(1972) and Sundrum & Tassic (1986) also uses the covering space con-
cept. A multiply-connected space M and a universal covering space,
M∗, are defined :

M∗ →M =M∗/Γ , (3.3.8)

where Γ is a properly continuous, discrete group of isometries of M∗,
without fixed points and M∗ is simply connected. Each group of M
corresponds to n different points qγ of M∗, where γ ranges over the
n elements of Γ. M∗ is then divided into subsets of a finite number
of points or “fibers”, one fiber corresponding to one point of M. M∗
is a bundle or fibered space, and G is the group of the bundle. The
major point, in the present instance, is that the propagator is given in
terms of a matrix representation of the covering space M∗. Harmuth
calculates the propagation in the covering space where the Hamiltonian is
self-adjoint. Self-adjointness means that non-Hermitian components are
compensated (Schulman 1971). Thus, the propagation in the covering
space is well-defined.

Consequently, Harmuth’s Ansatz can be interpreted as : (i) a map-
ping of Maxwell’s (U(1) symmetrical) equations into a higher-order sym-
metry field (of SU(2) symmetry) or covering space, where magnetic
monopoles and charge exist ; (ii) solving the equations for propaga-
tion velocities ; and (iii) mapping the solved equations back into the
U(1) symmetrical field (thereby removing the magnetic monopole and
charge).

4. Conclusions

The concept of the electromagnetic field was conceived by Faraday
and set in a mathematical frame by Maxwell to describe electromag-
netic effects in a space-time region. It is a concept addressing local
effects. Action-at-a-distance (Newton) was replaced by contact-action
(Descartes) when the field concept was adopted. That is, a theory
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(Newton’s) accounting for both local and global effects was replaced
by a completely local theory (Descartes’). The local theory can address
global effects with the aid of the Lorentz invariance condition, or Lorentz
gauge. However, Lorentz invariance is due to a chosen gauge and chosen
boundary conditions, and these are not a inevitable consequence of the
Maxwell theory, which is a theory of only local effects.

According to this concept, the local field strength, Fµν , completely
describes electromagnetism. However, due to the effects discussed, there
is reason to believe that Fµν does not describe electromagnetism com-
pletely. In particular, it does not describe global effects resulting in
different histories of local spatiotemporal conditioning of the constituent
parts of summed multiple fields.

Weyl (1918, 1919, 1928, 1939) first proposed that the electromag-
netic field can be formulated in terms of an Abelian gauge transfor-
mation. But the Abelian gauge only describes local effects. Yang and
Mills (1954) extended the idea to non-Abelian groups. The concepts of
the Abelian electromagnetic field – electric charge, E and H fields, are
explained within the context of the non-Abelian concepts of magnetic
charge and monopole. The Yang-Mills theory is applicable to both local
and global effects.

If the unbroken gauge group is non-Abelian, only some of the topo-
logical charges are gauge-invariant. The electric charge is, the magnetic
charge is not (Weinberg, 1980).

The Aµ potentials have an ontology or physical meaning as local
operators mapping onto global spatiotemporal conditions the local e.m.
fields. This operation is measureable if there is a second comparative
mapping of the conditioned local fields in a many-to-one fashion (mul-
tiple connection). In the case of a single local (electromagnetic) field,
this second mapping is ruled out –but such an isolated local field is only
imaginary, because the imposition of boundary conditions implies the
existence of separate local conditions and thereby always a global con-
dition. Therefore, practically speaking, the Aµ potentials always have
a gauge-invariant physical existence. The Aµ potential gauge invariance
implies the theoretical constructs of a magnetic monopole and magnetic
charge, but with no singularities. These latter constructs are, however,
confined to SU(2) field conditioning, whereas the Aµ potentials have an
existence in both U(1) and SU(2) symmetries.

The physical effects of the Aµ potentials are observable empirically
at the quantum level (Effects 1-5, Part 1) and at the classical level (Ef-
fects 2,3 and 6, Part 1). The question of whether the Aµ potentials
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can propagate to a distance is a proper question and answerable inas-
much as questions of maintaining field coherence over large distances
can be answered. Coherent fields can be obtained at low temperature
in condensed matter systems and also in cavities (e.g., Mach-Zehnder).
Coherency over large distances is maintained in the case of the laser.
“Local” coherence could also be maintained by a wave packet propagat-
ing without dispersion or decrement.

The Maxwell theory of fields, restricted to a description of local
intensity fields, requires no amendment at all. If, however, the intention
is to describe both local and global electromagnetism, then an amended
Maxwell theory is required in order to include the local operator field of
the Aµ potentials, the integration of which describe the phase relations
between local intensity fields of different spatiotemporal history after
global-to-local mapping.

With only the constitutive relations of e.m. fields-to-matter defined
(and not those of fields-to-vacuum), contemporary opinion is that the
dynamic attribute of force resides in the medium-independent fields, i.e.,
they are fields of force. As the field-vacuum constitutive relations are
lacking, this is somewhat surprising, giving rise to competing accounts of
where force resides, e.g., not in the fields but in the matter (cf. Graneau,
1985).

Maxwell, of course, had two types of constitutive relations in mind :
“...whenever energy is transmitted from one body to another in time,
there must be a medium or substance in which the energy exists after it
leaves one body and before it reaches the other ...” (Maxwell, 1891, Vol
II, p. 493).

After removal of the ether from consideration, the fields have con-
tinued to exist as the classical limit of quantum mechanical exchange
particles. However, those particles are in units of action, not force.
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