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Proper and coordinate times:
a non-closed one-form and its integral?

S. Bergia, G. Morandi

Dip. di Fisica, Univ. di Bologna and I.N.F.N., Sez. di Bologna

ABSTRACT. We analyse the question whether and in what sense
a 1-form may be associated with the proper time interval dτ on
a Minkowski and on a curved space-time, and the conditions for its
Frobenius integrability. It is stressed that the latter is an alternative
way of seeing the possibility of introducing a global time coordinate
in the case of a stationary space-time and a cosmic time in standard
cosmology. The discussion is carried out at an intuitive level, and its
substance may be considered in the teaching of relativistic theories.
A comparison is made with a previous, distinct approach by Sachs
and Wu.

RESUME. Nous étudions la question de savoir si, et dans quel sens,
on peut associer une 1-forme aux intervalles de temps propre d’un
espace-temps de Minkowski ou d’un espace-temps courbe, et les con-
ditions dans lesquelles il est intégrable au sens de Frobenius. On
souligne que cette dernière propriété est une autre façon de voir la
possibilité d’introduire une coordonnée de temps globale dans le cas
d’un espace-temps stationnaire et d’un temps cosmique en cosmologie
standard. La discussion est faite à un niveau intuitif et sa substance
peut être envisagée dans un enseignement des théories relativistes.
Une comparaison est faite avec une autre approche précédemment
proposée par Sachs et Wu.

1.Introduction

Proper time is characterized, in Special Relativity, by the two properties
of being invariant under Lorentz transformations, as the measure of the
norm of the space-time distance between two events, and of being “non-

integrable”, in the sense that the integral
∫ Q
P
dτ depends on the path
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chosen between events P and Q. The two properties lead one to think
that its nature could be that of a non-closed 1-form; more specifically,
the very fact that the value of the integral of the proper time between
two events is coordinate- and parameter- independent seems to qualify
it as a 1-form, while the path dependence of the integral testifies that,
if it is a 1-form, then it cannot be closed.

If it is indeed so, it can apparently be concluded that, in Special
Relativity, this 1-form is always integrable in the sense of Frobenius,

that the relativistic factor γ, γ = (1− v2

c2 )
−1/2

, is its integrating factor,
and that the coordinate time in any Lorentz frame is the integral of the
form. To reach this conclusion, one could argue as follows: read the
formula relating the time coordinate t in a Lorentz frame and the proper
time τ along any world line,

dτ =
1

γ
dt, (1.1)

as a relation between the 1-forms d̃τ (the notation is improper, since it
suggests that d̃τ is an exact 1-form, and is kept here for convenience)
and d̃t. Since t, as a coordinate, is integrable in the ordinary sense by
definition, or, stated in other terms, d̃t is by definition an exact 1-form,
γ must be the integrating factor.

This way or arguing, however, oversimplifies the matter, as a mo-
ment’s reflection will make evident. To begin with, Eq.(1.1) can be read
as a relation between 1-forms on the space time manifold only if γ is seen
as a function of the space-time coordinates γ[v(x, y, z, t)] on Minkowski
space-time. This requirement implies its one-valuedness. This in turn
implies that Eq.(1.1) can be read as a relation between forms only if
a family of non intersecting world lines is arbitrarily selected. At this
stage, one is rather at a loss as to the physical meaning (if any) of such a
selection. Another way of phrasing the same thing is by reading Eq.(1.1)
as a relation between 1-forms for a fluid, γ being a function of its velocity
field. But again, why should one be obliged to select a fluid, and what
would be the meaning of this selection?

From what we have just said, it is apparent that the question must
be set on altogether firmer grounds. It is also evident enough that a
similar issue arises in General Relativity, where also the proper time
interval is the essential metric ingredient and a global time coordinate
may be introduced in special cases.
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Before entering into any detail, however, let us mention a few points
that should be kept in mind for a proper understanding of the discussion
that follows. From our point of view there are, in particular, two basic
questions that must be answered: firstly, whether, on a general space-
time manifold, a 1-form field can indeed be associated with the proper
time interval dτ , and what is the nature of this association; secondly,
what is the manifold where the 1-form field belongs naturally (this man-
ifold, as it turns out, need not coincide with the space-time manifold).

Both questions have been addressed, either directly or indirectly, by
Sachs and Wu (1977), whose work provides also a clue as to the meaning
of the selection of a family of world lines that appeared necessary in our
initial naive approach. It should also be mentioned that these authors
deal from the beginning with the general case of a connected differen-
tiable manifold rather than with the flat space-time manifold of Special
Relativity.

However, our interest concentrates on the conditions for the pos-
sibility of defining a 1-form ω̃ associated with the proper time interval
dτ and on the conditions for its Frobenius integrability, which turn out
to depend on the existence of a complete time-like vector field T̄ on the
space-time manifold, while the analysis of Sachs and Wu concentrates on
which properties of T̄ are related to properties of ω̃. Moreover, as we will
argue, alternative answers can be given to the second of the basic ques-
tions listed above, namely the one concerning the nature of the manifold
where ω̃ naturally belongs. There are also further aspects of the problem
that do not emerge from Sachs and Wu’s analysis and are worth empha-
sising: for instance, the peculiarities of the special-relativistic case, the
comparison with thermodynamics and its non-closed Pfaffian forms; and
what is it that makes ω̃ in general non-closed. Finally, we are interested
in reformulating the conditions for the introduction of a global time co-
ordinate in the case of a stationary space-time and a cosmic time in
standard cosmology from the general viewpoint expressed here. Due to
the overall distinct viewpoints, and for pedagogical reasons (we have in
mind the teaching of relativistic theories at various levels), we will pro-
ceed by gradually expanding our initial naive approach, hence altogether
independently from Sachs and Wu, and make a comparison with their
approach at the end.

The plan of the paper is as follows: in section 2, we try to answer
the question whether a Pfaffian form, in the classical sense, may be as-
sociated with the proper time interval of Special Relativity; the answer
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is adfirmative (if some conventions are stipulated), provided Minkowski
space-time is replaced by its tangent bundle; in section 3, a similar ques-
tion is analysed, with the classical notion of Pfaffian form, however,
replaced by the modern notion, requiring the invariance under any dif-
feomorphism of the manifold; the connection between diffeomorphisms
and coordinate transformations is discussed at some length, since it is
relevant for the matter dealt with; in section 4, the physical feature
preventing ω̃ from being closed is analysed; in section 5, the problem
whether a 1-form may be associated with the proper time interval in
Special Relativity is discussed from other points of view; peculiarities
of the special-relativistic case are discussed; in section 6, aspects of the
extension to curved manifolds are analysed; in section 7, a comparison
with Sachs and Wu’s approach is outlined; finally, in section 7, the con-
ditions for the introduction of a cosmic time in standard cosmology are
re-analysed from the general viewpoint followed here.

We denote vectors (1-forms) with a bar (a tilde); tensors other than
vectors and 1-forms are in boldface.

2.The proper time interval as a Pfaffian form

The modern notion of differential form has acquired some distinctive
features, as we will comment, with respect to the classical notion of
Pfaffian form, which was not necessarily intended as a linear functional
on the elements of a linear vector space. Let us first see if the proper
time interval on the tangent bundle passes the test as a Pfaffian form.
In order to analyse this point, we briefly recall the discussion of Pfaffian
forms as given by Falk and Jung (1959).

The analysis of these authors moves from the basic notion of
Process-Covering (Prozeß-Belegung): consider a physical quantity which,
for any piece of an oriented curve on a manifold, possesses a definite
value. Such a quantity determines then an association between curves
S and numbers Ω(S), a Process-Covering. A process-covering is called
linear if it has the following properties:

1. If with a curve S is associated the number Ω, then with the curve
oriented in the opposite way is associated the number −Ω;

2. If the curve S consists of two pieces, S′ and S′′, in such a way that
the end-point of S′ is the initial point of S′′, then it holds, between the
corresponding numbers: Ω = Ω(S′) + Ω(S′′);

3. Ω depends continuously and differentiably on the curve parameter;
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4. by approximating a curve in terms of an arbitrary polygonal, one

obtains at the same time an approximation of the Ω values.

The mathematical notion adequate for the description of linear process-

coverings is that of Pfaffian form: indeed, Falk and Jung demonstrate the

following theorem: Every linear process-covering possesses a generating

Pfaffian form, and every Pfaffian form defines a linear process-covering.

It can however be concluded that the Euclidean length of a

curve is not a linear process-covering, since it does not fulfill the

fourth requirement (actually, it does not fulfill the first requirement

either). This is illustrated in Fig.1, where the approximating polyg-

onals have always the length 2, while the basic line has length 1.

Figure 1. Approximating a straight line in terms of a sequence of polygonals
not exhibiting tendency to the line’s length.

In fact the approximation of the arc-length of a curve can only be

achieved in terms of cord-polygonals. From this point of view, things

appear at first sight to be even worse for the pseudo-Euclidean length

of a curve in Minkowski space time, as illustrated in Fig.2, where the

first element of a sequence of approximating polygonals to the world line

of a particle at rest is taken along light lines: indeed in this case the

approximation would be in terms of polygonals of vanishing lenghts! A

polygonal like the one considered in Fig.2 cannot in fact be the first

element of a sequence of polygonals approximating the world line of

a particle at rest: indeed, every element of a sequence built from it

as in Fig.1 would have, at each point of contact with the world line,

fiber coordinates differing by a fixed amount from those of the lat-

ter, and the sequence would show no tendency to the world line.
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Figure 2. Approximating the world line of a particle at rest in terms of a
sequence of polygonals corresponding forth and back bouncing at the speed of
light.

The conclusion extends to any sequence of polygonals corresponding to
forth and back bouncing from the world line with a fixed scalar velocity.
This difficulty may however be overcome by considering the canonical
lifting of the curve from the space time manifold to its tangent bundle:
in this case sequences of cord polygonals may indeed produce an approx-
imation to the curve’s length. This gives a first hint for the idea that it
is the tangent bundle to the space-time manifold where d̃τ could be most
naturally considered a 1-form. Note that the pseudo-Euclidean length,
like the Euclidean one, does not even fulfill the first of the requirements
above; this is, however, a minor difficulty, since it can always be stip-
ulated, in agreement with the fact that the square of the proper time
interval is a quadratic form in the coordinates, that a negative sign must
always be assigned to a world line oriented backwards in time. Up to
this point one does not see therefore any obstacle to the possibility of
considering d̃τ as a 1-form on the tangent bundle TM to the space time
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manifold. Indeed, locally on TM , any 1-form ω̃ on TM can be expanded
on the basis ({d̃xµ, d̃uµ}), µ = 0, . . . , 3, with x0 = t and the uµ’s coordi-
nates along the fibres, with the coefficients that are functions on TM . In
this respect, d̃τ as given by Eq. (1.1) seems to fulfill the requirements to
qualify it as a 1-form, though not on the whole of TM , but on the open
sets defined by v < c (note that this condition is a Poincaré-invariant
one). The only residual difficulty (which is shared by the Euclidean case)
arises in connection with the problem of approximating straight lines (or
straight world lines): in this case, indeed, the problem degenerates, since
no non-trivial sequence of approximating cord polygonals can be envis-
aged. It seems therefore that the idea of associating a Pfaffian form with
the proper time interval can be rescued if it is stipulated that approxi-
mations in terms of sequences of cord polygonals should include trivial
sequences as well.

3.The proper time interval of Special Relativity as a 1-form

As we have anticipated, the modern notion of differential 1-form has
acquired some distinctive features with respect to the classical notion of
Pfaffian form. It is generally agreed that one cannot consider an object as
a 1-form on a manifold unless it is invariant under any diffeomorphism
(active viewpoint) of the manifold. It is tempting to identify at once
diffeomorphisms with coordinate transformations: an identification that
would pave the road toward an adfirmative answer to the question as to
whether the proper time interval can indeed be interpreted as a 1-form
in the modern sense.

A warning should however be given against an immediate identifi-
cation of active diffeomorphisms of a manifold and coordinate transfor-
mations. Roughly speaking, coordinate transformations are the counter-
part, from the passive viewpoint, of the (active) diffeomorphisms, much
in the same way as the rotation of a Cartesian triple of axes is the coun-
terpart of the rotation of the Euclidean space as a whole in the opposite
direction. However, as stressed, in particular, by Göckeler and Schücker
(1987), “coordinate transformations are not diffeomorphisms. The lat-
ter are globally defined and form a non-Abelian group. The former are
in general not globally defined and do not form a group”1. In order to
understand how this objection can be overcome in particular cases, it is
perhaps worthwhile to recall wherefrom it arises. First and basic point is

1 Göckeler (1987), p.76
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that the coordinatization of a manifold can in general be achieved only
locally, namely n-tuples of real numbers are associated by a map φ, in
general a homeomorphism, with the points of an open domain of the
manifold. Extension to the manifold as a whole is prevented, in general,
by the fact that the global topology of the manifold is not that of an
Rn (endowed with its natural topology). The very definition of a mani-
fold requires that every point in it belongs to the domain of at least one
map φ; coordinate transformations arise from the different representa-
tions that a neighbourhood receives from different maps. One can then
endow the set of coordinate transformations with a binary composition
law and the other group properties: what prevents them to form a group
is, however, the fact that the elements of the set do not have the same
domain (the domains can actually be disjoint). This short discussion
shows that the first and basic obstacle toward the identification of dif-
feomorphisms and coordinate transformations is removed whenever the
global topology of the space-time manifold does not differ from that of
Rn. This is indeed the case for Minkowski space-time.

Apart from the difficulty just mentioned, the identification between
the active and passive viewpoints is achieved as follows (for a general
discussion of the relationship between diffeomorphisms and coordinate
transformations, see J. Norton (1989)): with the diffeomorphism

f : M −→M (3.1a)

by
p 7−→ f(p) (3.1b)

is associated a mapping between the coordinates {xi} and {x̄i} of the

original and image points: the “new” coordinates, {xi′}, of p under
a coordinate transformation should be numerically identified with the
coordinates {x̄i} of the image point f(p) of p under the diffeomorphisms.

As far as the behaviour of a geometrical object under diffeomor-
phisms and coordinate transformations is concerned, we shall limit our-
selves, as an example, to a

(
0
2

)
tensor g. In coordinate notation, one has

the transformation laws

gij 7−→ gīj̄ =
∂xi

∂x̄i
∂xj

∂x̄j
gij , (3.2a)

from the active viewpoint; and

gij 7−→ gi′j′ =
∂xi

∂xi′
∂xj

∂xj′
gij , (3.2b)
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from the passive viewpoint. The two viewpoints describe the same state
of affairs once the mentioned numerical identification between the coor-
dinates {x̄i} and {xi′} is made. If it is symmetric and non-degenerate,
the tensor g is a metric.

Isometries are equivalently described in Special Relativity from the
active and passive viewpoints as follows. Consider two events labeled
by the coordinate sets {xµ1} and {xµ2} ( {xi1,2}, i = 1, 2, 3 are orthogonal
Cartesian coordinates) and the “vector” (the terminology is improper,
and tied to the fact that R4 can be naturally identified with its tangent
space at any of its points, but harmless in this context) X̄ = {xµ2 − x

µ
1};

its norm ∆s2 is given, in terms of the Minkowski metric η, by:

∆s2 = η(X̄, X̄) (3.3)

From the passive viewpoint, an isometry is a coordinate transforma-
tion {xµ} 7→ {xµ′} (in Special Relativity only a transformation of the
Poincaré group) that leaves expression (3.3) invariant numerically and
in form. From the active viewpoint, the events labeled by the coordi-
nate sets {xµ1} and {xµ2} are mapped into the events f({xµ1}) = x̄µ1 and
f({xµ2}) = x̄µ2 and the vector X̄ into the vector f ′(X̄). The mapping is
an isometry if

η(f ′(X̄), f ′(X̄)) = η(X̄, X̄). (3.4)

Once again, the two viewpoints describe the same state of affairs once
the mentioned numerical identification between the coordinates {x̄i} and

{xi′} is made.

It should be noted that, notwithstanding the duality between ac-
tive and passive viewpoints that can be established in the terms we
have just recalled, they are employed, in Special Relativity and as far as
isometries are concerned, to deal with different physical problems and
in logically distinct set-ups. The basic physical assumption of Special
Relativity that “observers” in relative rectilinear motions measure the
same ∆s2 between two events is naturally phrased in terms of the passive
viewpoint. The physical requirement is that there should be agreement
between mesaurements, and the logics is: we know that a certain norm
is invariant: what is then the form of the isometries? An isometry seen
from the active viewpoint, on the other hand, is, for example, the map-
ping of the space and time unit intervals from a Lorentz frame S to a
Lorentz frame S′, suitably visualized by the calibration hyperbolae in
a Minkowski diagram. The physical requirement is that the units be
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related by Lorentz boosts as Lorentz invariants, and the logics is: given
the form of the isometry (i.e. the Lorentz boost), what are the image
units?

Since, however, agreement between measurements performed by dif-
ferent observers and relation between unit measures are logically inter-
dependent, invariance under active or passive transformations should
be simultaneously required, and we can equivalently ask our candidate
1-form to be invariant under either of the two.

In Special Relativity, as a matter of fact, only isometries are con-
sidered (transformations of the Poincaré group are isometries). The ne-
cessity of limiting oneself to consider isometric diffeomorphisms causes a
difficulty with respect to the primary requirement that a 1-form should
be invariant under any diffeomorphism of the manifold. More generally,
and stated in slightly different terms, any tensor on a manifold should
by definition be invariant under any coordinate transformation (passive
view-point), since its components transform contravariantly with respect
to the basis. Since, in Special Relativity, the proper time interval is
invariant only under a special class of diffeomorphisms, or coordinate
transformations, namely the transformations of the Poincaré group, it
could not, therefore, strictly speaking, be considered as a 1-form. One
should however consider that tensors in Special Relativity are also such
only with respect to Lorentz transformations; nevertheless, by general
convention, they are referred to as tensors. By the same convention, one
may agree to refer to d̃τ as a 1-form. .

4. What it is that prevents ω̃ from being closed

We have seen in what sense and to what extent one can associate a 1-
form field on the tangent bundle with Minkowski space-time, let us call
it ω̃, to the proper time interval dτ in Special Relativity. As we have
already recalled, since its integral is path-dependent, the form must be
non-closed.

One should then analyse what it is in general that prevents ω̃ from
being closed. It is somewhat instructive to examine the question thinking
the forms given on the space time manifold. It is then compulsory to
take the view (Sec.1) that we are dealing with a fluid, γ being a function
of its velocity field v. Taking the external derivative of

ω̃ =
1

γ
d̃t, (4.1)
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one gets:

d̃ω̃ = d̃(
1

γ
) ∧ d̃t. (4.2)

Figure 3. x-congruence of world lines.

With no loss of generality, as far as this specific problem is con-
cerned, we can consider a manifold with one time and one space dimen-
sion; let us refer it to coordinates x and t. Then

d̃ω̃ = − v

c2
(1− v2

c2
)−

1
2
∂v

∂x
d̃x ∧ d̃t, (4.3)

since d̃t ∧ d̃t vanishes. In order the 1-form ω̃ to be closed, it must be
either v = 0 or ∂v

∂x = 0. The latter condition says that d̃ω̃ vanishes
only on classes of x-congruent world lines in the Minkowski diagram for
the Lorentz frame endowed with the coordinates x and t (the former
condition is then only a particular case, namely the x-congruence is
realized as parallelism to the t axis); in other terms the motions of the
fluid particles must share the same speed with respect to the reference
frame at any given instant of time (Fig.3). General fluids, of course, do
not comply with this condition. The non-closedness of the 1-form ω̃ is
then due to a relative velocity effect, as one would have guessed.
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5. Other viewpoints

We will now analyse the possibility of associating 1-form fields with the
proper time interval dτ in Special Relativity following two others lines
of reasoning, slightly differing among themselves, which point out the
existence of further difficulties and suggest further developments.

Consider the world line of a particle on the four dimensional space-
time metric manifold of Special Relativity, and let λ parametrize it. The
length of the curve’s line element has the expression

ds2 = η(T̄ , T̄ )dλ2, (5.1)

where T̄ = d
dλ denotes the tangent vector to the world line. Then, for

the element of proper time along the world line, one has;

dτ =
1

c
[η(T̄ , T̄ )]1/2dλ. (5.2)

Clearly, we would like to associate 1-forms, say ω̃ and d̃λ, with dτ and dλ.
In this respect, one would be naively tempted to formulate the follow-
ing statement: on the space-time manifold one can assign a tensor field
η, such that, given a differentiable curve on the manifold, parametrized
by λ, hence with tangent vector T̄ = d

dλ , at any point the 1-form field

ω̃(1) = 1
c [η(T̄ , T̄ )]1/2dλ is specified. This statement is evidently erro-

neous: since T̄ = d
dλ is only defined along a world line, neither a scalar

field 1
c [η(T̄ , T̄ )]1/2 nor a 1-form field d̃λ are assigned on the manifold.

There are two ways out from this difficulty. The first one, which we
will now examine at some length, consists in assigning T̄ as a field, and
in associating with it the 1-form field ω̃(1);

1
c [η(T̄ , T̄ )]1/2 is then a scalar

field on M .

The manifold on which ω̃(1) is defined is in this case M ×R, with R
the space of the parameters λ. According to Sachs and Wu (1977), the
normalization condition η(T̄ , T̄ ) = 1 fixes the parametrization along the
integral curves of T̄ , and the parameter should then be identified with
the proper time along the latter. An integral curve γ : R −→M of T̄ can
be lifted trivially to a curve γ̃ : R −→M ×R by identifying the last co-
ordinate (i.e.: γ̃ : λ 7→ (γ(λ), λ)). Then, if η(T̄ , T̄ ) = 1, one easily shows
that γ̃∗ω(1) = d̃λ, where λ is now the proper time time along the integral
curves of T̄ . In this sense, ω(1) is associated with proper time, but only
along the family of the integral curves of T̄ . In the preceding section,
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it was clarified in what sense the group of diffeomorphisms under which
the would-be 1-form ω̃(1) is invariant is restricted, in Special Relativity,
to the Poincaré group. In the framework outlined here, it is apparent
that one should formally consider, as admittable diffeomorphisms (active
viewpoint):

i) the group GL of the tangent lifts of the transformations of the
Poincaré group:

GL : TM −→ TM (5.3a)

T̄ 7−→ f ′(T̄ ) (5.3b)

ii) the reparametrizations:

GR : R −→ R (5.4a)

λ 7−→ λ′ = f(λ), f ′ > 0 (5.4b)

The latter extend trivially to:

G̃R : TM ×R −→ TM ×R (5.5a)

(T̄ =
d

dλ
, λ) 7−→ (f ′(T̄ ) =

d

dλ′
, λ′ = f(λ)) (5.5b)

Since
dλ 7−→ (f ′)−1dλ′, (5.6)

it is:
dτ 7−→ dτ (5.7)

(Note that, if f ′ < 0, dτ 7−→ −dτ ; this would correspond to a change of
sign of the ”time coordinate” -see below- and should not be considered
as a drawback). Formally, the overall group is therefore the semi-direct
product:

G̃ = G̃R ⊗GL. (5.8)

Looked at from the passive viewpoint, on the other hand, the question
as to the invariances of the would-be 1-form ω̃(1) does not introduce new
elements. Indeed, invariance under reparametrizations, due to the 1-1
correspondence between T̄ and d̃λ established by the metric, is auto-
matically guaranteed by the very structure of (5.2), as reflected in the
semi-direct product structure of G̃, Eq. (5.8). As to the question of
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the invariance under GL, the vector T̄ is invariant (coordinate indepen-
dent) under transformations of the Poincaré group like the “vector” X̄
of section 3.

One further point that must be brought to focus is the following:
even with the above specifications, ω̃(1) = 1

c [η(T̄ , T̄ )]1/2d̃λ can be a 1-
form over M ×R only if its domain is restricted, at every point of M, to
time-like tangent vectors, i.e. vectors such that η(T̄ , T̄ ) > 0; the 1-form
lives therefore in the interior of the light-cone of each event.

We must now investigate what physical meaning may be attributed
to the assignment, on the space-time manifold, of the vector field T̄ , a
complete time like vector field generating a one-parameter group of dif-
feomorphisms of the manifold. Note that particles with the world lines
coinciding with the orbits of the diffeomorphism would correspond to a
class of “observers” sharing the time coordinate t. One can thus appre-
ciate that the difficulty mentioned in section 1, apparently arising from
an inadequate choice of the manifold, has an origin which is independent
of that choice and can be understood on a physical basis. Indeed, the
selection of a class of motions corresponding to the choice of a time co-
ordinate is by no means surprising, to begin with, in Special Relativity,
where the specification of a time coordinate goes with the specification
of a single Lorentz frame. The parameter λ can be identified with the
time coordinate t of a given Lorentz frame if and only if the family of
world lines is chosen as that of the particles at rest in the frame.

These considerations deserve a little expansion. Before going into
further details, however, some general remarks are in order. First of all,
the conclusion has been reached that the existence of a time like complete
vector field T̄ is a necessary and sufficient condition in order that 1-form
field ω̃(1) on M × R may be associated with the proper time interval.
The question whether this form is integrable in the sense of Frobenius
is a priori a distinct one. But in this case its structure, corresponding
to Eq. (5.6), with d̃λ now an exact 1-form, automatically guarantees
its Frobenius integrability. Hence the existence of a time like complete
vector field T̄ and of a global time coordinate is altogether a necessary
and sufficient condition for the Frobenius integrability of ω̃(1). Note that
in this case the signs of τ and t are 1-1 correlated. A change of sign of τ
corresponds to a change of sign of the time coordinate. The possibility
that such a complete vector field may be assigned on a manifold depends
in turn on its global properties, in fact on its global hyperbolicity2. A

2 see, for instance, Wald (1984), Theorem 8.3.14, p. 209 and 255
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comparison with thermodynamics might be profitable at this stage of
the discussion. There, the object of interest is the δQ 1-form, evidently
a non-closed one. In thermodynamics two cases must be distinguished:
the case of a one-component fluid and the more general case of more
such fluids in thermal equilibrium. In the first case, δQ, as a Pfaffian
form in a two-dimensional state space, is always integrable in the sense of
Frobenius: the existence of an absolute temperature T (the integrating
factor) and of state-function entropy S (the 1-form integral) is then a
purely mathematical fact. In the second case, the Frobenius integrability
may only be guaranteed by a physical principle, which may be identified
with the second principle of thermodynamics or with Caratheodory’s
axiom. In each case, as the consequence of Frobenius integrability, one
has a foliation of the state manifold in hypersurfaces of constant S, on
whose tangent spaces (its annihilators) the 1-form δQ vanishes.

In our case, the Frobenius integrability can never be a purely math-
ematical fact, since we deal only with four-dimensional manifolds. The
integrability can therefore be guaranteed only by a physical principle,
which is identified with the requirement that the space-time manifold is
endowed with (at least) one time like complete vector fields.

It is to be stressed that the existence of a time like complete Killing
vector field is a sufficient but not a necessary condition for the Frobenius
integrability of ω(1). With this in mind, we can now go back to a more
detailed discussion of the special relativistic case.

Note that being the Minkowski space time flat, it admits four lin-
early independent Killing vectors, which can be chosen as the genera-
tors of the translations along the space and time axes of a given Lorentz
frame, ∂

∂x ,
∂
∂y ,

∂
∂z ,

∂
∂t . The Killing vector field ∂

∂t can be taken as the gen-
erator of the one-parameter group of diffeomorphisms mentioned above.
The orbits of the diffeomorphism are the world lines of the particles
which share the state of motion corresponding to the diffeomorphism,
i.e. of the particles at rest in the Lorentz frame with time coordinate t.
Note that in this case the diffeomorphism is by definition an isometry.
On the other hand, any linear combination of the Killing vector fields, for
example with constant coefficients, will also be a Killing vector; hence,
any translation in the Minkowski “plane” will be an isometry, in partic-
ular, time-like translations (boosts), to each of which a time coordinate
may be associated; these time coordinates are immediately visualized
in a Minkowski diagram as those of the Lorentz frames reached by the
boost.



434 S. Bergia, G. Morandi

These results can be presented in the following way. Given the
Minkowski space time as a metric manifold, the 1-form field ω̃(1) admits
an integrating factor in correspondence of any given Lorentz frame; the
coordinate time t′ pertaining to the Lorentz frame is its integral. Pre-
tending that the existence of a time coordinate in any Lorentz frame
was not an a priori assumption in Special Relativity, it appears that it is
guaranteed by the Frobenius integrability of ω̃(1), which is in turn guar-
anteed by the existence of a one-parameter family of time-oriented world
lines mapping isometrically the manifold into itself: actually, the world
lines of the particles at rest in the frame. The existence of any such time
coordinate can be formulated as the possibility of foliating the space-
time manifold, in any Lorentz frame, in terms of spacelike hypersurfaces
labeled by t′, or, in still other terms, by the fact that there is given on
the manifold a time-like Killing vector field T̄ = d

dt′ . The 1-form d̃t′ is
exact on the entire space time manifold since the Killing vector field is
complete.

In conclusion, the Frobenius integrability of the 1-form associated
with the proper time interval in each Lorentz frame is guaranteed by the
fact that the space time manifold admits an uniform Killing vector field
d
dt′ for any space-like direction, producing a foliation of the manifold
according to the values of t′.

Note that any integral λ of the proper time 1-form ω̃(1) would pro-
vide a foliation of the space-time manifold in space-like hypersurfaces,
hence a time coordinate. As has already been observed, it is not re-
quired that the field T̄ be a Killing vector field. Of course, in the general
case, the time coordinate corresponding to T̄ would have little physical
meaning from the point of view of Special Relativity: not being attached
to a Lorentz frame, il would not correspond to anything measurable by
its privileged observers; in particular it would not be associated with
the standard operative procedure for synchronizing, and calibrating the
rates of, physical clocks.

As an even more general remark, one may note that overall time
coordinates are here selected by observers (here identified with frames),
hence associated with states of motion; in particular, the plurality of
time coordinatizations in Special Relativity is related to the absence of
one priviledged state of motion. Whatever the residual meaning of a time
coordinate not associated with a Killing vector field, it would necessarily
have to be associated with a class of observers.

Let us now discuss a second way out of the difficulty mentioned at
the beginning of this section, arising, as we may recall, from the fact that
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T̄ = d
dλ in Eq. (1) is only defined along a world line. As an alternative,

one can consider the assignment, on the space-time manifold, of any
time like vector field V̄ , bearing no relation with λ. A 1-form field
ω̃(2) =

√
η(V̄ , V̄ )d̃λ can nevertheless be assigned on F × R, where F

denotes the open submanifold of TM obtained attaching to each point
of M the interior of the corresponding light cone (Sachs and Wu 1977,
Section 1.2), with the same transformation group as in the previous
case. Invariance under reparametrizations in then guaranteed by the
group structure.

6. Extension to curved manifolds

The above remarks open the road for an extension of the observations
made about proper and coordinate times to the general case of curved
manifolds.

In the general-relativistic view, the element of proper time along
the world line of a particle, parametrized by λ, has the expression

dτ =
1

c
[g(T̄ , T̄ )]1/2dλ, (6.1)

in terms of the metric tensor of Lorentzian signature g and of the tangent
vector T̄ to the world line. Again, one would like to associate 1-forms ω̃
and d̃λ with dτ and dλ. Hence, one needs again considering 1

c [g(T̄ , T̄ )]1/2

as a scalar field on the manifold involved; in this respect the situation is
exactly the same as in the special-relativistic case. Just as in that case,
one is allowed to consider 1-form fields of the types ω̃(1) or ω̃(2) associated
with the proper time interval dτ , according to the two schemes outlined,
with a corresponding enlargement of the manifold to M ×R or TM ×R.

The group of diffeomorphisms under which the would-be 1-form d̃τ
is invariant is no more restricted to the isometries of Special Relativity.
Things are best seen from the passive viewpoint, where nothing changes
with respect to the special relativistic case as far as the invariance under
reparametrizations is concerned. The vector T̄ , on the other hand, is a
geometric object on the manifold, and therefore coordinate independent
by definition.

No new problem arises in connection with the necessity of restricting
the domain of the ω̃′s on TM to time like vectors, since the causal
structure of space-time is preserved locally.
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As in the special-relativistic case, the only way to achieve the com-
plete view, i.e. to introduce a time coordinate as an integral of whichever
1-form ω̃, is again to specify on the space-time manifold a complete time
like vector field T̄ generating a one-parameter group of diffeomorphisms
of the manifold, either in 1-1 correspondence with, or independent of, λ.
Again, particles with world lines coinciding with the orbits of the dif-
feomorphism would correspond to a class of observers, sharing the time
coordinate t. We shall have to say something more on the subject in the
section devoted to cosmic time.

Curved manifolds may admit Killing vector fields. The closest con-
tact with the situation arising in Special Relativity, and the case on
which we initially focus our attention, is that of a space-time which ad-
mits a time-like complete Killing vector field. Such a space time, as well
known, is called stationary, since its metric properties do not depend on
the values of the real number parametrizing the integral curves of the
field, which can be taken as a time coordinate, since the curves are time-
like. That a stationary space time admits a global time coordinate is of
course well known, as well as the fact that this result is a consequence of
the existence of a complete time-like Killing vector field. To this we add
the viewpoint that things can be read as a consequence of the Frobenius
integrability (guaranteed by the Killing vector field) of the proper-time
1-form and the subsequent foliation of the spacetime manifold in terms of
space-like hypersurfaces. Note that the proper-time 1-form, ω̃, vanishes
on the tangent spaces to the space-like hypersurfaces of the foliation
(its annihilator). The diffeomorphism generated by T̄ maps isometri-
cally these hypersurfaces into one another: the selected “motion” is the
displacement in time of the “particles” of one such section.

A particularly interesting case is that of a static spacetime, which is
a stationary space time satisfying the further condition that the motions
of test-bodies in it should be time-reversal invariant; this requirement
forces upon the metric the further constraint that its mixed terms, g0j ,
should vanish. In this case, the tangent vector to the integral curves of
the Killing vector field is always orthogonal to the space-like surfaces of
the foliation. We see here that the selection of a unique time coordinate
t is associated with that of a privileged class of “observers”, namely
those which have as world lines the integral curves ot the time-like field
(orthogonal geodesics). Space coordinates may be assigned on the space-
like manifolds at constant t in such a way that points on orthogonal
geodesics have fixed space coordinates (co-moving coordinates). As well
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known, standard clocks at different space points desynchronize even in
a static field; however, a recalibration of their rates may in principle be
envisaged3, as well as a synchronization procedure4. Note that if the
space manifold is further requested to possess spherical symmetry (as in
the case of the Solar field), co-moving coordinates can be chosen as the
spherical coordinates θ and φ and the ‘area coordinate’ r; since metrical
properties do not depend on θ and φ, the class of privileged observers is
in this case identified as that of the observers at constant r.

As we have repeatedly stressed, it is not necessary that T̄ be a
Killing vector field. A time coordinate on a curved space-time can be
globally defined if a time like complete vector field can be assigned on
the space-time manifold.

Global hyperbolicity of the manifold, as previously recalled, is a
sufficient condition for this purpose. The corresponding foliation of the
space-time manifold by Cauchy surfaces, parametrized by a global time
function, is essential for the initial value formulation of General Relativ-
ity5 and its Hamiltonian formulation, since the latter provides perhaps
the best motivation for the viewpoint that Einstein’s equations describe
the evolution of the spatial metric with time6. What is relevant in this
context is the possibility of defining a global time coordinate. However,
there is no preferred time coordinate, in correspondence with the fact
that there is no privileged class of physical observers. However, there
is a unique time variable in Hamiltonian quantum mechanics. In con-
structing the quantum mechanics of General Relativity as a classical
field theory, a first task is to identify this preferred time, and there is no
general consensus as to wherefrom the choice should arise7.

7.A comparison with previous analyses

The mathematical features of the association between proper time and
a 1-form field have been analysed from a distinct standpoint by Sachs
and Wu (1977)8. These authors consider a space-time connected, time-
oriented, metric manifold (M,g, D) (g is the metric tensor of Lorentzian

3 see, for instance, Rindler (1969), p. 119 ff.
4 see, for instance, Landau (1975), p. 234 ff.
5 see, for instance, Wald (1984), chapter 10
6 Wald (1984), p. 450
7 Hartle (1989), p. 7
8 p. 52 ff.; see also Rodrigues and Rosa (1989).
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signature, D the Levi Civita connection). The tangent vector to a curve
γ (world line)

γ : E −→M,E ⊆ R (7.1)

at a point p is denoted as γ∗(u), its norm as |γ∗|. A world line can
always be parametrized in terms of the proper time. Formally, this
parametrization is characterized by the condition

|γ∗(u)| = 1,∀u ∈ E ; (7.2)

a time like future-oriented curve satisfying (7.2) is called an observer;
γ∗ is the the observer’s four-velocity. A reference frame on a space-time
manifold is a vector field T̄ , whose integral curves are observers. The
metric tensor g determines a bijection

g : TM −→ T ∗M (7.3a)

by
X̄ 7−→ ω̃X̄ = g(X̄, ·). (7.3b)

Denote, in particular, with ω̃(3) the 1-form field associated with a refer-
ence system T̄ ,

ω̃(3) = g(T̄ , ·). (7.4)

ω̃(3) is the quantity that corresponds to our 1-form fields ω̃(1). Note that
ω̃(3) is defined, by Eq. (7.4), on the manifold M .

The authors’ approach shows clearly that the proper time is just a
real number u parametrizing a curve, in no way belonging in the mani-
fold. To find a contact with it, one must go through the pull-back γ∗ of
ω̃ associated with the mapping (7.1); indeed, as the authors show, it is:

γ∗ω̃(3) = du (7.5)

(our metric). Note that Eq. (7.5) can be extended to our ω̃(1,2). The
discussion up to this point shows how our intuitive approach to the
idea of a proper time 1-form field can be anchored on firmer ground.
We now continue the comparison between Sachs and Wu’s analysis and
our discussion by summarising the latter authors’ presentation of the
integrability problem. Whereas our emphasis has been on the conditions
for the possibility of defining a 1-form field d̃τ and on the conditions for
its Frobenius integrability, which turns out to depend on the existence of
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a complete time like vector field T̄ , their interest is on which properties
of T̄ are related to properties of ω̃(3). T̄ is defined as

a) locally synchronizable iff

ω̃ ∧ dω̃ = 0 (7.6a)

b) locally proper time synchronizable iff

dω̃ = 0 (7.6b)

c)synchronizable iff there exist functions h and t on M such that

ω̃ = hd̃t (7.6c)

d) proper time synchronizable iff there exists a function t such that

ω̃ = d̃t (7.6d)

An immediate contact with our discussion is established for case c),
corresponding to Frobenius integrability; d) is evidently the case of ex-
actness; a) and b) are the local versions of c) and d); in particular, a)
is the condition for the validity of Frobenius theorem, and implies c)
only locally; similarly, b) implies d) only locally (the converse Poincaré
lemma).

Note that we are not interested in local conditions, nor, in general,
in the case of exactness, which is clearly non-physical.

8.Cosmic time

As well known, the cosmological principle of standard cosmology implies
that the space-time continuum is foliated by a one-parameter family of
space like hypersurfaces of homogeneity9. The time coordinate is not yet
univocally determined at this stage. However, isotropic observers must
have world lines perpendicular to their hypersurfaces of homogeneity10

(perpendicular geodesics). This requirement identifies a privileged time
coordinate as the arc-length along perpendicular geodesics.

9 see, for instance, Wald (1984), p. 92
10 ibidem, p. 93
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In this case, the existence of a privileged time coordinate corre-
sponds to the selection of a privileged class of observers, the isotropic
observers of the substratum.

The association of the emergence of a cosmic time with the existence
of a privileged class of observers is a constant in the history of modern
cosmology, ever since the formulation of Einstein’s static model, where
cosmic time is the time that would be measured by clocks associated
with a reference system in which matter is on the average at rest. Its
necessity became apparent after the formulation of de Sitter’s model,
whose physical implications were hard to decipher until Weyl supposed
that the stars (galaxies in later contexts) lie on a pencil of geodesics
diverging from a common event in the past11, thus providing, at a time,
a family of preferred motions and a universal time (the so-called Weyl’s
principle).

The association is to such extent a necessary one that nowadays a
cosmological model is defined as the union of a space-time manifold and
a class of observers12.

This necessity is made more evident in the framework we have out-
lined, in which the existence of one complete time like vector field spec-
ifies both a global unique time coordinate and a privileged class of ob-
servers.
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