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ABSTRACT. Specific quantum-theoretic nonpoint-like properties of
individual microparticles are discussed and related conceptual diffi-
culties of the Conventional Interpretation (CI) and the ‘Minimal’
Statistical Interpretation (MSI) are pointed out. The MSI, never-
theless, has definite advantages before the CI in treating such prop-
erties as a consequence of a complex structure of the microparticle
and creating a picture of essentially noninstantaneous measurement
procedures based on the very dynamics of the theory.

RESUME. On discute de certaines propriétés non-ponctuelles au
sens de la mécanique quantique et on souligne les difficultés con-
ceptuelles associées, dans l’interprétation conventionnelle (CI), et
dans l’interprétation statistique minimale (MSI). La MSI a cepen-
dant des avantages certains sur la CI quand il s’agit de traiter de
telles propriétés comme une conséquence d’une structure complexe
de la microparticule et de bâtir une image de méthodes de mesure
essentiellement non instantanées, fondées sur la dynamique même
de la théorie.

We shall examine here in a specific context along the general line
of reasoning in our papers [1,2] certain nonpoint-like properties of in-
dividual particles as implied by quantum dynamics. These properties
lead to certain conceptional difficulties in both the CI and the MSI that
are worth mention, together with the differences in the way of treating
wave-like effects in the said interpretations.

As wave-like properties are more or less of the same physical essence
in both relativistic and nonrelativistic quantum mechanics (QM), we
shall confine ourselves (for the sake of simplicity and in order to evade
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difficulties with Klein’s paradox) to the one-dimensional case of nonrela-
tivistic free motion along z of a particle of mass m. (The generalizations
to the three-dimensional case being trivial).

As well know, ψ(z, t), t > 0, can be obtained from formula

ψ(z, t) =

∫ ∞
−∞

K(z, t; z′, 0)ψ(z′, 0)dz′ (1)

in which the propagator K(z, t; z′, 0) is given for the case of free motion
by

K(z, t; z′, 0) = (m/2πih̄t)1/2 exp[im(z − z′)2/2h̄t] (2)

Assume now that the normalized initial state of motion χ(z, 0) is con-
centrated entirely inside interval I1 = (z1, z2), z1 < z2 ≤ 0, i.e.∫ z2
z1
| χ(z, 0) |2 dz = 1. An analogous assumption about interval

I2 = (z3, z4) with 0 ≤ z3 < z4 will give an initial state φ(z, 0) satis-
fying

∫ z4
z3
| φ(z, 0) |2 dz = 1. Due to the linearity of the Schrödinger

equation function

ψ(z, t) =
√
b1χ(z, t)+

√
b2φ(z, t) , t ≤ 0 , b1 > 0 , b2 > 0 (3)

is also a possible normalized state of motion when b1 + b2 = 1.

The postulate of nonrelativistic QM on momentum distribution
yields the following expression for the momentum amplitude a1(p) as-
signed to function χ(z, 0) (or, which is the same, for the freely evolving
χ(z, t) at each t ≥ 0)

a1(p) = (2πh̄)−1/2
∫
I1

χ(z, 0) exp(−ipz/h̄)dz (4)

Analogously, for state φ(z, 0) we have

a2(p) = (2πh̄)−1/2
∫
I2

φ(z, 0) exp(−ipz/h̄)dz, (5)

so that the momentum amplitude assigned to ψ(z, 0) will be

a(p) =
√
b1a1(p) +

√
b2a2(p) (6)

Replace z3 by 1. Obviously,

a(p) =
√
b1a1(p) +

√
b2a

(0)
2 (p) · exp(−ipl/h̄), (7)
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where a
(0)
2 (p) is the value of a2(p) for z3 = 0 (at a fixed length of I2 and

a fixed course of φ inside I2). Consequently, we have

| a(p) |2= b1 | a1(p) |2 +b2 | a(0)2 (p) |2 + Int(p, 1) (8)

where
Int(p, l) =

√
b1b2{Re[a1(p)a

(0)∗
2 (p) cos(pl/h̄)]

− Im[a1(p)a
(0)∗
2 (p) sin(pl/h̄)]}

(9)

is an l-dependent interference term. Eq. (9) gives a clearcut nonpoint-
like effect in the one-particle state consisting of two spatially separated
parts at t = 0. Namely, keeping z1, z2 and χ(z, 0)(z1 ≤ z ≤ z2) fixed as
well we see that the momentum density assigned to ψ(z, 0) depends on
the distance d0 = z3 − z2 = 1 − z2 separating intervals I1 and I2 since
Int(p, l) = Int(p, d0 + z2) (z2 fixed). The importance of Int(p, l) in (8)
has no tendency of diminishing when l (equivalently d0) → ∞ because
of the periodic dependence of Int(p, l) on l for any given p.

(The fast varying character of Int(p, l) as a function of p at large
l may create the impression that wave-like properties would be unob-
servable when l → ∞. However, this is not really so : according to
quantum dynamics and its MSI any ‘infinitesimal’ variation ∆p of p
would be noticeable to time-of-flight technique in the limit of large t,
when t∆p/m� d0).

The above observations have the following explanation from the
viewpoint of the wave interference picture in z-space given by the QM
dynamical equation in the case of free motion. When d0 is large enough,
that is, d0 � l1, l2, li standing for the length of interval Ii(i = 1, 2),
then one may regard d0 as the characteristic spread of the initial one-
particle(ensemble) state of motion. At sufficiently large times t > 0
(that indefinitely increase as d0 → ∞) the two parts χ(z, t) and φ(z, t)
of the overall state ψ(z, t) will begin to essentially overlap and a stable
interference picture will set in at t → ∞ (corresponding to distances
dt � d0 –cf.[1,2] ; one may note that in the non-relativistic case there
will exist no ‘fine structure’ of | ψ(vt, t) |2 at t→∞). More exactly, we
arrive at a picture in which | ψ |2 is practically z-independent in interval
It = (vt, (v + ∆)t) along the z-axis (v fixed) and

∫
It
| ψ(z, t) |2 dz →

const as t → ∞. The value of the latter integral essentially depends on
Int(p, 1), i.e. on the phase difference of the ‘sub-waves’ corresponding to
each specific v. All this is a direct consequence of eqs. (1,2) as applied
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to ψ(z, 0) given by (3) at t = 0 ; things become really vivid having in

mind that exp(imz′
2
/2h̄t) ≈ 1 at t→∞.

Let us consider now the implications and the conceptional difficulties
connected with this specific example of a wave that is initially split in
two spatially isolated parts. As we have here a state of motion of an
individual particle, the CI will insist that the particle is simultaneously
present in both intervals I1 and I2 at t = 0. However, in an instantaneous
(according to the CI) act of checking at t = 0 in which interval the
particle actually is one may discover the particle ‘as a whole’ either in I1
or in I2. This means that an instantaneous process is assumed in which
the particle (that was initially somehow simultaneously present in both
intervals I1 and I2) has concentrated itself in one of these intervals only.
Things are aggravated in this acausal picture by the possibility to choose
an arbitrarily large distance between I1 and I2. One cannot remove the
difficulty by asserting that the particle actually was in only one of these
intervals at t = 0 since this is inadmissible in the CI: the interference
term Int(p, 1) would be absent then.

In the terminology of de Broglie et al. [3] (who on their turn cite
Schrödinger’s opinion) the CI description of what happens in situations
of this kind represents just ‘wizardry’. The acausal character of the
interpretation adduced is not due to the employing of nonrelativistic
QM : the same phenomenon can be immediately formulated with the
aid of Dirac states.

Consider now the same situation from the viewpoint of the MSI.
Postulate P2 requires that the particle’s “core” be objectively present
either in I1 or in I2. But the wave interference property expressed by
the presence of Int(p, 1) in (8) compels us to assert that even when the
“core” is present, say, in interval I1 a certain wave property connected
with the very existence of the particles somewhere in space is present in
I2. The dynamical equation of the theory says that the latter factor will
sooner or later perturb the motion of the particle in the process of its
spreading along z. In this point the ideology of the MSI is practically
identical with that of de Broglie [4] in which the situation described
is interpreted as giving evidence about the possible existence of empty
waves, that is, waves which do not carry particles attached to them.
The experimental search for empty waves (with negative results for the
time being) has already begun [5]. Certain interpretational difficulties,
however, still remain.
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In order to demonstrate this consider, for simplicity, intervals I1 and
I2 of equal lengths l1 and l2 along z. The particle is assumed to move
freely inside I1 and I2, the region outside them being forbidden for it
due to the presence of infinitely high potential barriers at the boundary
points z1, . . . , z4 (see above for notations). Let ψ be nonzero in both I1
and I2 and let its course in each interval correspond, e.g., to the ground
energy eigenstate of motion in this interval (obviously, Eg1 = Eg2 =
E). Assume that a check-up of particle position has not discovered the
particle, say, in I1. This means that the particle is now with probability
one in I2 and its state of motion there is certainly characterized by the
same eigenenergy E. One must state as well that prior to measurement
there was only an empty wave in I1 which was then removed or destroyed
by the process of measurement. (Really, if the barriers at the boundaries
of I2 are removed after the act of measurement, the wave function will
spread along z without the presence of any nonzero interference term of
the kind Int(p, 1)). But the energy of the particle in I2 has remained
the same after the negative-result check-up that was carried out in I1.
Consequently, the presumable empty wave in I1, while being capable
of influencing the particle’s motion, must nevertheless be assigned zero
energy which is unacceptable indeed for an objective physical entity.

Clearly, this difficulty appears due to the assumption of unrestricted
validity of the present-day QM dynamical equations. (A difficulty of this
kind was considered in our work [6a]). In particular, the most essential
assumption here was that of the linearity of these equations which leads
to the inference that any linear combination of states (even spatially
separated one-particle states) is a possible state. It should therefore be
stressed that de Broglie’s nonlinear interpretation of QM [4] incorporates
the hypothesis of a finite range of the wave-like property of particles. Be-
sides, our consideration in [6a,b] gives implications for a limited validity
of the nonstationary QM equations of motion. (The further evolution
of this consideration supports de Broglie’s nonlinear interpretation, as
it will be demonstrated in a future work). One may therefore hope that
difficulties of the above kind would not be insurmountable in a more
developed interpretation of QM.

It is worth mentioning that the infinite range of the microparticle’s
wave property in the linear Schrödinger’s dynamics may be demonstrated
in an even simpler way. Really, assume that there exists only one interval
I confined by impenetrable walls and that our particle is, say, in a state
of definite eigenenergy E > 0 in I. Then, irrespective of the magnitude
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of the length l of I, the probability to register (say, with the time-of-
flight technique) at t > 0 an energy of the particle exactly equal to E (the
barriers being switched off at t = 0) is equal to zero. Indeed, the possible
energy values at t > 0 form a continuum in which nonzero probabilities
are assigned to nonzero energy intervals, infinitesimal energy intervals
having infinitesimal probabilities. Thus, according to the Schrödinger
picture, even when l → ∞ the particle inside the potential well will be
‘aware’ all the time of the presence of the barriers and its energy will
undergo a nonzero variation with probability one after the falling of the
barriers.

A modification of the above-described situation of spatially sepa-
rated coherent parts of an overall state makes possible the evincing of
other interesting facts and fundamental differences between the CI and
the MSI. Examine, e.g., the following situation. Let the initial QM state
be given by the normalized function Φ(z, 0) = φ(z, 0) concentrated en-
tirely inside interval I2 (see above). Assume also that a totally reflecting
mirror M (an absolutely impenetrable barrier U =∞) of mass µ =∞ is
located at z ≤ 0, the motion along z > 0 being free. (All these idealiza-
tions are introduced for the sake of clarity only). The latter requirement
leads to conditions

Φ(0, t) = 0 ,

∫ ∞
0

| Φ(z, t) |2 dz = 1 (10)

which must now be satisfied by Φ(z, t) at all t ≥ 0. The evolution
of Φ(z, t), t > 0, in the allowed region 0 < z < ∞ can be obtained
with the help of a well known mathematical trick. Namely, examine
together with Φ(z, 0) a fictitious normalized state χ(z, 0) = −Φ(−z, 0) =
−φ(−z, 0), z ≤ 0, and the time-evolution of these two states along z
at t > 0 under the assumption of free motion along the entire z-axis
−∞ < z < ∞. The physically meaningful region, certainly, remains
0 < z < ∞ and, as obvious from the symmetry, we have a normalized
solution

Φ(z, t) = χ(z, t) + φ(z, t) , z > 0 , t ≥ 0, (11)

the role of χ(z, t) consisting in guaranteeing the zero boundary condition
at z = 0 for all t > 0. (χ(z, t) and φ(z, t) stand here for the time-evolved
of χ(z, 0) and φ(z, 0) under the assumption of free motion along the en-
tire z-axis). In such a way the time-evolution of Φ(z, t), t > 0, z > 0,
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determined –in a more vivid language– by the interference of its nonre-
flected part with the part reflected by M , is equivalently determined by
the superposition to the right of z = 0 of two fictitious normalized waves
χ(z, t) and φ(z, t), t > 0. Our problem is thus reduced to a particular case
of the problem already examined here, the only difference being that, in
order to obtain (II), ψ(z, t) in (3) must now be replaced by Φ(z, t), b1
and b2 –by unity and one must examine positive z (equivalently– positive
momenta p) only. Correspondingly, instead of (8) we have now

| a(p) |2=| a1(p) |2 + | a2(p) |2 +2 Re[a1(p)a∗2(p)] , p > 0, (12)

where | a(p) |2, p > 0, is the normalized momentum density distribution
assigned to Φ(z, t), t → ∞, that may be measured, as we know, by the
time-of-flight method in the limit of large t, whereas a1(p) and a2(p),
p > 0, are determined in the same manner as before (cf.(4) and (5),
correspondingly). One can certainly determine in the case of free motion
a2(p) for p < 0 as well with the aid of (5) and it is easily seen that, under
our assumptions about Φ(z, 0) and χ(z, 0),

a1(p) = −a2(−p) , a(−p) = −a(p) , −∞ < p <∞, (13)

so that (12) can be rewritten as

| a(p) |2=| a2(p) |2 + | a2(−p) |2 −2 Re[a2(−p)a∗2(p)] , p > 0 (14)

This fact has an interesting consequence. The probability density
distribution A(Tp) for kinetic energy Tp = p2/2m in the case of
an arbitrary freely evolving state with momentum density distribu-
tion RQ(p),−∞ < p < ∞, can be obtained via the obvious formula
A(Tp)dTp = [RQ(p) +RQ(−p)]dp, p > 0, which gives

A(Tp) = (m/p)[RQ(p) +RQ(−p)] , p > 0 (15)

Examine first the case of free evolution of φ(z, 0) along the entire z-axis
−∞ < z < ∞ at t > 0. The kinetic energy distribution A′(Tp) for this
case is obtained by replacing RQ in (15) with | a2 |2:

A′(Tp) = (m/p)[| a2(−p) |2 + | a2(p) |2] , p > 0 (16)

Examine now the evolution of the same φ(z, 0) in the presence of our
impenetrable barrier at z ≤ 0, region z > 0 being free. Eq. (14) gives a
kinetic energy distribution

A′′(Tp) =
m

p
| a(p) |2= A′(Tp)− 2m

p
Re[a2(−p)a∗2(p)] , p > 0 (17)
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We arrived at the following result : at t→∞ the kinetic energy distribu-
tion A′′(Tp) in the case of elastic scattering of (a part of) an initial wave
packet φ(z, 0) by an impenetrable barrier is essentially different from the
one obtainable at a free evolution of φ(z, 0) along −∞ < z < ∞. Only
the average kinetic energy (as may be easily seen) remains the same in
both cases. A phenomenon of this kind is impossible in classical me-
chanics, in which the presence or absence of M can in no way affect the
kinetic energy distribution.

As we already know, this strange phenomenon can be explained
in the ensemble evolution picture as follows. Momentum distribution
(determining kinetic energy distribution too) can be obtained from posi-
tion distribution in the cloud of particles after the appearing of a stable
interference picture of position distribution at suitably moving (i.e. time-
variable) positions zt = vt, and in the case of presence or absence of the
barrier at z ≤ 0 the corresponding interference pictures are essentially
different. (As it follows from the above discussion, in a more developed
SI the latter conclusion may be substantially modified).

What is more important, however, is that time-of-flight technique
makes conceptually possible the simultaneous measurement of momen-
tum and kinetic energy distributions in the case of presence of an im-
penetrable barrier too. Indeed, a ‘snapshot’ of the position interference
picture just described would simultaneously be, by the very essence of
the time-of-flight technique, a ‘snapshot’ of coexisting momentum and
kinetic energy distributions. But it is worth making things even clearer
by employing the following nondestructive procedure of momentum dis-
tribution measurement via indirect position registration.

Assume that we want to check whether the particle is located or
not in interval It = (vt, (v + ∆)t) of length t∆ along the z-axis (∆
and v fixed, t sufficiently large) by carrying out position measurement
at t outside this interval. (Recall that position measurement is always
quasi-instantaneous). If the particle is registered outside It the event is
discarded. If not the event is not discarded and one knows practically
with certainty that the particle’s macromomentum and energy lie after
measurement in intervals (mv,m(v + ∆)) and (mv2/2,m(v + ∆)2/2),
respectively. (Recall that, according to Heisenberg’s uncertainty rela-
tion δpz ≥ h̄/2δz no matter whether one adheres to the CI or the MSI
–the sense only in which this relation is interpreted is different in the
said interpretations. In the limit t → ∞ we have δz = t∆ → ∞,
so that δv = δp/m � ∆, which proves the above statement about
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p and Tp). So choose a value of t for which δz = t∆ is as large as
necessary. From (1) and (2) it immediately follows that, for an ar-
bitrary normalized state Φ(z, 0) of the kind considered here, we shall
have at this t a state Φ(z, t) of a practically constant modulus inside
It (∆ being ‘infinitesimal’). Besides, for any z ∈ It one arrives, up
to ‘infinitesimal’ terms, at equalities −ih̄∂Φ(z, t)/∂z = mvΦ(z, t) and
(−h̄2/2m)∂2Φ(z, t)/∂z2 = (mv2/2)Φ(z, t). Consequently, Φ(z, t) be-
haves practically as a plane wave inside It, being proportional there
to exp(imvz/h̄) = exp(ipz/h̄) under the specified conditions. The above
procedure thus cuts off at a chosen moment t = τ , τ large, a segment of
the overall wave which segment represents, for all practical purposes, a
plane wave inside It and a wave of zero intensity outside It. At t > τ
this wave train will move in the positive z-direction with a well defined
velocity v, slowly extending its dimension due to the small scatter ∆ of
particle velocities about v (the ‘uncertainty’ scatter δv being arbitrarily
small at large t compared to ∆ as shown above). The MSI therefore
makes it conceptually possible to select (at large t’s) a group of particles
(those inside our wave train) which have well defined momenta, hence
energies, even in the presence of mirror M at the origin.

Now, according to the CI the coexistence of energy and momen-
tum is impossible in the presence of M . Indeed, one may immedi-
ately see that a(p)(m/p)1/2 (the squared modulus of a(p) being given
by (12) or (14) in the case examined) is the coefficient standing before
2i sin(pz/h̄)/(2πh̄p/m)1/2, z > 0, p > 0, in the representation

Φ(z, 0) =

∫ ∞
0

a(p)√
p/m

2i sin(pz/h̄)√
2πh̄p/m

dTp (18)

The functions 2i sin(pz/h̄)/(2πh̄p/m)1/2 are the correctly normalized (to
δ-functions of energy) energy eigenfunctions in the presence of M , cor-
responding to eigenvalues p2/2m, as shown in standard courses on QM
[7]. According to the CI the (kinetic) energy probability density at any
moment t ≥ 0 will be given by (17), where now A′′(Tp) = (m/p) | a(p) |2,
p > 0 (i.e. will be t-independent and instantaneously measurable at any
chosen t ≥ 0). However, the states to which the energy values E = Tp be-
long, being proportional to sin(pz/h̄) = [exp(ipz/h̄)− exp(−ipz/h̄)]/2i,
correspond to no definite (algebraic) value of momentum. (Only the mo-
mentum modulus is definite). The energy-momentum noncoexistence in
this situation comes as no surprise in the CI since, formally, the mo-
mentum operator −ih̄∂/∂z and the Hamiltonian (−(h̄2/2m)∂2/∂z2+
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an infinitely large potential term describing M) cannot certainly be re-
garded as commuting operators. (Interesting enough, −ih̄∂/∂z is not
even selfadjoint in the presence of M [8]). But one sees than that the
latter CI conclusion comes in direct contradiction with the inference
on momentum-energy coexistence in the case examined, following from
Schrödinger’s dynamics itself and its MSI.

Up to here we examined states ψ that were initially concentrated in
regions having sharp boundaries in position space. The above-discussed
property of Φ(z, t) to practically represent at large t a plane wave of rele-
vant amplitude in each its portion, corresponding to a given momentum
p (or velocity v), remains obviously valid for an arbitrary free-motion
state ψ too (i.e. in the absence of mirror M) and one can make use
of this property in order to examine, for the sake of completeness, free
ψ’s with sharp boundaries in momentum space. Consider, say, the sim-
plest possible such ψ(z, t) whose momentum amplitude a(p) 6= 0 for
p ∈ I ′ = (p1, p2) and p ∈ I ′′ = (p3, p4), p1 < p2 < p3 < p4, while every-
where outside I ′ and I ′′ a(p) is exactly zero. Clearly, such a state will not
possess sharp boundaries in z-space at the initial moment t = 0. One can
see however that (as an immediate consequence of our discussion here ; cf.
also [1]) this ψ(z, t) will have a tendency to disintegrate, as t indefinitely
increases, into two distinct wave packets. One of them will be practically
concentrated at sufficiently large t in interval I ′t = (v1t, v2t), vi = pi/m,
i = 1, 2, and the other –in interval I ′′t = (v3t, v4t), vi = pi/m, i = 3, 4.
The integral of | ψ(z, t) |2 over the z-axis with excluded intervals I ′t and
I ′′t will tend to zero at t → ∞ due to the fact that a(p) = 0 outside I ′

and I ′′. We thus arrive at a wave packet picture that de facto coincides
with the one corresponding to de Broglie’s outlook on measurement [3]
in which the initial state ψ disintegrates in result of the measurement
procedure into a set of wave packets, the position of each wave packet
corresponding to a (set of) specific value(s) of the measured magnitude.
(In our case position in I ′t or I ′′t means that macroscopic particle mo-
mentum belongs to I ′ or I ′′t, respectively ; certainly, there may exist
an arbitrary number of intervals of the kind of I ′ and I ′′ and, besides,
the lengths l′ and l′′ of I ′ and I ′′ can be arbitrarily small numbers).
In the case of nonexistence of ‘isolated’ intervals of the kind of I ′ and
I ′′ in p-space the overall state ψ(z, t) will not disintegrate at t → ∞
into ‘isolated’ wave packets in z-space but its behaviour at such t will
nevertheless be classically understandable : | ψ(vt, t) |2, t → ∞, will
be proportinal to 1/t, whereas ψ(z, t) will behave as a plane wave cor-
responding to momentum p = mv in the vicinity of point z = vt. We
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thus see once again that the linearity of the Schrödinger equation is well
suited for creating a noninstantaneous physical picture of measurement
in which positions are connected with the values of the measured physi-
cal magnitudes as a consequence of the very dynamics of the theory. At
the same time, as demonstrated above, linearity is not well suited for
creating a physical model of an individual microparticle of finite spatial
dimensions. But it should be stressed that, as it follows from our dis-
cussion in [2], even at this stage of development of the theory the MSI
gives no evidence of any superluminal interactions, etc.
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