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ABSTRACT. A ‘minimal’ statistical interpretation (MSI) of quan-
tum mechanics (QM) resting on two postulates (the postulate of
the fundamental character of the concept of statistical ensemble in a
probabilistic theory and de Broglie’s postulate asserting objective ex-
istence of positions of microparticles) makes possible the obtaining of
nontrivial physical results in the frame of Dirac’s dynamics. Namely,
our consideration gives a ‘vivid’ confirmation of Schrödinger’s state-
ment on the existence of two kinds of velocities in the relativistic
spin-1/2 case : micro and macrovelocities. Heisenberg’s position-
momentum uncertainty relation is shown to apply to an ensemble of
macrovelocities, so that the idea of the possible coexistence of posi-
tions, velocities and wave-like properties of individual microparticles
finds a definite support in our approach. It is demonstrated too that
measurement is, generally, a noninstantaneous procedure in QM as
a consequence of the very dynamics of the theory. Interpretational
difficulties connected with the definition of an acceptable position
operator and with a theorem due to Hegerfeldt are easily resolved
in the context of the MSI when applied to the case of relativistic
spin-1/2 particles.

RESUME. Une interprétation statistique “minimale” (MSI) de la
mécanique quantique, reposant sur sur 2 postulats (le postulat du
caractère fondamental du concept d’ensemble statistique dans une
théorie probabiliste et le postulat de De Broglie affirmant l’existence
objective des positions des corpuscules) permet d’obtenir des résultats
physiques non triviaux dans le cadre de la dynamique de Dirac.
En effet, nos raisonnements donnent une confirmation frappante de
l’énoncé par Schrödinger de l’existence de deux sortes de vitesses
dans le cas relativiste à spin 1/2: vitesses micro- et macroscopiques.
On montre que la relation d’incertitude d’Heisenberg sur la position
et l’impulsion s’applique à un ensemble de vitesses macroscopiques,
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de sorte que l’idée de la coexistence possible de positions, de vitesses
et de propriétés ondulatoires de corpuscules individuels trouve con-
firmation dans notre approche. On démontre aussi que la mesure
est, en général, un processus non instantané en mécanique quan-
tique, en conséquence de la dynamique même de la théorie. Les
difficultés d’interprétation reliées à la définition d’un opérateur de
position acceptable et à un théorème dû à Hegerfeldt sont aisément
résolues dans le contexte de la MSI, quand on les applique au cas
des particules relativistes de spin 1/2.

I. Introduction and preliminaries

The MSI of QM, set forth in refs. [1a,b,c], represents a variant of
the so called Statistical Interpretation (SI) of QM. The latter term en-
compasses, in fact, a number of different interpretations of QM some of
which were considered in [1]. The common feature of most of them is
that wave-like and particle-like properties of the QM object (micropar-
ticle) are not mutually exclusive but coexist. This idea is most clearly
expounded, in our opinion, in the works of its inventor L. de Broglie
(cf., say, refs. [2-4], and also [5]). According to him the QM object
represents a ‘core’ (of very small dimensions and carrying practically the
entire mass of the particle) imbedded in a wave process with which it
interacts. These two components of the QM object serve to explain,
respectively, its particle-like (local point-like) and wave-like (non point-
like) properties that exist simultaneously in the above picture. The MSI
too adopts the idea that microparticles objectively possess a character-
istic that may be called “position”. In fact, this interpretation rests on
two basic postulates :

P1. (the fundamental postulate of any SI) Any physical theory of a
statistical (stochastic, probabilistic) nature must essentially employ the
concept of a relevant statistical ensemble of noninteracting copies of a
given physical situation to which the statistical predictions of the theory
apply.

P2. (de Broglie’s postulate) A (reasonably) well defined position at
every moment of time objectively exists for any microparticle.

(The present author does not insist on P2 in the case of massless
‘particles’. The present paper deals with massive spin-1/2 particles).

Besides, we shall adhere to the interpretation of |ψ(~r, t)|2 as the
position density distribution at point ~r and moment t. (In Dirac’s
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case |ψ(~r, t)|2 = ψ+(~r, t)ψ(~r, t) =
∑4
i=1 ψ

∗
i (~r, t)ψi(~r, t), where ψi(~r, t),

i = 1, . . . , 4, are the four components of 4-spinor ψ). But, as a conse-
quence of P2, |ψ|2 is no longer just the probability density to find the
particle at point ~r in an act of position measurement at moment t as the
Conventional Interpretation (CI) insists (which implies a sudden reduc-
tion to pointlike dimensions at moment t of a strange, indefinite object
–the microparticle of the CI). Rather, |ψ|2 is the actual, objective posi-
tion density distribution ρQ(~r, t) in the ‘cloud’ representing the quantum
ensemble (q-ensemble) corresponding to the given situation according to
P1. In other words, in the MSI |ψ|2 is the probability density for the
particle to be at point ~r at moment t, position measurement being only
a check-up of an objectively existing magnitude.

To summarize, in the MSI positions objectively exist at any moment
t and probabilities refer to q-ensembles of systems and not necessarily to
individual systems.

A natural question arises at this point : some of the existing models
[6-13] (the recent refs. [10-13] dealing precisely with the spin-1/2 rel-
ativistic case) not only incorporate the above assumptions but contain
additional physical hypotheses too concerning possible properties of the
subquantum level, the role of the so called quantum potential, etc. One
might then get the impression that the MSI is just a truncated vari-
ant of the more detailed approaches and ask why is it necessary ? The
answer may be found in [1] : such models essentially rest on the quan-
tum potential concept that appears in a Hamilton-Jacobi type primary
picture of particle ensemble motions in which position(s) and time de-
termine uniquely particle velocities. The quantum potential so obtained
possesses certain unusual properties that are difficult to reconcile with
physical intuition [1]. Even more, certain recent developments of such SIs
[14] interpret “with causal nonlocal superluminal quantum potential in-
teractions the EPR paradox, quantum statistics and N -body behaviour
in E4...”) Having in mind, however, that nonlocality appears sometimes
to be just seeming [1c] and that a more general Liouvillian picture (in
which the ~v-distribution can be an arbitrary nonsingular function of ~v
at a given moment t and position ~r) makes possible the discerning of
classical-type ensemble motions without the necessity of a recourse to
the quantum potential concept (as inferrable from the discussion in [1b],
p.p. 368-9, and [1c]), we find no warrant for the sound character of ‘non-
minimal’ statements as that just cited and should not like to connect the
discussion of important problems as the conceptual admissibility of ~r−~v
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coexistence with the quantum potential conception. The MSI offered
here is meant exactly as such an approach.

In order to find an answer to the problem of interest within the
frame of the MSI one should keep in mind that position ~r and velocity ~v
are concepts of a classical type. One should therefore examine first the
consequences of ~r−~v coexistence in a classical ensemble (c-ensemble) of
noninteracting “copies of the same particle” and then compare the results
with those for a corresponding q-ensemble of particles (cf. requirement
P1 and ref. [1a]). So examine a c-ensemble whose characteristic spread
in ~r-space about an ‘average’ point ~r = ~a at the initial moment t = t0 is
of the order of d0 (denoted as ∼ d0 ; for convenience we choose t0 = 0
and ~a = 0). Irrespective of the character of the initial ~v-distribution (at
t = 0), one can measure it by employing, say, the following prescription
: Remove all external physical fields so that they be zero in the entire
interval 0 < t < ∞. The c-ensemble will then evolve freely (with an
unvarying ~v-distribution) at t > 0 and at sufficiently large t velocity will
be obtainable to an arbitrarily high precision from formula ~vt = ~rt/t,
~rt being the objective position of the measured particle at moment t.
(The error ∼ d0/t in this definition of ~v will tend to zero as t → ∞).
An indication that t is ‘sufficiently large’ would be a t−3-law for position
density ρC(~rt, t) at the movable point ~rt = ~vt for practically all values
of ~v. Indeed, in ~v-space almost all the particles possessing velocities
inside a small volume ∆3v = ∆vx∆vy∆vz enclosing a given ‘point’ ~v
will be located in volume ∆3rt = t3∆3v in ~r-space at sufficiently large
t (corresponding to sufficiently large distances |~rt| = dt � d0 from the
origin). The above method of ~v-measurement is known as the time-of-
flight technique. It rests on the c-ensemble picture since a ‘snapshot’ of
positions at large t’s would simultaneously be a ‘snapshot’ of coexisting
velocities which are automatically derivable from position values using
the one-to-one law ~rt = ~vt of ~r − ~v correspondence.

Clearly, due to the objective character of position density in the
MSI (cf. P2), ~r − ~v coexistence in QM, if admissible, must entail an
anlogous behaviour of |ψ(~r, t)|2 at t → ∞. Our problem can therefore
be reformulated here as a check-up of the possibility to employ time-of
flight velocity measurement technique in the case of relativistic spin-1/2
particles. There are two points that should be kept in mind in the way :

(1) In c-ensembles with a one-to-one ~r − ~v correspondence position
density ρC(~rt, t) (~rt = ~vt) and velocity density RC(~v) (t-independent for
free motion) are linked via formula

ρC(~rt, t)∆
3rt = RC(~v)∆3v , ∆3rt = t3∆3v (1.1)
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In such a way only one of the distributions ρC and RC may be treated as
independent, the other being a direct consequence of the ‘independent’
one. The combination of P2 with the MSI of |ψ(~r, t)|2 imparts special
significance to position distribution in QM, so in the case of an admissible
~r−~v coexistence velocity (equivalently momentum) QM distributions will
be a consequence of position distribution in the limit of large t. Denoting
by ∆Pt the position probability assigned to volume ∆3rt at moment t
and having in mind the above consideration we see that ~r−~v coexistence
in the MSI would entail formula

RQ(~v) =
1

∆3v
lim
t→∞

t3
∫

∆3v

|ψ(~vt, t)|2d3v = lim
t→∞

∆Pt/∆
3v (1.2)

for the QM velocity distribution RQ(~v) under our assumptions t0 = 0,
~a = 0 (see above) ; each one of the ∆v’s in ∆3v = ∆vx∆vy∆vz is
arbitrarily small, i.e. ‘infinitesimal’. In such a way t-independence of
the r.h.s. of (1.2) in the limit t → ∞ would indicate admissibility of
the ~r − ~v coexistence conception, whereas its numerical value makes
possible a check-up of the validity of the QM postulate on momentum
distribution in an arbitrary state (normalized to unity) by comparing
this value with the one predicted by QM. We shall see below that the
two values coincide. (Cf. also ref. [1] for a nonrelativistic treatment of
this problem).

(ii) Eventual ~r−~v coexistence would mean in no way that we treat
QM particles as simple material pints of a classical kind. (As we know,
QM particles possess nonlocal properties, de Broglie’s model offering
one of the possible variants of explaining these). The QM particle may
perform a complicated, e.g. ‘trembling’, motion due to its complex struc-
ture even in the absence of external force fields, so its velocity measured
by the time-of-flight technique in the limit t → ∞ would generally be
a macroscopic (time-averaged) velocity, having little in common with
its microvelocity (i.e. the objective velocity of the particle’s ‘core’ in
models as de Broglie’s, which velocity exists as a direct consequence of
P2). Schrödinger [15] was the first to discern between these two possible
velocity characteristics of the relativistic spin-1/2 QM particle (and to
introduce the very concepts of macrovelocity and microvelocity) as he
noticed the possibility of a ‘Zitterbewegung’ of the particle in the dy-
namics of the Dirac equation. (The main features of this consideration
are reproduced in Dirac’s book [16]). Schrödinger’s discussion was based
on examining operator average values. Our consideration will produce a
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more direct picture of what happens by examining position density itself
at suitable moving imaginary points in ~r-space. We shall see that the
~r-distribution of free spin-1/2 relativistic particles has an almost regu-
lar ‘pulsating structure’ along an arbitrary chosen axis in ~r-space in the
limit of large t in marked contrast with the classical case (and also with
the case of relativistic spin-0 QM particles, as it will be shown in a future
paper), where ~r-distributions are practically uniform in this limit.

II. Position-velocity coexistence for Dirac particles

We shall carry out here the program set forth in Sec. I.

In the system of natural units h̄ = c = 1 Dirac’s equation for 4-
spinor ψ(~r, t) reads [17]

(−iγµ∂µ +m)ψ(X) = 0 (2.1)

in the absence of potential fields ; here µ = 0, 1, 2, 3, X = (xµ) =

(x0, x1, x2, x3) = (t, x, y, z), γ0 = β, γk =

(
0 σk
−σk 0

)
, k = 1, 2, 3, σk

being the well known Pauli matrices and the signature of the metric
tensor being, as usually, (+−−−). The solution of eq. (2.1) under the
initial condition ψin = ψ(X ′) = ψ(~r′, 0) may be represented at t > 0 as
[17]

ψ(X) = −i
∫
S(X −X ′)γ0ψ(~r ′, 0)d3r′, (2.2)

where
S(X) = −(iγµ∂µ +m)∆(X) (2.3)

and, at t > 0,

∆(X) = − 1

2π
[δ(X2)− m2

2
θ(X2)

J1(m
√
X2

m
√
X2

], (2.4)

where X2 = xµxµ, θ is the well known function θ(ξ) = 0, ξ < 0, θ(ξ) = 1,
ξ > 0, and J1 –the Bessel function of index 1.

For simplicity, we shall examine first the case of an arbitrary Dirac
state ψin with sharp boundaries, that is ψin = 0 outside a region of
a finite ‘diameter’ d0 in ~r-space. (The generalization of the results to
arbitrary ψin is given in the Appendix). Having in mind that, by the very
sense of the problem, one is interested in |ψ(~r, t)|2 at positions ~r = ~vt,
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|~v| < 1, that vary linearly with t (cf. Sec. 1), one easily sees that in this
case the δ-function may be replaced by zero and θ-by unity in eqs. (2.3)
and (2.4) at sufficiently large t. Consequently, at these t,

ψ(~vt, t) =
im

4π

[
i(γ0 ∂

∂t
− γ1 ∂

∂(vxt)
− γ2 ∂

∂(vzt)
− γ3 ∂

∂(vzt)
+m

]
·∫

J1[m(t2 − (~vt− ~r ′)2)1/2]

(t2 − (~vt− ~r ′)2)1/2
γtψ(~r ′, 0)d3r′

(2.5)

(Operator ∂/∂t, certainly, does not act on the terms under the square
root containing ~vt). In the limit t→∞ the argument of J1 will be large
and one may employ the well known asymptotic expression

J1(κ) = (2/πκ)1/2 cos(κ− 3π/4) +O(1/κ3/2) (2.6)

for J1 at large κ = m[t2 − (vt − r′)2]1/2 ; as usually, O(ξ) denotes a
magnitude for which ξ−1O(ξ) is bounded as ξ →∞.

The volumes ∆3rt and ∆3v of interest were defined in Sec. 1. One
may easily see that our consideration leads to two kinds of terms in
volume ∆3rt : (ess)-terms that are essential in the formulae adduced
below and (inf)-terms that can be neglected compared to (ess)-terms
having in mind that we are interested in (arbitrarily) large t and in-
finitesimal ∆vx,∆vy,∆vz. [The (inf)-terms contain higher-order powers
of 1/t and ∆vi compared to the (ess)-terms]. Choose, for convenience,
the positive z-axis along the direction of the given velocity ~v of interest,
i.e. ~v = (0, 0, v). One can see then that the partial derivatives with
respect to (vxt) and (vyt) in eq. (2.5) as well as ∂ψ(~vt, t)/∂(vxt) and
∂ψ(~vt, t)/∂(vyt) at point ~r = (0, 0, vt) are (inf)-terms compared to the
corresponding partial derivatives with respect to t and (vzt) = (vt). This
means, in particular, that the behaviour of ψ(~vt, t) resembles more and
more closely that of a ~v-directed plane wave in the vicinity ∆3rt of ~rt = ~vt
(for an arbitrary ~v) as t→∞. On the other hand, at our specific choice of
the z-direction, one obtains in this limit expressions for sin(κ−3π/4) and
cos(κ−3π/4) of the kind sin(·) ≈ sinαt cos(mvz′/w)+cosαt sin(mvz′/w)
(an analogous formula holding for cos(·)), where w = (1 − v2)1/2,
α = mw− 3π/4t, (inf)-terms being disregarded. Having all this in mind
and, besides, the fact that mv/w = pz = p (p thus being the relativistic
momentum) and introducing two four-component magnitudes F (p) and
G(p) (with components Fν(p), Gν(p), ν = 1, . . . , 4) via

F (p) = (2π)−3/2

∫
ψ(~r ′, 0) cos pz′d3r′ (2.7)
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G(p) = (2π)−3/2

∫
ψ(~r ′, 0) sin pz′d3r′ (2.8)

one arrives, up to (inf)-terms, at

|ψ(0, 0, vt, t)|2 =

(m/t)3w−5

{
F+F +G+G− 2w Im(F1G

∗
1 + F2G

∗
2 − F3G

∗
3 − F4G

∗
4)

+ 4vRe
[
(F ∗1 F3 − F ∗2 F4) sin2 αt+ (G∗1G3 −G∗2G4) cos2 αt

]
+ v cos 2αt

[
v(G+G− F+F ) + 2w Im(F3G

∗
1 − F1G

∗
3 + F2G

∗
4 − F4G

∗
2)
]

+ 2v sin 2αt
[
vReF+G+ Re(F ∗1G3 + F3G

∗
1 − F4G

∗
2 − F ∗2G4)

+ w Im(F ∗1 F3 − F ∗2 F4 +G1G
∗
3 −G2G

∗
4)
]}

(2.9)
We are interested in fact in the time-behaviour of the total probability

∆Pt = t3
∫

∆3v

|ψ(~vt, t)|2d3v (2.10)

for objective particle position (P2) inside volume ∆3rt = t3∆3v (cf. Sec.
1). Having in mind that, in this volume and in the limit of large t,
|ψ(~vt, t)|2 is practically constant in the plane perpendicular to ~v (in our
case the (x, y)-plane or, more precisely, the points in this plane whose
distance from the z-axis is � vt), one obtains that, up to (inf)-terms,

∆Pt = t3∆vx∆vy

∫ v+∆v

v

|ψ(0, 0, vt, t)|2dv (2.11)

In order to carry out the integration in eq. (2.11), examine expression
(2.9) for |ψ|2 in the limit t→∞. At such t the integration of the terms
containing sin 2αt and cos 2αt will obviously give a result that tends to
zero due to their fast oscillations as functions of vz = v (∆vz = ∆v
being fixed and F , G being regarded as practically constant in interval
∆v, which can always be achieved for sufficiently small ∆v′s), whereas
sin2 αt and cos2 αt should be replaced, up to (inf)-terms, by their average
values = 1/2. One thus obtains

∆P = lim
t→∞

∆Pt

= mw−5∆3v[F+F +G+G+ 2vRe(F ∗1 F3 +G∗1G3 − F ∗2 F4 −G∗2G4)

− 2w Im(F1G
∗
1 + F2G

∗
2 − F3G

∗
2 − F4G

∗
4)]

(2.12)
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(up to (inf)-terms and for an argument p of F and G).

In such a way the averaging of the fastly varying in the ~v-direction
microscopic density |ψ(~vt, t)|2 (t → ∞) over volume ∆3rt containing
point ~rt = ~vt yields in ∆3rt a suitable average position density distribu-
tion

< |ψ(~vt, t)|2 >∆3rt= ∆Pt/∆
3rt (2.13)

for which ∆Pt is time-independent at large t. As we know from Sec.
1 this is nothing else than objective position-macrovelocity coexistence
for Dirac particles. But inspection of the precise microscopic expression
(2.9) for the position density of free Dirac particles reveals a fundamental
difference between their motion and that of simple relativistic classical
points of the same mass : |ψ(0, 0, vt, t)|2 generally possesses an almost
regular ‘fine structure’ along z, consisting of a set of pulsations of a
very slowly varying period with distance at any given sufficiently large
moment t, a structure of this sort being certainly absent in the classical
case as pointed out in Sec. 1. Besides, one may notice that, up to
a factor of t−3, |ψ|2 possesses a practically regular time-structure too
about point ~rt = ~vt in the limit of large t as it undergoes pulsations
of angular frequency 2m(1 − v2)1/2. Both these kinds of pulsations are
superimposed on a ‘stable’ background = (m/t)3w−5[F+F + G+G −
2w Im(F1G

∗
1 + F2G

∗
2 − F3G

∗
3 − F4G

∗
4)]. We shall return to this shortly.

What should be evident from the above brief remarks is that free Dirac
particles do not move in a simple uniform fashion.

It remains now to check the validity of the QM postulate on velocity
distribution in Dirac’s case, i.e. to check whether

R′Q(~v) = RQ(~v) = ∆P/∆3v (2.14)

where R′Q(~v) is the velocity distribution obtainable from the QM postu-
late on ~p-distribution, and RQ(~v) and ∆P are defined by eqs. (1.2) and
(2.14), respectively. In order to do this recall that the QM momentum
distribution postulated for spin-1/2 particles is defined as

R′Q(~p) =

4∑
i=1

|a(i)(~p)|2 (2.15)

where

a(i)(~p) = (2π)−3/2(
Ep +m

2Ep
)1/2

∫
u(i)+(~p)ψ(~r ′, 0)e−i~p~r

′
d3r′ (2.16)
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Ep denoting the positive magnitude (m2 + p2)1/2, the conjugate spinors
u(i)+(~p)(i = 1, . . . , 4) being given (for the z-directed momenta ~p =
(0, 0, p) of interest) by

u(1)+(~p) = (1, 0, p/(Ep +m), 0) , u(2)+(~p) = (0, 1, 0,−p/(Ep +m))

u(3)+(~p) = (−p/(Ep +m), 0, 1, 0) , u(4)+(~p) = (0, p/(Ep +m), 0, 1)
(2.17)

(As well known, u(1) and u(2) are employed in the case of positive energy
Ep = Ep and helicity ±1, respectively, while u(3) and u(4) correspond to
negative energy Ep = −Ep and helicity ±1, respectively ; as always
nowadays, the negative Ep are treated just as certain quantum numbers
and not as actual energies).

Having in mind that in the case of negative Ep the direction of ~p is
opposite to that of the corresponding velocity [17] (Pauli was probably
the first to notice this as it may be infered from a remark of O. Klein
[18]), we see that the density of interest is not R′Q(~p) (2.15) but

R′′Q(~p) = a(1)(~p)2 + a(2)(~p)2 + a(3)(−~p)2 + a(4)(−~p)2 (2.18)

since, for a fixed |~p|, the four terms in the r.h.s. of (2.18) correspond to
the same velocity ~v. Applying (2.16) (with momentum ~p for i = 1, 2 and
−~p for i = 3, 4) and equality R′Q(~v) = (m3/w5)R”Q(~p), one can calculate
R′′Q(~v) in a straightforward manner. The result coincides precisely with
the content of eq. (2.14). Q.E.D.

The above results, obtained for spinors ψ with sharp boundaries in
position space, are generalized for arbitrary initial states ψ(~r, 0) in the
Appendix.

Let us return once again to the microscopic formula (2.9) for
|ψ(~vt, t)|2, ~vt = (0, 0, vt), which expression is valid now for an arbi-
trary initial state, normalized to unity. A straightforward computation
employing definition (2.16) shows that if the initial state is composed of
free-motion eigenfunctions corresponding to energies of a fixed sign only,
any ‘fine structure’ along z for the chosen (arbitrary) direction of the
z-axis will be absent in the limit t→∞. In the case when ψ(~r, 0) incor-
porates Ep ’s or both signs the said structure will necessarily be present
in the asymptotic form of |ψ(~r, t)|2, t → ∞. Its period δz(v) along z is
constant for all practical purposes for such t and is determined by the
requirement on the phase of sin 2αt and cos 2αt to undergo a variation
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= 2π along δz(v) at the given moment t. (Recall that we are interested
in values z = zt = vt, so that δz(v) = tδv). For the corresponding
δv � ∆v � v this requirement leads to

δv = (1− v2)1/2/mtv (2.19)

Consequently, the δz(v) in question is time-independent and equal to

δz = (1− v2)1/2/mv = λ(p)/2, (2.20)

where λ(p) is easily seen to be de Broglie’s wave length corresponding
to relativistic momentum p = mv/(1− v2)1/2. (Note in passing that, in
our units, 1/m is equal to the Compton wave length, so for the larger
part of interval 0 ≤ v < 1 the characteristic length δz in (2.20) will be
∼ 1/m. One should not interpret, however, 1/m as an actual ‘diameter’
of the spin-1/2 particle since the actual characteristic length in fact is
λ(p)/2 and it indefinitely increases as v → 0. Note also that even if one
would interpret δz(v) as a certain unavoidable indefiniteness of position
along z, the product δzδv of position-macrovelocity ‘uncertainties’ can
be made arbitrarily small at large t since δz(v) is t-independent, whereas
δv ∼ 1/t –cf. (2.19)).

In such a way what actually happens in the volume ∆3rt of interest
is, generally, the following. We have a set of pulsations of |ψ|2 there,
whose period along z is a very slowly varying function of z about any
point zt = vt, t → ∞, the structure of each individual period of |ψ|2
becoming more and more regular in this limit due to the dying-off of
‘deforming’ (inf)-terms with the course of time. At the same time, the
number of the pulsations of |ψ|2 in ∆3rt indefinitely increases as t→∞
which leads to the appearing of a well defined averaged density (2.13)
in ∆3rt. Obviously, the same value (2.13) can be obtained by averaging
over a single period in ∆3rt at t→∞.

As for the time-pulsations of |ψ(~vt, t)|2 about the movable (imagi-
nary) point ~rt = ~vt in ~r-space, their angular frequency ω(v) is equal, in
the usual Gaussian units, to

ω(v) = 2mc2(1− v2/c2)1/2/h̄ (2.21)

and they will also exist only when Ep’s of both signs participate in ψ(~r, 0).
ω(v) can be interpreted in a straightforward fashion : ω(0) = 2mc2/h̄
is a characteristic frequency in the frame of reference K0 in which the
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particle is, on the average, at rest, so in our frame of reference in which
K0 moves with velocity v along z the frequency will undergo relativistic
time-contraction given by the well known factor (1− v2/c2)1/2.

Clearly, both δz(v) and ω(v) represent certain characteristics in
space and time of the Zitterbewegung in our ensemble picture. As men-
tioned, they are more immediate and concrete than those obtained by
examining the time-evolution of QM operators and their average values
(loc. cit.).

III. Discussion and conclusion

The admissibility of objective ~r − ~v coexistence is rejected in the
CI on the basis of arguments as the well known one due to Heisen-
berg (discussed, say, by Ballentine [19] and, in detail, by Jammer [20]).
Heisenberg maintains that apparent ~r − ~v coexistence refers only to the
past (with regard to the moment of measurement) but not to the re-
sults of realizable measurements themselves which must always respect
inequality

δzδpz ≥ h̄/2 (3.1)

[δz = (< z2 > − < z >2)1/2 and δpz = (< p2
z > − < pz >

2)1/2],

so “Occam’s razor” cuts off the ~r − ~v coexistence idea as superfluous.
Clearly, arguments of this sort are purely philosophical, hence a matter
of taste. From such a general standpoint our argument represents a
counterargument suitable for different tastes. We shall enumerate and
discuss here some of its advantages.

(i) It preserves essential features of the usual image of massive par-
ticles and at the same time enters in no contradiction with the QM
postulate on momentum distribution, explaining at that its macroscopic
essence. The MSI thus implies in a manner avoiding the unacceptable
features of its ‘nonminimal’ alternatives that the typical QM properties
of microparticles should not necessarily be attributed to qualities that
transcend human imagination.

Indeed, we saw that the momentum (equivalently velocity) distri-
bution predicted by the QM postulate for spin-1/2 particles is ‘visible’
in a ‘snapshot’ of objective (P2) position distribution at t → ∞, thus
referring to an ensemble of macroscopic velocities. At that, the prod-
uct δzδv can be made arbitrarily small for individual macrovelocities as
demonstrated in the discussion of eqs. (2.19) and (2.20). Heisenberg’s
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uncertainty relation thus applies (as clear from the very ensemble essence
of the average magnitudes figuring in it) to the position-macrovelocity
distribution in the entire q-ensemble of interest but not to individual
simultaneous (~r,~v)-measurements which can be arbitrarily precise. Be-
sides, as postulate P2 turned out to be sufficient to make it possible to
discern the difference between macro- and microvelocities, one is justi-
fied in asserting that the q-ensemble macroscopic property expressed by
ineq. (3.1) would not necessarily come in contradiction also with the fact
that an individual microparticle which is pointlike all the time would au-
tomatically possess an objective trajectory. Indeed, the latter concept is
microscopic, hence outside the range of competence of ineq. (3.1). It is
thus more or less a matter of belief rather than of strict logic to rule out
the possibility of objective existence of trajectories on the basis of ineq.
(3.1).

(ii) Our consideration shows that time-of-flight technique is a per-
fectly lawful macrovelocity measurement procedure in the spin-1/2 case
too in the frame of relativistic dynamics. But it is not instantaneous as
the postulated procedures in the CI [21]. On the contrary, in order to
measure with the aid of this technique the momentum (or velocity) dis-
tribution assigned to ψ(~r, t0) (i.e. to state ψ at the initial moment t0) one
should only take care that no physical fields (if previously present) exist
at moment t ≥ t0 and, after a sufficiently large lapse of time that charac-
terizes the actual duration of the macrovelocity measurement procedure
one should just register the objective position (P2) of the particle. What
we have here is, therefore, a physical picture of a noninstantaneous, ob-
jective position evolution in a pertinent q-ensemble in which the very QM
dynamics of the physical system evinces with the course of time (thus
without any instantaneous state reductions at t0) a definite macrove-
locity distribution as a direct consequence of position distribution at
t → ∞. We thus arrive at a more general conception about measure-
ment of an arbitrary QM magnitude. Namely, measurement is generally
not carried out instantaneously at a given moment t0 of interest but
just begins at t0 by creating at t ≥ t0 suitable conditions for a definite
macroscopic evolution of the QM state, which requirement is necessary
for the very definition of the pertinent physical magnitude. (The concept
of macromomentum, say, by its very definition has, generally, no sense
at all at t0 or at moments t for which t− t0 is small enough to preclude
the fulfilment of the necessary requirement dt � d0). This conception is
pretty close to de Broglie’s conception on measurement [4,5] via suitable
position registering. An interesting difference from the outlook of the
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latter in the specific case examined is that one needs no special analyzer
in the time-of-flight setup [1] : empty space itself plays the role of an
analyzer here.

It should be mentioned, though, that in a very specific sense position
and velocity measurements may be thought of as incompatible given a
definite moment t0 of interest. Really, if one is interested in objective po-
sition at t0, one must measure it (quasi)instantaneously at that moment
whereas, as we know, velocity distribution assigned to ψ(~r, t0) is mea-
sured at t’s for which t− t0 →∞. But the above detailed consideration
shows that this ‘incompatibility’ has nothing to do with the incompati-
bility conception of the CI, being just a consequence of definitions that
would be essentially the same in c-ensemble velocity measurements by
the time-of-flight technique.

(iii) The MSI offers a certain resolution of long-standing difficulties.
Note first that de Broglie’s postulate P2, conjoined with the interpreta-
tion of |ψ|2 as the probability density of objective position, automatically
entails the interpretation of ~r as the position operator for relativistic
spin-1/2 particles too (which was also Dirac’s original idea). The latter
idea, however, was abandoned later on since it leads to serious set-backs
in the conventional approach. Indeed, if ~r is the spin-1/2 position oper-
ator, then d~r/dt should be the hermitean operator of velocity. But this
operator possesses unacceptable properties : its only eigenvalues along
a given axis are ±1(= ±c) and its components are noncommutative. So
numerous different proposals for presumably more correct position op-
erators were made but all of them turned out to possess unacceptable
properties as well [22].

However, the postulated objective character of particle position (en-
tailing the interpretation of ~r as the QM position operator) has proved
too useful in order to dismiss this conception easily. It was exactly
this idea that made it possible to obtain the above results and clarifi-
cations and, in particular, to present a vivid picture of the macroscopic
origin of the momentum operator ~̂p = −i∂/∂~r by imparting a more con-
crete meaning to earlier assertions about the character of the velocity
corresponding to ~̂p [15] or the connection of ~̂p with certain mean par-
ticle positions [23]. The probability density distribution |a(~p)|2 of the

physical magnitude macromomentum whose QM image is operator ~̂p
yields, in agreement with special relativity, zero probability measure for
velocities |~v| ≥ 1 in the necessarily macroscopic experiments evincing
‘uniform-velocity’ particle motions of a classical type. But P2 entails
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zero probability measure as well for particle positions that might imply
the existence of microvelocities |~vm| ≥ 1. Indeed, examine an initial
Dirac state ψ(~r, 0) with sharp boundaries (for which the Zitterbewegung
that is believed to be performed with the velocity of light will always be
conspicuous in the formulae of the theory). Eqs. (2.2-4) do not permit
velocities > 1 of the boundaries themselves, hence we have a zero value
at any t > 0 of the integral of |ψ(~r, t)|2 over the region in space that
lies outside the position of the boundaries at moment t, i.e. microveloc-
ities |~vm| ≥ 1 really possess zero probability in the ensemble picture. In
such a way the MSI resolves the difficulty by stating that ~r is a good
position operator whereas operator d~r/dt, obtained via a simple classical
analogy, is not a good velocity operator : it is neither proportional to
the macroscopically observable momentum operator −i∂/∂~r, nor does
Dirac’s dynamics itself give any evidence about the actual existence of
eigenvelocities ±1(±c) in any (macroscopic or microscopic) sense.

(One could preserve, at a will, the interpretation of d~r/dt as the
microvelocity operator only at the expense of revising other basic QM
postulates, in particular the one stating that the eigenvalues of any her-
mitean operator are observable in physical experiment. Let us point
out here that the existence of unobservable eigenvalues of QM operators
is characteristic of Dirac’s theory ; for instance, the existence of ener-
gies Ep < 0 for free particles has never been experimentally confirmed.
Note besides that Dirac’s thought measurement procedure [16] employ-
ing two successive position measurements on the same particle and aimed
at explaining why the Zitterbewegung velocity in state ψ should actu-
ally coincide with that of light is not correct from both the CI and SI
viewpoints : his first ~r-measurement would drastically modify ψ, so the
eventual result would have no relevance to state ψ).

The above discussion removes as well (at least for the case of free mo-
tion) another difficulty : the possibility for causality violation discussed
by Hegerfeldt [24,25]. Hegerfeldt adopts the usual idea that acceptable
one-particle states are only those corresponding to positive energy quan-
tum numbers, so our interpretation which rules out faster-than-light free
motions resolves Hegerfeldt’s alternative [24] by stating that states of the
said kind cannot be strictly localized in a given finite region of space –a
well known fact when ~r is treated (as we do) as the position operator.

(iv) Up to here we discussed local properties of particles in an en-
semble picture of their motion. As well known and mentioned above,
individual particles possess nonpoint-like properties too that determine
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regular diffraction patterns in the scattering of particles by crystal lat-
tices, etc. These properties also need consideration within the MSI. We
examine in a separate paper (submitted here) specific wave-like phenom-
ena on the simple example of nonrelativistic QM. (Wave-like properties
are of the same character in both relativistic and nonrelativistic QM).
It is shown there that the idea of unrestricted applicability of the QM
evolution equations entails the idea of an infinite range of the nonpoint-
like properties of individual particles. Physical intuition can hardly get
reconciled with this, so de Broglie [2] proposed an ideology in which his
well known wave attached to each particle is of a finite range and satis-
fies (by hypothesis) a nonlinear equation of motion. Interesting enough,
analogous conclusions can be made on the basis of an additional local-
ity postulate (Einstein’s postulate) with the aid of which the present
author arrived at certain interpretational results on measurement and
time-irreversibility [26]. A more detailed account of such an enlarged
MSI will be given in a future review paper. What should be emphasized
here is that, even within the frame of the present MSI, one encounters es-
sential differences in treating wave-like effects compared to the ideology
of the CI.

The results discussed in the frame of the MSI, although numerous
enough, are nevertheless confined by its very ‘minimal’ character (de-
termined by the only postulates P1 and P2) to the position-momentum
couple or the more general conclusions following from the consideration
of the said couple. Other important problems as the physical essence
of the indistinguishability of identical particles, the nature of spin, etc.,
are still waiting for an explanation that would be free of the unaccept-
able features of the CI or the present-day ‘nonminimal’ SIs. It is quite
possible that interpretational postulates only would be insufficient for
such a more profound description and that a logically consistent theory
of a new kind might be necessary to this end. But physically consis-
tent interpretations of QM may nevertheless have to play an important
role in the meantime by not only helping the psychological revolution
that seems to be taking place nowadays but also by indicating fields of
physical experiment where present-day theory might be inadequate.

Appendix

We introduce the following notations. Let ψL(~r, 0) be defined as
ψL(~r, 0) = ψ(~r, 0), |~r| ≤ L ; ψL(~r, 0) = 0, |~r| > L, and let ψL(~r, t)
be its time-evolved given by eq. (2.2) (in which ψ should be replaced
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by ψL). Denote by a
(i)
L (~p) and a(i)(~p) the i-th momentum amplitudes

(i = 1, . . . , 4) of ψL(~r, 0) and ψ(~r, 0), respectively (or, which is the same
for free action, of ψL(~r, t) and ψ(~r, t), t ≥ 0). Obviously,∫

|ψ(~r, 0)− ψL(~r, 0)|2d3r = ∆L
L→∞−→ 0 (A.1)

Probability conservation in position space entails

∆L =

∫
|ψ(~r, t)− ψL(~r, t)|2d3r , t ≥ 0 (A.2)

Besides, due to Parseval’s relation,

∆L =

4∑
i=1

∫
|a(i)(~p)− a(i)

L (~p)|2d3p (A.3)

Consequently, the mean-square limits of ψL(~r, t), t ≥ 0, and of a
(i)
L (~p)

exist at L→∞ and are almost everywhere equal to ψ(~r, t) and a(i)(~p),
respectively. Hence

lim
L→∞

∫
∆3v

|ψL(~vt, t)|2t3d3v =

∫
∆3v

|ψ(~vt, t)|2t3d3v (A.4)

for all t ≥ 0. One can, therefore, examine the limit at t → ∞ of the
integral at the left of (A.4) prior to taking the limit L → ∞. Adding a
subscript L to the densities in (2.14), we obtain that the said integral is
equal to R′QL(v)∆3v = RQL(v)∆3v in the limit of large t, so that (A.4)
gives

lim
L→∞

RQL(~v) = lim
t→∞

t3 < |ψ(~vt, t)|2 >∆3rt (A.5)

But, as clear from the above, limRQL(~v), L→∞, is equal to the density
RQ(~v) obtained with the help of a(i)(~p) in the already described way.
Consequently, < |ψ(~vt, t)|2 >∆3rt has the necessary form RQ(~v)/t3 in
the limit t→∞. Q.E.D.
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