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ABSTRACT. By adopting the Clifford Bundle language, we recently
put forth a satisfactory lagrangian formalism for electromagnetism
with magnetic monopoles without a string. In our approach, charges
and monopoles do interact with one another —without violating the
required gauge invariances— via a single type of field and of photons.
Here, by taking advantage of the wellcome opportunity of some re-
cents comments by E.Comay (and while answering them), we “com-
plete” that formalism. In particular, we show how the Lorentz forces
and the motion equations, for both electric and magnetic charges,
can be derived from the generalized Maxwell equations: without any
further recourse to a variational principle.

RESUME. En utilisant le langage des fibrés de Clifford, nous avons
récemment proposé un formalisme lagrangien de l’électromagnétisme
avec monopôles magnétiques, sans cordes. Dans notre approche, les
charges et les monopôles interagissent bien les uns avec les autres
– sans violer les invariances de jauge requises – via un unique type
de champ et de photons. Ici, saisissant l’occasion offerte par les
récents commentaires de E. Comay (et en guise de réponse), nous
“complétons” ce formalisme. En particulier, nous montrons com-
ment on peut déduire les forces de Lorentz et les équations du mou-
vement, à la fois pour des charges électriques et magnétiques, des
équations généralisées de Maxwell: sans recours supplémentaire à
un principe variationnel.

∗ Work partially supported by CNPq, INFN-Sezione di Catania, M.P.I.,
C.N.R., and by CAPES, IBM-do-Brasil.
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Introduction

In a recent paper Comay [1] criticized our use of a Clifford bundle
formalism [2] in the formulation of classical electromagnetism for charges
and monopoles. The main points of his comments, according to his
own words were: (i) “. . . if no corrections are introduced, the theory
cannot include the respective Lorentz law of force. Thus, in its original
form, this theory lacks a vital element required for energy-momentum
conservation”, (ii) “. . . the assumption saying that the electromagnetic
fields of charges are identical to those of monopoles is non covariant in
nature”.

We seize the opportunity of those wellcome comments for showing
how the previous points are tackled by our approach: In particular, how
the Lorentz forces (for both electric and magnetic charges) can be derived
from the (generalized) Maxwell equations. To attain clarity (for the
readers that are more familiar with differential forms) we first present our
generalized Maxwell equations in the Clifford bundle of differential forms
(called the Kähler-Atyah-Clifford bundle and denoted by K(τ∗M, ĝ)), at
variance with the presentation in ref.[2], that used the Clifford bundle
of multivectors, C(τM, g). We then show that the formulation of the
classical electromagnetism for charges and monopoles within K(τ∗M, ĝ)
predicts the following results:

(a) the correct Lorentz force law for charges and monopoles;

(b) the correct energy-momemtum conservation law for the system
consisting of electromagnetic field plus charges and monopoles, where-
from even the correct motion equations for both charges and monopoles
are derived.

We show moreover that our formalism, which makes recourse to
geometrical objects that are sums of tensors of different ranks, is Lorentz
covariant, as it must be.

Let us take advantage of the present opportunity also for stressing
the motivations for the adoption of our formalism. They are based on
the following remarks [3,4,5]:

(I) It is wellknown that, when describing the electromagnetic field
Fµν produced by a Dirac monopole [6] in terms of one single potential
Aµ only, such a potential has to be singular along an arbitrary line
starting from the monopole and going to infinity. This “string” has been
considered – since long – as unphysical [7], since the singularity in Aµ
does not correspond to any singularity in Fµν ;
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(II) It is also wellknown that, in the U(1) gauge theory of electro-
magnetism which has as mathematical model a Principal Fiber Bundle
(PFB) π : P → M with group U(1), magnetic monopoles appear only
when we consider a non trivial base. M is in general a four dimensional
Lorentzian manifold, modelling the spacetime. The standard model is
obtained by taking M = R1,3 (Minkowski spacetime) and deleting from
R1,3 the world line of the monopole. We then have as model the PFB
π : P → R2 × S2 with group U(1) and the monopole charges appear
as the Chern-numbers characterizing the PFB. That is to say, even the
ordinary topological theory does not put on equal footing the electric
charge and the monopole, since the former is introduced through the
electric current and the latter is a hole moving in space time [3,8,9]. It
is to be noted that the topology of spacetime becomes even more exotic
when generalized monopoles are present [10].

A way out has been looked for by many authors [7,11] via the intro-
duction of a second potential Bµ. But they did not completely succeed
in dispensing with an exotic spacetime, whenever they wanted to stick
to the ordinary vector-tensor algebra. However (just on the basis of
both a vector potential A ∈ Λ1τM ⊂ sec C(τM, g) and a pseudovector
potential γ5B ∈ sec Λ3τM ⊂ sec C(τM, g)), we recently constructed [2-
5] a satisfactory formalism for magnetic monopoles without string (i.e.,
living in the ordinary Minkowski spacetime R1,3), by making recourse
to the Clifford algebra R1,3, or more precisely to the Clifford-bundle
C(τM, g) [where(TxM, g) = R1,3]. Let us stress that R1,3 is an algebra
sufficiently powerful to allow adding together tensors of different ranks
(grades). In ref. [12], for example, both the electric and the magnetic
current are vectorial, whilst in our approach they are represented by a
vectorial and a pseudovectorial current, respectively (and nevertheless
we can add them together [2-5]).

From Clifford to Kähler

We now pass from the C(τM, g)-language, used in ref. [2], to the
K(τ∗M, ĝ)-language, i.e., to the language of the differential forms in
τ∗M (equipped with the Kähler-Clifford algebra [3,13,14])1. This paves

1 Let us notice that the metric tensor g ∈ sec(τ∗M × τ∗M) induces the “dual

metric” ĝ in the space Λk(τ∗M) : [3]

ĝ(ϕ1, ϕ2)γ5 = ϕ1 ∧ ∗ϕ2,
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the way, incidentally, for a generalization of our “monopoles without
string” to non abelian gauge groups. The new language will allow us
to approach the question of a suitable formalism for interacting charges
and monopoles without string from a geometrical point of view in the
spacetime manifold [15,16].

We remember that K(T ∗xM, ĝ) ' C(TxM, g) = R1,3, which is the
so-called spacetime algebra2. Now K(T ∗xM, ĝ), as a linear space over the
real field, can be written:

Λ0(T ∗xM) + Λ1(T ∗xM) + Λ0(T ∗xM) + Λ3(T ∗xM) + Λ4(T ∗xM) (1)

where Λk(T ∗xM) is the
(

4
k

)
-dimensional space of the k-forms. Quan-

tity Λ(T ∗xM) =
∑

Λk(T ∗xM) is called the Cartan algebra, and the pair
[Λ(T ∗xM), ĝx] is called the Hodge algebra. An analogous terminology
exists for the vector bundles associated with these algebras [3,17].

In K(τ∗M, ĝ) there exists a particular differential operator ∂ odd
in the Z2-gradation of the algebra 3. To introduce ∂, consider first, for
any t∗ ∈ sec τ∗M ⊂ secK(τ∗M, ĝ) and any t ∈ sec τM , dual to t∗, the
bilinear tensorial map of type (1, 1) given by

Ψ→ t∗∇tΨ , (2)

where Ψ is any element of secK(τ∗M, ĝ) and ∇t is the covaraint deriva-
tive of Ψ (considered as an element of the tensor bundle). Then ∂ is
defined as the tensorial trace of the map:

∂ = Tr(τ∗∇t). (3)

where ϕ1, ϕ2 ∈ sec(Λkτ∗M). The pair (Λτ∗M, ĝ) is the so called Hodge bundle.
For future reference, note that, in the particular case where ϕ1 = ϕ2 = ϕ ∈
sec(Λ1τ∗M, ĝ), then

ĝ(ϕ,ϕ) = −ĝ(∗ϕ, ∗ϕ).

2 By adopting Hestenes’ notations (cf. the second one of refs. [18]), we call
spacetime algebra the Clifford algebra R1,3 that we called “Dirac algebra” in
ref. [2]. More correctly we shall reserve the name Dirac algebra for R4,1 =
C(4). Notice, incidentally, that the Majorana algebra R3,1 is quite different
from R1,3, so that two algebras [R1,3 = H(2) and R3,1 = R(4)] can be
naturally associated with Minkowski spacetime, and this can have a bearing
on physics (even for the mathematical problems connected with tachyons, for
instance). At last, the Pauli algebra is R3,0 = C(2).
3 Recall that we denote the Clifford product in C(τM, g), as well as in

K(τ∗M, ĝ), by mere juxtaposition of symbols.
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In terms of a local basis {γµ} of 1-form fields and its dual basis {eµ} of
vector fields, we can write

∂ = γµ∇µ. (3’)

In particular, taking any local neighbourhood U ⊂ M with a lo-
cal basis {dxµ}, ∂ = γµ∇µ, we can show [3,14] that for any Ψ ∈
sec(Λτ∗, ĝ) ⊂ secK(τ∗, ĝ):

∂Ψ = dxµ ∧ (∇µΨ) + ∂µc(∇µΨ), (4)

where c is the usual contraction operator of the theory of differential
forms. We have:

dxµ ∧ (∇µΨ) = dΨ (5)

∂µc(∇µΨ) = −δΨ, (6)

where d is the usual differential, and δ is the Hodge coderivative operator
here defined as:

δΨk = (−1)k ∗−1 d ∗Ψk (7)

where ∗ is the Hodge star operator and Ψk ∈ sec(Λkτ∗M, ĝ) ⊂
secK(τ∗M, ĝ).

The power of the Kälher bundle formalism appears clearly once
we add to the fundamental formula (a consequence [3] of eq.(4) and
eqs.(5),(6))

∂Ψ = (d− δ)Ψ (8)

the result [3,12]
γ5Ψk = (−1)t ∗Ψk, (9)

where γ5 = γ0γ1γ2γ3 is the volume element,4 and t = 1 for k = 1, 2 and
t = 2 for k = 0, 3, 4, in the particular case of the spacetime algebra R1,3

and with the conventions here used. We have also that ∂2 = (d− δ)2 is
the D’Alambertian operator. The use of K(τ∗M, ĝ) is essential for the
“unified” treatment of various questions in theoretical physics [17].

Observe, in fact, that the “completed” Maxwell equations, δF =
Je; dF = − ∗ Jm, where F ∈ sec(Λ2τ∗M, ĝ) ⊂ secK((τ∗M, ĝ) is the

4 Recall that, whereas γ5 is the volume element in K(τ∗M, ĝ), in ref. [2] we
defined γ5 = e0e1e2e3 ∈ C(τM, g), where {eµ} is an orthonormal basis of

R1,3.
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electromagnetic field and Je, Jm ∈ sec(Λ1τ∗M, ĝ) ⊂ secK(τ∗M, ĝ) are
the electric and magnetic currents, respectively, can then be written [3,4]
as a single equation:

∂F = Je − ∗Jm = Je + γ5Jm ≡ J. (10)

With the introduction of the generalized potential A ≡ A + γ5B, where
A,B ∈ sec(Λ1τ∗M, ĝ) ⊂ secK(τ∗M, ĝ), we get F = ∂A = ∂∧A+∂(γ5B),
if we impose the Lorentz gauge ∂◦A = 0.5 Then we can write eq.(1), as:

∂2A = Je ; ∂2B = Jm. (11)

In our previous work [2], we wrote eqs.(1) and (11) in C(τM, g), instead
of K(τ∗M, ĝ). There we succeeded in introducing a non conventional
lagrangian which yields the correct field equations when varied with re-
spect to the generalized potential (and when we take care of the order of
the factors in the products). Our approach, however, cannot overcome
the “no - go theorems” by Rosenbaum et al. [12]; for instance Rohrich
[12] showed that a single Lagrangian can yield both the field equations
and the charge and pole motion-equations only in the trivial case when
Jm = kJe, where k is a constant. Here we shall show that (once the field
equations are known) one can derive the motion equations, without any
further recourse to a variational principle. In so doing, we shall adopt a
new technique, instead of our previous hamiltonian formalism [2] (which
would require some further mathematical clarification). [Let us remind,
incidentally, that the essence of the use of the canonical formalism in
classical (as well as in quantum) physics is the derivation of the con-
servation laws: actually, lagrangians are mathematical objects without
physical meaning, whose only purpose is permitting the derivation of
the equations of motion of the theory through the use of a variational
principle. But in ref.[3] we showed, with some mathematical rigor, that
no such variational principle exists for a system consisting of electromag-
netic field plus charges and monopoles].

5 Note that the scalar product between Ψr ∈ Λr(T ∗xM) and Ψk ∈ Λk(T ∗xM)

is defined by Ψr ·Ψk = 〈ΨrΨk〉|r−s|, i.e., it is the component in Λ|r−s|(T ∗xM)
of the Clifford product of Ψr and Ψk.
Sometimes we make recourse also to the ball product (◦) which, in terms of
the Clifford product, is defined as follows: A◦B = 1

2
(AB+ + BA+). The

+ operation, called reversion (represented by a tildle in ref. [2]), in its turn
is defined as follows: D = d1d2, . . . , dr;D

+ = dr, . . . , d2d1, where the di[i =

1, 2, . . . , dr] are vectors in R1,3.
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Conservation Laws and Lorentz Forces

To obtain the results that follow one needs knowing how to do cal-
culations with the Clifford algebra R1,3. The reader is referred to [18–20]
for details (in what follows, incidentally, we generalize for our case results
already obtained by Hestenes [18] for the ordinary Maxwell theory). Let
us come, then, to our new formalism and observe that from eq.(10), by
applying the antiautomorphism + (reversion) [3], we get the equation

F+∂∧ = Je + Jmγ
5, (12)

where the symbol ∂∧ means that the Dirac operator acts on the right,
i.e., F+∂∧ = −∂α(Fµν)γµγνγα.

Multiplying eq.(10) by F+ on the left and eq.(12) by F on the right,
and summing, we get:

1

2
(F+∂F + F+∂∧F ) =

1

2
(JeF − FJe) +

1

2
(Jmγ

5F − γ5FJm). (13)

Defining moreover

Sµ ≡ −1

2
F+γµF, (14)

eq.(12) can be written as6

∂µS
µ = F · Je − ∗F · Jm. (15)

Now, from eq.(14), we get immediately that Sµ+ = Sµ and S
µ

= −Sµ,
where the bar indicates the inversion, i.e., the main antiautomorphism
of the Clifford algebra [3]. The unique objects in the Clifford algebra of
the differential forms that satisfy those equations are the 1-forms. We
call the quantities Sµ the energy-momentum 1-forms. The reason for
such a name is that Eµν = Sµ · γν are the components of the symmetric
energy-momentum tensor of the electromagnetic field, as we show below.

In particular S0 = − 1
2F Fγ

0, F = γ0Fγ0 and, writing F = ~E +

γ5 ~B, we get (by projecting into the Pauli-algebra [2,3,17]) the following
splitting:

S0γ0 = U + ~S0 ; U =
1

2
( ~E2 + ~B2) ; ~S0 = ~E × ~B , (16)

6 Cf footnote 5.
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which we recognize as the energy-density and the Poynting vector of the
electromagnetic field, respectively. More generally we have:

Eµν = −〈1
2
FγµFγν〉 = −〈(F · γµ)Fγν〉 − 1

2
〈γµF 2γν〉

= (F · γµ)(F · γν)− 1

2
(F · F )γµ · γν

= FµαFλνηαλ +
1

4
ηµνFαβF

αβ .

(17)

By writing
Ke = F · JeKm = − ∗ F · Jm,

(Ke)µ = FµνJ
ν
e (Km)µ = − ∗ FµνJνm

(18)

and projecting Ke and Km on the Pauli-Algebra, we get:

Keγ
0 = ~je ~E + (ρe ~E +~je × ~B) ; (a)

Kmγ
0 = −~jm ~B + (−ρm ~B +~jm × ~E) . (b)

(19)

We see, then, that Ke and Km represent the Lorentz forces that act on
the electric charges and the magnetic monopoles, respectively. As this
result has been derived only from the Maxwell equations, we arrive at
the conclusion that the (electric and magnetic) Lorentz forces don’t have
to be postulated, as on the contrary done, e.g., in paper [1].

We note that, due to the symmetry Eµν = Eνµ, we can write
∂νE

µν = ∂µE
νµ = ∂µ(Sν .γµ) = ∂Sν . Then eq.(15) can be written:

∂ · Sν = Qν ; Qν = (F · Je)γν − (∗F · Jm)γν (15’)

The interpretation of eq.(15) is now clear. The equation

∂µE
µν = FµνJeν − ∗FµνJmν (15”)

expresses the fact that the energy-momentum of the field is not con-
served, ∂µE

µν 6= 0, when matter (described by Je, Jm) is present. Ac-
tually, one expects that only the total energy-momentum of field and
currents be conserved. Actually, if we write the r.h.s. of eq.(15’) as
−∂µMµν ,

∂µE
µν = γν ·Ke + γν ·Km, (20)
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then eq.(15) assumes the structure of a global conservation equation:

∂µ(Eµν +Mµν) = 0, (21)

where Mµν plays the role of the symmetric energy-momentum tensor of
matter (i.e. of the currents).

The Motion Equations derived from Maxwell Equations [3,4]

In analogy to what happens in general relativity, the identification
of Mµν with the actual energy-momentum tensor of the matter currents
leads directly to the motion equations.

Let us show this in the simple, but easily generalizable, case in which
the field F is generated by a single electric charge e and a single magnetic
charge g. Be, in fact, the electric and magnetic matter represented by
the triples (me, e, γ) and (mg, g, σ), where me (mg) are the masses of the
charge (monopole), e(g) are the electric (magnetic) charge and γ, σ are
future-pointing timelike curves in R1,3, representing the world-lines of
the charge and the monopole, respectively. The most general symmetric
tensor that we can write to represent matter is then [19]:

M = Mµνγ
µ ⊗s γν =−me

∫
dsδ(x− γ(s))γ∗ ⊗s γ∗

−mg

∫
ds′δ(x− σ(s′))σ∗ ⊗s σ∗.

(22)

In eq.(22) ⊗s represents the symmetrical tensor product and γ∗ =
g(γ∗, ); (σ∗ = g(σ∗, )); where γ∗(σ∗ ) is the tangent vector field to
the curve γ(σ). In components, writing xµ(g(s)) = zµ(s);xµ(σ(s′)) =
yµ(s′), eq.(22) reads:

Mµν = −me

∫
dsδ(xα − zα)

dzµ

ds

dzν

ds
−mg

∫
dsδ(xα − yα)

dyµ

ds′
dyzν

ds′
.

(22’)

The classical currents are Je =
∫
dsδ(x−γ(s))γ∗ ; Jm =

∫
dsδ(x−

σ(s′))σ∗; which satisfy ∂ ·Je = ∂ ·Jm = 0. Now, comparing eq.(19) with
eq.(20) and recalling eqs.(18), it is immediately seen that:

mez̈i = ρeEi + (~z × ~B)i ; mg ÿi = ρgBi + (~y × ~E)i, (23)
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which are the correct equations of the motion of electric and magnetic
charges.

Before going on, let us take advantage of the present opportunity
for pointing out some misprints appeared in the previous paper [2], that
might make difficult for the interested reader to rederive those results of
ours: (1) at page 234, column 2, line 18; the two expressions ∂ · J ought
rather to read ∂ ◦J ; (2) at page 235, eqs.(14) and (15): all the three
expressions J ·A should be written J◦A; (3) at page 235: the last term
in the r.h.s. of eq.(17) ought to be eliminated; (4) at page 236, column 1,
line 22: “pseudoscalars” should be corrected into “pseudovectors”. Let
us stress that the “ball product”(◦) is not a new fundamental product,
since in terms of the Clifford product we have, for A,B ∈ sec C(τM, g),
that 7 A◦B = 1

2 (AB+ +BA+).

We finally comment on the question of the Lorentz covariance of our
formalism. We remember [17] that K(τ∗M, ĝ) is a vector bundle asso-
ciated to the principal bundle of orthonormal frames, i.e., K(τ∗M, ĝ) =
PSO+(1,3) ×Ad R1,3, where Ad : SO+(1, 3) → Aut(R1,3), given by:
Aduφ = uφu−1, u ∈ Spin+(1, 3) = Sl(2, C) and φ ∈ R1,3 [of course, Ad
means adjoint representation, and Aut means automorphisms]. This im-
plies that all the geometrical objects of K(τ∗M, ĝ) transform in the same
way under a change of the Lorentz frame [17] and shows that the use of
the Clifford bundle formalism is consistent with Lorentz invariance. It is
clear that our generalized theory violates parity, but it is also clear that
parity is not violated for a system consisting only of electric charges; the
parity violation is predicted only when monopoles are actually present.

The results (a) and (b), derived above, show —incidentally— the
elegance of the Clifford bundle formalism when applied to the classical
electromagnetism of charges and monopoles.

Note added in Proofs: Recently, our attention has been called to the
interesting paper by C. Daviau, [Ann. Fond. Louis de Broglie 14 (1989)
273], which also deals with magnetic monopoles by using the spacetime
algebra R1,3. In that paper Daviau arrives at the conclusion that the
generalized electromagnetic field can be the sum of a 0-form plus a 2-
form plus a 4-form. We had reached the same conclusion in References
[4,15].

7 Cf footnote 5.
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Topological Geometry (Cambridge Univ. Press, Cambridge, 1981).
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