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and nonlinear-element electrical engineering circuit theory∗

T. W. Barrett

13521 S.E. 52nd st. Bellevue, WA 98006, U.S.A.

ABSTRACT. Tesla’s approach to electrical engineering addresses
primarily the reactive part of electromagnetic field-matter interac-
tions, rather than the resistive part. His approach is more compara-
ble with the physics of nonlinear optics and many-body systems than
with that of single-body systems. It is fundamentally a nonlinear
approach and may be contrasted with the approach of mainstream
electrical engineering, both linear and nonlinear. The nonlinear as-
pects of mainstream electrical engineering are based on feedback in
the resistive field, whereas the nonlinearity in Tesla’s approach is
based on oscillators using to-and-fro shuttling of energy to capacita-
tive stores through non-circuit elements attached to circuits. These
oscillator-shuttle-circuit connections result in adiabatic nonlineari-
ties in the complete oscillator-shuttle-circuit systems (OSCs). Tesla
OSCs are reactive or active rather than resistive, the latter being
the mainstream approach, therefore device nonlinear susceptibilities
are possible using the Tesla approach.

As a development of this approach, 3-wave, 4-wave...n-wave mixing
is proposed here using OSC devices, rather than laser-matter inter-
actions. The interactions of oscillator-shuttles (OS) and circuits (C)
to which they are attached as monopoles forming OSCs are not de-
scribable by Kirchhoff’s and Ohm’s laws. It is suggested that in
the OSC formulation, floating grounds are functionally independent
and do not function as common grounds. Tesla employed, rather,
a concept of multiple grounds for energy storage and removal by
oscillator-shuttles which cannot be fitted in the simple monolithic
circuit format, permitting a many-body definition of the internal
activity of device subsystems which act at different phase relations.
This concept is the basis for his polyphase system of energy transfer.

∗ Originally disclosed in document N̊225395, 1988, U.S. Patent Office.
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The Tesla OSCs are analogs of quaternionic systems. It is shown
that more complex OSCs are analogs of more complex number ele-
ments (e.g., Cayley numbers and “beyond Cayley numbers”). The
advantages of crafting energy in quaternionic, or SU(2) group, and
higher group, symmetry form, lie in : (1) parametric pumping with
only a one drive system (power control) ; (2) control of the E field or
Joule/cycle (energy control) ; (3) phase modulation at rates greater
than the carrier (phase control) ; (4) reduction of noise in energy
transmission (noise control) for communications ; and (5) reduction
of power loss in power transmission. Engineering applications are
suggested.

Finally, it is shown that Tesla’s OSC approach is more appropriately
(succinctly) described in A four potential form, than in E, H, B and
D field form or by Ohm’s law. That is, the boundary conditions are
of crucial importance in defining the functioning of OSCs.

RESUME. La manière dont Tesla approche l’ingénierie électrique
concerne principalement la partie réactive de l’interaction champ-
matière, plutôt que la partie résistive. Son approche est plus com-
parable à la physique de l’optique non linéaire et des systèmes à
plusieurs corps qu’à celle de systèmes à un seul corps. L’approche de
Tesla est basée sur des connections circuit-navette-oscillateur (OSC)
permettant des susceptibilités nonlinéaires du dispositif. Les OSC
de Tesla sont des analogues des systèmes de quaternions. Des OSC
plus complexes sont des analogues de nombres plus complexes (par ex.
nombres de Cayley). Il y a des avantages pratiques à mettre l’énergie
sous forme de quaternions ou d’éléments de groupes de symétrie de
type SU(2) ou plus élevé: par exemple, dans 1) le contrôle de puis-
sance, 2) le contrôle d’énergie, 3) le contrôle de phase, 4) le contrôle
du bruit. L’approche OSC de Tesla est décrite de manière plus ap-
propriée sous la forme de quadripotentiel A plutôt que sous celle de
champs de force.

I. Introduction

There is almost universal agreement that Nicolai Tesla approached
electrical engineering from a different viewpoint than conventional circuit
theory. There is, however, no agreement on the physical model behind his
particular approach. In this paper I hope to show that Tesla’s approach
took advantage of the many possibilities of nonlinear interaction in joined
oscillator-shuttles, and his nonlinear oscillator-shuttle-circuit approach,
which we shall call the OSC approach, can be contrasted sharply with
linear circuit theory. The particular nonlinearity of OSCs arises because
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of the use of multiple independent floating “grounds” which provide
separate energy storage capacitative repositories from which energy is
oscillator-shuttled to-and-fro. The use of independent and noninteract-
ing energy storage “cul-de-sacs” is a trademark of Tesla’s work and sets
it apart from linear circuit theory as well as nonlinear feedback theory
(cf Tesla, 1956 ; Ford, 1985).

The OSC arrangement cannot be adequately described either by
Kirchhoff’s or Ohm’s law. In section III, below, the field relations are
derived for OSCs within the constraints of the OSC arrangement consid-
ered as boundary conditions.

The OSC arrangement is treated in section III as another method
of energy crafting or conditioning similar to that of wave guides or other
field-matter interactions. Viewed from this perspective, Tesla’s OSC
arrangements offer methods to achieve macroscopic or device nonlinear
interactions presently only achieved, with difficulty, in nonlinear optics
(cf Bloembergen, 1965, 1982 ; Bloembergen & Shen, 1964 ; Shen, 1984 ;
Yee & Gustafson, 1978).

A clear distinction can be made between the adiabatic nonlinear
oscillator-shuttle-circuits addressing the dynamics of the reactive field
considered here and nonadiabatic circuits addressing the resistive field.
For example, Chua and coworkers (Chua, 1969 ; Chua et al, 1986 ;
Matsumoto et al, 1984, 1985, 1986, 1987a,b ; Kahlert & Chua, 1987 ;
Rodriguez-Vasquez et al, 1985 ; Kennedy & Chua, 1986 ; Abidi & Chua,
1979 ; Pei et al, 1986) have described many nonlinearities in physical
systems such as, e.g., four linear passive elements (2 capacitors, 1 induc-
tor and 1 resistor) and one active nonlinear 2-terminal resistor charac-
terized by a 3 segment piecewise linear v − i characteristic. Such cir-
cuits exhibit bifurcation phenomena, Hopf bifurcation, period-doubling
cascades, Rössler’s spiral and screw type attractors, periodic windows,
Shilnikov phenomenon, double scroll and boundary crisis. The tunneling
current of Josephson-junction circuits can even be modeled by a nonlin-
ear flux-controlled inductor (Abidi & Chua, 1979). However, in all these
instances, (i) the nonlinear resistive elements require an energy source
to the nonlinear resistor which is external to that of the circuit, (ii) the
resistive field, not the reactive field, is the operative mode, and (iii) of
course the physical system is a circuit, not an OSC.

Treatments of electrical circuits by the oriented graph approach (In-
gram & Cramlet, 1944 ; Van Valkenburg, 1955 ; Seshu & Reed, 1961 ;
Brayton & Moser, 1964a,b ; Rez & Seely, 1959 ; Branin, 1959, 1966 ;
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Smale, 1972) have all commenced with a one-dimensional cell complex
(i.e., a graph) with vertices and branches connecting them, as well as
separable loops. Representing the connectivity relations of an oriented
linear graph by a branch-vertex matrix A =

∑
aij , the elements have

values of +1, −1, and 0, depending on whether current is flowing into,
out of, or stationary, at a particular vertex (i.e., aij = (+1,−1, 0)). This
linear graph representation does not, however, take into account any
representation (resulting from modulation) which does not conform to
the values for aij , e.g., when aij takes on spinor values, that is, obeys
the even subalgebra of a Clifford algebra.

There are, however, other approaches to circuit analysis which are
compatible with Tesla OSCs. Kron (1938, 1939, 1944, 1945a,b, 1948)
equated circuits with their tensor representations. Kron’s methods were
supported by Roth’s demonstration (1955) that network analysis is a
practical application of algebraic topology. Roth (1955a,b) showed that
Kirchhoff’s current law is the electrical equivalent of a homology se-
quence of a linear graph, and Kirchhoff’s voltage law corresponds to
a cohomology sequence, these sequences being related by an isomor-
phism corresponding to Ohm’s law. The algebraic topology approach
was enhanced considerably further by Bolinder (1957a,b, 1958, 1959a,b,
1986, 1987) who introduced three-dimensional hyperbolic geometrical
transformations to circuit analysis and showed how partially polarized
electromagnetic or optical waves can be transformed by Clifford algebra.
Tesla OSCs also can be described in Clifford algebra terms. Below, the
OSCs are described in quaternion algebra, which is the even subalgebra
of a three-dimensional Clifford algebra with Euclidean metric.

In the immediately following section II the reader is introduced to
Tesla OSCs shown in Tesla (1956, 1986) and Ford (1985), establishing
the case of unique use of oscillator-shuttle (OS) arrangements joined in
a monopole fashion, i.e., with one connection, to circuits (C), thereby
forming OSCs. Simple OSC models are then related to the Tesla models
highlighting the operating principles.

II. Some Tesla OSCs

There are unifying physical themes present in Tesla OSCs and an-
tennas (Figures 1A-J). Figure 1A is the prototypical oscillator-shuttle
(which we shall call OS) with the common ground situated between two
inductances one of which is joined to a capacitive energy store indicated
by the circle. The OS, imbedded in conventional circuits, (which we shall
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refer to as Cs), (Figures 1B & 1C), we shall call an OSC. The frequency
of the OS becomes the signal frequency (β) for the pump frequency (α) of
the circuit, C, resulting in an idler frequency (γ) for the OSC, using the
signal, pump, idler nomenclature of the theory of parametric excitation.
However, as will be indicated below, this is a unique form of adiabatic
invariant parametric excitation and distinct from the conventional form
which requires energy expenditure in the signal as well as the pump. The
OSC only requires energy expenditure in the pump.

Figures 1D, E & F are further examples of OSCs in which the pri-
mary coil (our pump or circuit inductance) is wound around the sec-
ondary (our signal or OS inductance). In Figures 1G & H in a variation,
the signal, or secondary, OS inductance has two energy storage capac-
itors for shuttle operation and is coupled to the circuit by the primary
field alone.

Figures 1I & J are pancake antennas which utilize two principles
: (1) the OSC principle already discussed in which the pancake is an
inductance OS for energy storage in the pancake coil, and, in the case
of Figure 1J, even with a capacitance store at the vertex of the pancake
; and (2) E field overlap due to the in-plane winding of the pancake re-
sulting in a many-to-one mapping of E fields and a strict boundary con-
dition constraint. The pancake antenna is also a frequency-independent
antenna.

Figures 2A-G are OSC diagrams illustrating in a more simplified
fashion the principles exhibited in Figures 1A-J. Figure 2A represents the
design of Figures 1B & C ; Figure 2B represents polarization modulation
; Figures 2C & D represents Figures 1B & C ; Figure 2E represents
Figures 1G ; Figure 2F represents Figure 1H ; and Figure 2G represents
Figures 1I & J.

In the following section III, the pump, signal and idler fields of
the simplest, or Tesla, OSC are derived by a treatment in which the
OSC arrangement is treated as another method of energy crafting or
conditioning similar to waveguides or other field-matter interactions, i.e.,
with network theory subsumed under field theory.
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Figure 1.
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Figure 1bis.
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Figure 2.

III. Reactive versus resistive fields : analogy between oscillator-
shuttle-circuits and coherent coupling between modes in a non-
linear optical waveguide

The operation of a many-body Tesla OSC system can be described
by a model already used in nonlinear optics for describing radiation-
matter interactions. Specifically, there exists an analogy between Tesla
OSC theory and coherent coupling between modes in a nonlinear waveg-
uide.

One can commence with the Maxwell’s equations :

∇× E = −iωµ0H (1)

∇×H = iωD (2)

∇ ·D = 0 (3)

∇ · µ0H = 0 (4)
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and
D = εE, (5)

if no free charge density is present and the medium is isotropic. By
setting

µ0H = ∇×A (6)

and introducing this into the first Maxwell equation gives :

∇× (E + iωA) = 0 (7)

Therefore E + iωA is the gradient of a scalar potential φ :

E = −iωA−∇φ.

Introducing this into the second Maxwell equation gives :

∇× (∇×A) = ω2µ0εA− iωµ0ε∇φ. (9)

Using the identity for curl A, gives :

∇2A = −ω2µ0εA+∇[∇ ·A+ iωµ0εφ]− iωµ0φ∇ε. (10)

Using the Lorentz gauge :

∇ ·A+ iωµ0εφ = 0 (11)

and with no source terms, gives :

∇2A+ ω2µ0εA = 0, (12)

which permit solutions of the form :

A = xψ(x, y) exp[−iβz], (13)

A = yψ(x, y) exp[−iβz], (14)

for media uniform along the z-direction. The scalar function then obeys
the scalar wave equation :

∇2
Tψ + (ω2µ0ε− β2)ψ = 0, (15)
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where
∇T = x∂/∂x+ y∂/∂y. (16)

From equ.s (8) and (11) we have :

E = −iωA− i∇(∇ ·A)/ωµ0ε, (17)

and the E and H fields for the x-polarized vector potentials are :

E = −iω[x(ψ + (1/ω2µ0ε)∂
2ψ/∂x2) + y(1/ω2µ0ε)∂

2ψ/∂x∂y

− i(βz/ω2µ0ε)∂ψ/∂x]
(18)

µ0H = ∇×A = [−x×∇T + iyβ]ψ exp(−iβz). (19)

The fields for the y-polarized vector potentials are similar.

We now introduce the impedance changes in a Tesla OSC, or the
equivalent of a device nonlinear second-order susceptibility tensor χ(2)

due to the electrical control field and the particular waveguide condi-
tionings of an OSC. (Higher-order device nonlinearities are considered
below). If the frequency of the control or signal fields is designated : ωs

and that of the pump field is ωp, then the impedance change caused by
the signal or control field is :

∆Zr = Z0χ
(2)E(ωp)E∗(−ωs), (20A)

∆Zi = Z0χ
(2)E(ωs)E

∗(ωs), (20B)

where Z, the complex impedance is :

Z(iω) = R+ i(ωL− 1/ωC),

with magnitude :

Z =
√

[R2 + (ωL− 1/ωC)2].

With the signal or control field defined :

E(ωs, t) = Es(t) exp[i(ωst− βst)], (21)

the pump field defined :

E(ωp, t) = Ep(t) exp[i(ωpt− βpt)], (22)
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and the two fields coupled by the OSC device-generated nonlinear sus-
ceptibility, the following changes in the impedance occur :

∆Zr = Z0χ
(2)E∗s (t)Ep(t) exp[i(ωp − ωs)t− i(βp − βs)t], (23A)

∆Zi = Z0χ
(2)E∗s (t)Es(t). (23B)

If χ(2) is purely real (inductive), then only phase changes are produced.
If χ(2) has an imaginary (resistive) component, then power transfer, and
even gain, can be obtained for one of the inputs.

The idler field (Tesla coil load output) is then :

Ei(ωi, t) =| Es(t) |2 Ep(t) exp[i(ωp − ωs)t− i(βp − βs)t]. (24)

where

(βp − βs)2 = [

∫
ω2µ0A

∗
0 ·∆Z ·Adl]/[

∫
A∗0 ·Adl]. (25)

and Es and Ep are defined by equ.s (17). Thus the three-body interactive
system of Ei, Es and Ep is defined in terms of the A vector potential :

Ei(ωi, t) = [| −iωAs(t)− i∇(∇ ·As(t))/ωµ0ε |2]

X[−iωAp(t)− i∇(∇ ·Ap(t)/ωµ0ε]

X exp[i(ωp − ωs)t− i(βp − βs)t]. (24)

The quaternionic impedance for the OSC is then :

Z1+i2Z2 = R1+i1(ω1L1−1/ω1C1)+i2(R2+i3(ω2L2−1/ω2C2)), (26)

where the subscripts on i1, i2 and i3 distinguish the separate field con-
ditioning of the waveguide-like properties of the OSC and the subscripts
on R, ωL and ωC distinguish circuit, C, elements (1) from oscillator-
shuttle, OS, elements (2). As the waveguide properties of circuits, C, (1)
are fundamentally different from oscillator-shuttles, OS, (2), distinguish-
ing the ix,y(=

√
−1, x, y = 1, 2, 3 . . . , ixiy = −iyix, ix anticommutes with

iy), is a necessary for distinguishing the OS and C dynamic interaction
of the OSC total arrangement.

The distinguishing characteristics of higher order OSCs is in analogy
to the dimensions of the number system. The dimensionality of the real
numbers is 20 ; of complex numbers is 21 ; of quaternions is 22 ; of



34 T. W. Barrett

Cayley numbers is 23 ; of “beyond Cayley numbers” is 24 ; etc. Each

number system has an OSC device analog associated with a higher-order

nonlinear susceptibility.

Quaternions are four-dimensional numbers. The Appendix reviews

quaternion number interactions and gives Equ.(24) in quaternionic form.

Figure 3 shows a mapping of a four-dimensional quaternionic signal in

three-dimensions (one dimension representing two). Similar arguments

apply to OSC for representations higher than quaternions, e.g., Cay-

ley numbers and involve higher order device nonlinear susceptibilities.

OSCs are shown in Figure 4A-C. Figure 4A is a quaternion OSC with di-

mension 22(SU(2) group symmetry), to which number associativity and

unique division applies, but commutativity does not apply. Figure 4B

is a Cayley number OSC with 23 dimension (SU(3) group symmetry),

to which unique division applies, but associativity and commutativity

does not apply. Figure 4C is a number of 24 dimension (SU(4) group

symmetry), to which neither associativity, nor commutativity nor unique

division applies.

Figure 3.
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Figure 4.

IV. The virtues of oscillator-shuttle-circuit (OSC) arrange-
ments

Among the many virtues, or beneficial applications of the OSC ar-

rangements, a nonexhaustive list would include the following :

1. Parametric pumping with a one-drive energy source system (fre-

quency of energy flow or power control, i.e., Manley-Rowe (1959) rela-

tions without an external drive other than a primary source). In contrast,

parametric pumping (three-wave mixing) in conventional circuit theory

is restricted to two active systems (pump and signal). Even in the case

of three-wave mixing in nonlinear optics, two beam sources are required

(cf Kaup, 1976, 1980 ; Zakharov & Manakov, 1976). The OSC arrange-

ment can also be contrasted with conventional harmonic generation, as

the idler frequency generated is controlled by choice of signal and pump

inductances which may not be harmonically related. In contrast to the

conventional, parametric pumping using OSCs requires only one active

system (the pump) permitting “energy bleeding” from that active sys-

tem. The total OSC power flow for the second-order OSC system, W ,
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is given by the Manley-Rowe relation (Manley & Rowe, 1959) :

W = {c2/2π)[{kpT,z cos2 αp | EpT |2 /ωp}+ {ksT,z cos2 αs | EsT |2 /ωs}
+ {kiT,z cos2 αi | EiT |2 /ωi}],

(27)

where kpT,z, ksT,z, kiT,z are the phases of the pump, signal and idler.

EpT , EsT , EiT are the total transmitted energies, i.e., the powers,

of the pump, signal and idler.

αp, αs, αi are the angles between ET (ωi) and ET⊥(ωi).

That is, whereas the power, W , is an adiabatic invariant for OSC

arrangements, it is not for conventional parametric circuits which require

an external signal power source. In the case of conventional parametric

circuits the Manley-Rowe relation applies to a conventional circuit and

its power source, together with an external signal power source, i.e., the

application is to a nonadiabatic device.

Higher-order OSC arrangements permit more complex dynamics.

For example, due to parametric processes, third-order OSC device non-

linear susceptibilities permit “phase conjugate mirror” –like signal recep-

tion and communication with cancellation of noise-in-medium similar to

that achieved with phase conjugate mirrors based on radiation-matter

interaction.

2. E field control (energy per cycle (Joules/cycle)control). The OSC

principles permit E field control as exhibited in frozen Hertzian wave

generation (Figure 5) (For frozen Hertzian wave generation cf: Cronson,

1975 ; Zucker et al, 1976 ; Proud & Norman, 1978 ; Mathur et al, 1982

; Chang et al, 1982, 1984).



Tesla’s nonlinear oscillator-shuttle-circuit (OSC). . . 37

Figure 5.

3. Phase modulation at rates greater than the carrier (phase control)
is permitted by OSC arrangements because the OS or signal circuit is
contrained always to be the signal oscillator –the load or idler always
being a function of the circuit, C. Therefore even if the signal frequency
of the OS is a higher frequency than that of pump signal of the primary,
the power flow to the idler will be a modulation of the primary or pump
frequency, rather than a modulation of secondary or signal frequency.

4. Noise reduction in communications transmission due to condi-
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tioning of fields in higher order symmetry form (noise control). As an
output from an OSC, i.e., a transmitted wave, is in higher-order group
symmetry form (see section III above) and such higher-order symme-
tries have a low probability of occurrence naturally, environmental noise,
which is of lower symmetry form (usually, U(1)) and has a high prob-
ability of natural occurrence, will be excluded from a receiver designed
for OSC transmitted wave reception. Therefore in the case of commu-
nications, less noise will be processed statistically at a receiver designed
for SU(2) or higher group symmetry operation, resulting in enhanced
signal-to-noise.

5. A similar statistical argument holds for less loss in power
transmission by higher-order symmetry energy crafting or conditioning.
Higher-order group symmetry “receivers” will have enhanced reception
over lower-order receivers, i.e., leakage to ground.

The type of antenna to be used with OSC devices is a small loop
antenna which has an inductive reactance (cf. Smith, 1988). Such an-
tennas are the dual of a short dipole which has a capacitative reactance.
Thus a small loop antenna can be substituted for the β inductance of
the OSC of Fig. 4A, for the ε or δ inductances of Fig. 4B, and for the ψ
or ε inductances of Fig. 4C. Such antennas could be used in either the
send or receive operation modes and the OSCs would function as “active
media”.

V. Appendix

Quaternions-overview

The algebra of quaternions is the even subalgebra of a three-
dimensional Clifford algebra with Euclidean metric. A quaternion is
:

x = x0l + x1i+ x2j + x3k,

where the scalar multiplication is :

cx = cx0l + cx1i+ cx2j + cx3k,

and the sum is :

x+ y = (x0 + y0)l + (x1 + y1)i+ (x2 + y2)j + (x3 + y3)k.
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The product is :

xy =(x0y0 − x1y1 − x2y2 − x3y3)l + (x0y1 − x1y0 − x2y3 − x3y2)i

+ (x0y2 + x2y0 + x3y1 − x1y3)j + (x0y3 + x3y0 + x1y2 − x2y1)k,

and
i2 = j2 = k2 = −l2,
li = il = i , lj = jl = j,

lk = kl = k , ij = −ji = k,

jk = −kj = i , ki = −ik = j.

The set of quaternions is a division ring. It satisfies all the axioms for a
field except the commutative law of multiplication.

Let : x = Ex exp[iωxt− βyt], y = Ey exp[iωyt− βyt], and

x = x0l + x1i+ x2j + x3k,

y = y0l + y1i+ y2j + y3k.

then :
[x, y] = xy − yx,

[x, y] =


0 y1x2 − x1y2 x0y2 − y0x2 y3x2 − x3y2

x1y2 − y1x2 0 y0x1 − x0y1 x1y3 − y1x3
y0x2 − x0y2 x0y1 − y0x1 0 y0x3 − x0y3
x3y2 − y3x2 y1x3 − x1y3 x0y3 − y0x3 0


If

x0 = E∗s exp(iωst) , x1 = Es exp(iβst),

x2 =
√
Ep exp(iωpt) , x3 =

√
Ep exp(iβpt),

then

x = x0x1x2x3 =| Es |2 Ep[exp[i(ωp − ωs)t− i(βp − βs)t]]

or Equ.(24) of the text.
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