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ABSTRACT. A material particle having inherent rest mass m0 is
moving with uniform linear velocity v with respect to a station-
ary observer B. According to Einstein’s special theory of relativity
the rest energy of the particle is E0 = m0c

2. While in motion the
particle’s external kinetic energy is increased to m0c

2(1 − β2)−1/2

with respect to the stationary observer, where β = v/c. Following
Planck’s quanta in the radiation energy E = hν, de Broglie intro-
duced quanta into relativistic dynamics with frequency ν0 associated
with the eigen mass m0. The fragment of quantum energy is thus as-
sociated with Einstein’s energy equation by E0 = m0c

2 = hν0 = E1.
Einstein relativistic increase of kinetic energy for the moving ma-
terial particle means that the stationary observer B observes an
increased frequency ν2 = ν0(1 − β2)−1/2 for the moving particle.
On the other hand, Lorentz-Einstein time transformation envisages
slowing down of the periodic phenomenon in a moving particle in
the ratio of 1 to (1 − β2)1/2 for the stationary observer B also.

Thus the reduced frequency is ν3 = ν0(1 − β2)1/2. So following
Planck, Lorentz, Einstein and de Broglie the stationary observer B
observes two different frequencies ν2 and ν3 for the moving material
particle. Considering de Broglie’s idea of associating quanta to a
moving material particle we can reconstruct the two energy levels
for the particle by Planck hν concept. The two energy levels for the
moving material particle are : E2 = hν2 = m0c

2(1 − β2)−1/2 and

E3 = hν3 = m0c
2(1 − β2)1/2. The rest energy E0 = m0c

2 may be
conceived as the inherent potential energy of the material particle.
Thus, E2 is the increased kinetic energy and E3 is the reduced poten-
tial energy of the particle. The experimental proof for the existence
of energy level E2 is well known in the charged particle accelerated
by the machine. The existence of the energy level E3 is also forth-
coming. Calculations show that the decrease of “potential energy”
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correctly gives the “fine structure terms” of hydrogen atomic spec-
tra which were also calculated by Sommerfeld considering relativistic
motion of electron in the elliptic orbit. The above potential energy
difference (E0 − E3) = m0c

2 −m0c
2(1 − β2)1/2 seems to be a hid-

den real physical quantity. It may possibly help us in understanding
some basic problems in physics.

RESUME. L. de Broglie a introduit, en suivant Planck et Einstein,
une fréquence quantique pour une particule matérielle de masse au
repos m0 par ν0 = m0c

2/h = ν1. Quand cette particule se déplace
à la vitesse v, l’accroissement bien connu de la masse donne une
fréquence accrue ν2 = m0c

2(1 − β2)−1/2/h pour un observateur
immobile B, avec β = v/c. La transformation de Lorentz prédit
le ralentissement d’un phénomène périodique dans le rapport 1 à
(1 − β2)1/2. Donc B observe une fréquence réduite ν3 = m0c

2(1 −
β2)1/2/h. En remontant à l’énergie, nous avons donc trois niveaux
d’énergie, hν1, hν2, hν3. Nous appellerons le troisième “énergie
potentielle diminuée” E3 = m0c

2(1 − β2)1/2. L’existence d’une
“différence d’énergie potentielle”, comme une “différence d’énergie
cinétique”, est corroborée par “les termes de structure fine du spec-
tre de l’atome d’hydrogène”. Cette variation d’énergie potentielle
inhérente à la particule en mouvement existe aussi bien pour la
mécanique de Newton que pour celle d’Einstein. Elle parâıt être
une quantité physique réelle mais cachée. Elle peut nous aider à
comprendre d’importants problèmes de physique.

1. Introduction

The most outstanding result of the special theory of relativity of
Einstein [1,2] is that the mass of a body is a measure of its energy
content. The first person to give the correct relationship was Poincaré
[3] who suggested that the electromagnetic energy should possess a mass
density to be given by (1/c2) times the energy density. Einstein [2] was
first to prove that if the energy changes by L the mass will change by
(L/c2). The variation of dimensions of a moving body and the concept
of local time for a moving system travelling with uniform velocity v
was first given by Lorentz (4) in his transformation equations. Lorentz
also gave the concept of longitudinal and transverse mass of electron.
Einstein [1] gave the presently accepted relation between mass variation
with linear velocity v.

In this paper we reexamine the well known work and the concept
of Planck [5,6], Einstein [1] and de Broglie [7]. In Section 2 we give the
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proof that within the frame work of Planck’s quantum hypothesis, Ein-
stein’s special theory of relativity and de Broglie’s wave mechanics there
exists another energy level dependent on the velocity of the particle, in
addition to the rest energy and increased kinetic energy, to a stationary
observer. We combine the concepts of Planck, Einstein and de Broglie
for understanding de Broglie’s two wave phenomena in a moving mate-
rial particle. In Section 3 we show the splitting of original rest energy
E0 = E1 into two levels E2 and E3 when the particle moves with uni-
form velocity v. Section 4 deals with energy difference and brings out
some interesting results. In Section 5 we give the experimental support
for the existence of above third energy level through splitting of energy
level for a relativistic electron. The same splitting was explained earlier
by Sommerfeld [8] through the concept of elliptic orbit and relativistic
motion of electron for hydrogen atom fine structure terms.

2. Combining the concepts of quantum hypothesis, relativity
theory and wave mechanics

A material particle having inherent rest mass m0 has rest Energy
E0 according to Einstein’s relativity theory [1,2]

E0 = m0c
2 = E1 (2.1)

Let us call this –first energy level E1. This can be conceived as potential
energy. When the above particle moves with uniform velocity v with
respect to a stationary observer the rest energy is increased. This in-
creased energy Ein is only given in all text-books Eddington [9], Synge
[10], Goldstein [11] and Goldenberg [12] as

Ein = m0c
2(1− v2/c2)−1/2 = m0c

2(1− β2)−1/2 = E2 (2.2)

Let us call this –second energy level E2. Here, β = v/c. The difference
between the energy levels E2 and E1 is called the relativistic kinetic
energy T .

T = m0c
2(1− β2)−1/2 −m0c

2 (2.3)

No text-book or scientific literature gives the decrease of rest or potential
energy for a relativistic material particle. The purpose of this paper is
to prove the existence of a decreased energy Ede or a third energy E3,
in addition to above two, for a relativistic material particle. This will be
done following the arguments of de Broglie [7].
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We shall briefly recollect de Broglie’s arguments [7] as they will
help us directly to develop the concept of the third energy level for a
relativistic material particle.

The energy E of a harmonic oscillator was given by Planck [3,4] as

E = hν (2.4)

where h = Planck constant, ν frequency.

According to de Broglie [7], we may extend Planck’s idea of associ-
ating a frequency ν with an isolated quantum of energy E, to associating
a frequency ν0 with an isolated fragment of energy E0 which is inherent
in an eigen mass m0 of a stationary particle. Thus the relation (2.1) is
extended to

E0 = m0c
2 = hν0 (2.1)

As we have called it earlier the first energy level E1, the relation becomes

E1 = m0c
2 = hν1 (2.5)

Following (2.1) we call this –the first frequency ν1.

ν1 = m0c
2/h (2.6)

Here, the frequency ν1 is measured in the system fixed to the particle.
The frequency ν1 is particle’s inherent body frequency. The above fre-
quency may be conceived as the frequency of particle’s personal clock. If
the particle moves with uniform velocity v we would like to know what
will happen to the above energy and the frequency. Let us take a closer
look at the above phenomenon from the point of view of relativistic kine-
matic, with two observers B and B′ stationary at two origins O and O′

of two cartesian coordinate systems S(x, y, z, ict) and S′(x′, y′, z′, ict′)
respectively. The particle with inherent mass m0 is lying at rest at the
origin O′ of the system S′. Following Einstein [1] we further assume
that at time t = t′ = 0 both the systems are stationary, O and O′ are
coincident and similar coordinate axes are coincident. Equations (2.5)
and (2.6) are true for both the observers B and B′. Now the system S′

with the observer B′ and the particle at rest at the origin O′ is raised to
a final uniform velocity v along the x-direction. The x-axis and x′-axis
remain coincident, the z-axis and z′-axis remain parallel. We may have
to apply a Newtonian force [13] for a limited time ∆t to the particle
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lying at rest at O′ in the system S′. We intend to study the system
only after the system is stabilized and attend a uniform velocity v along
the x-direction. It is quite obvious that the observer B′ will not find
any change in the material particle as both of them are stationary with
respect to each other. But the observer B is stationary in S-system.
He will observe the increase of mass and increase of energy according
to Einstein [1] for the moving material particle eqn. (2.2). Following
Planck [6] quantum hypothesis the stationary observer B will also see
an increased frequency νin. As we have called it earlier second energy
level E2 the relations become

E2 = m0c
2(1− β2)−1/2 = hνin = hν2

νin = m0c
2(1− β2)−1/2/h

(2.7)

or ν2 = m0c
2(1− β2)−1/2/h (2.8)

Let us call this –second frequency ν2. This is an increased frequency.

The Lorentz-Einstein time transformation tells us that a periodic
phenomenon associated with the moving body slows down, i.e. there is
a time dilatation. A striking verification of the increase of time period is
provided by the observed increase in the apparent life time of high energy
µ-mesons from cosmic rays by Rossi and Hall [14]. So the stationary
observer will see the frequency ν1 of the above first periodic phenomenon
reduced in the ratio 1 : (1 − β2)1/2 as shown by de Broglie [7]. Thus
the inherent body frequency ν1 will decrease to a value νde. Thus the
relation is

νde = ν0(1− β2)1/2 = m0c
2(1− β2)1/2/h

or

ν3 = m0c
2(1− β2)1/2/h (2.9)

Let us call this –third frequency ν3. This is a decreased frequency and
was correctly predicted by de Broglie [7]. Now, we can reconstruct from
eqn. (2.9) logically a decreased energy Ede as

Ede = hνde = m0c
2(1− β2)1/2

or

E3 = m0c
2(1− β2)1/2 = hν3 (2.10)



490 P. Kundu

Naturally, we call this –the third energy level E3. We reaffirm, this is a
decreased energy with respect to the rest energy E1 of the particle given
by eqn. (2.5).

Thus, the stationary observer B according to Planck-Lorentz-
Einstein-de Broglie will observe two different periodic phenomena in the
uniformly moving material particle having two different frequencies ν2

and ν3 given by eqns. (2.8) and (2.9) respectively. De Broglie [7] solved
this paradox of two different observable periodic phenomena and fre-
quencies observed by the stationary observer B for a moving material
particle by assuming that the above two periodic phenomena exist and
they are always in same phase for the stationary observer B. There is
truth in it. He then, we all know, went on to deduce the phase velocity
V , group velocity U and the wavelength λ associated with the material
particle moving with uniform velocity v as

V = c/β = c2/v (2.11)

U = v (2.12)

λ = h/[m0v
2(1− β2)−1/2] (2.13)

3. Splitting of energy levels for a uniformly moving material
particle

If the quantum hypothesis, relativity theory and wave mechanics
assign three frequencies ν1, ν2 and ν3 to a material particle for a sta-
tionary observer B, it is obvious that there will be three energy E1, E2

and E3 as given by eqns. (2.5), (2.7) and (2.10) respectively. When
the particle is stationary with respect to the stationary observer B the
energy is E1. When the particle is moving with uniform velocity v
along x-direction with respect to the stationary observer B, the en-
ergy is split into two levels E2 and E3. The three energy levels, L1,
L2 and L3 are shown in Fig.1. The three corresponding frequencies
are : ν1 = the particle’s inherent clock frequency noted by the sta-
tionary observer B when the particle is stationary in the system of
the observer B. ν2 = the increased frequency noted by the station-
ary observer B due to the well established phenomenon of increase
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of mass and energy of the moving particle. ν3 = the decreased fre-
quency noted by the stationary observer B due to the well known phe-
nomenon of slowing down of clock in the moving system of the particle.

Figure 1. Energy level diagram for a relativistic material particle.

4. Difference of energy

From Sections 2 and 3 it is clear that the stationary observer B
observes two energy changes for a uniformly moving particle with respect
to its stationary state :

(A) First Change: E2 = Increased total relativistic energy of the par-
ticle when in motion; E1 = Inherent energy of the particle at rest.
So, from the stationary state the total energy is increased, and the
kinetic energy difference is

Tdiff = [m0c
2(1− β2)−1/2 −m0c

2] = E2 − E1 (4.1)

(B) Second Change: E1 = Inherent or “Potential” energy of the parti-
cle at rest; E3 = Decreased “Relativistic Potential” energy of the
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particle when in motion. So, from the stationary state the potential
energy is decreased, and the potential energy difference is

Pdiff = [m0c
2 −m0c

2(1− β2)1/2] = E1 − E3 (4.2)

Hence, logically the total change of energy associated with kinetic
motion of the particle is “Sum of eqn. (4.1) and (4.2)”

Ech = [m0c
2(1− β2)−1/2 −m0c

2] + [m0c
2 −m0c

2(1− β2)1/2]

= m0v
2(1− β2)−1/2 (4.3)

Equations (4.1) and (4.2) may be expanded respectively as follows :

Increase of kinetic energy = [m0c
2(1− β2)−1/2 −m0c

2]

= [
1

2
m0v

2 +
3

8
m0

v4

c2
+

5

16
m0

v6

c4
+

35

128
m0

v8

c6
+ . . .]

(4.4)

Decrease of potential energy = [m0c
2 −m0c

2(1− β2)1/2]

= [
1

2
m0v

2 +
1

8
m0 ·

v4

c2
+

1

16
m0

v6

c4
+

5

128
m0

v8

c6
+ . . .]

(4.5)
It can be shown that the series represented by eqn. (4.4) is divergent
and that by (4.5) is convergent. In the nonrelativistic approximation
when v � c, both eqns. (4.4) and (4.5) respectively representing
change of kinetic energy and change of potential energy approach
(1/2)m0v

2. i.e.

Tdiff ' Pdiff =
1

2
m0v

2 (4.6)

Hence, logically in the nonrelativistic sense the total change of en-
ergy for a moving material particle is

Ech =
1

2
m0v

2 +
1

2
m0v

2 = m0v
2 (4.7)

This is an interesting result, Kundu [15]. This may possibly help us
in understanding some fundamental problems of physics including
wave-particle duality aspect correctly predicted by de Broglie [7].

5. Fine structure terms of hydrogen atom explained through
decrease of potential energy

The kinetic energy difference eqn. (4.1) for relativistic particle has
been verified in accelerating machines. The potential energy difference
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eqn. (4.2) for a moving electron can be verified from fine structure
terms in spectroscopy. We know that Sommerfeld [8] considered rela-
tivistic Kepler motion of an electron around a nucleus and explained the
fine structure terms of hydrogen atomic spectra. We know further that
Rojansky [16] stated the remarkable and strange fact that Sommerfeld’s
formula gave same results as given by the newer quantum theories where
both relativity and spin were simultaneously taken into account. Fur-
ther, if the relativity or spin is taken into account only individually the
results do not tally with those of Sommerfeld. Sommerfeld gave the en-
ergy equation considering kinetic energy, electrostatic potential energy
of the electron and balanced them as

Ekin + Epot = W (5.1)

or
[m0c

2(1− β2)−1/2 −m0c
2]− Ze2/r = W (5.2)

We identify the above energy change same as the decrease of relativistic
potential energy eqn. (4.2)

W = −[m0c
2 −m0c

2(1− β2)1/2] (5.3)

We now have correspondance on the following two accounts :

5.1 Term value of hydrogen atomic spectra

Sommerfeld [17] obtained the solution for energy or term value from
eqn. (5.2) as

m0c
2/[1 + α2Z2/{nr + (n2

Φ + α2Z2)1/2}2]−1/2 −m0c
2 = W (5.1.1)

Taking nΦ = k, nΦ + nr = n, and expanding LHS of eqn. (5.1.1) upto
two terms we obtain

[−(1/2)m0c
2(αZ)2/n2 − {(1/2)m0c

2(αZ)4/n4}{n/k − 3/4 + . . .}] = W
(5.1.2)

where α-Sommerfeld fine structure constant, n, k-principal and auxiliary
quantum number, Z-atomic number etc. Similarly we can expand RHS
of eqn. (5.3) upto two terms and we obtain

W = [−(1/2)m0v
2 − (1/8)m0v

2(v2/c2)] (5.1.3)
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The term value ν cm−1 can be found dividing LHS of eqn. (5.1.2) and

RHS of (5.1.3) by hc.

For n = k, the term values ν1, ν2 cm−1 for hydrogen atomic spectra

have been calculated by Sommerfeld [8,17] and our method are shown

in Table-1.

There is complete agreement between term values calculated by LHS

of Sommerfeld method eqn. (5.1.2) and RHS of our method eqn. (5.1.3).

This proves the correctness of our approach. The above two sides of two

equations are equal, i.e.

[−(1/2)m0c
2(αZ)2/n2 − {(1/2)m0c

2(αZ)4/n4}{n/k − 3/4}]
= W = [−(1/2)m0v

2 − (1/8)m0v
2(v2/c2)]

(5.1.4)

5.2 Extended term values

Agreement is obtained even if more terms are included in the Som-

mefeld’s equation (5.2). Expanding Sommerfeld’s equation to four term
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values in (5.1.1) we obtain

ν =[−RZ2{1/n2} − (Rα2Z4/n4){n/k − 3/4}
− (Rα4Z6/n6){(1/4)(n/k)3 + (3/4)(n/k)2 − (3/2)(n/k) + (5/8)}
− {(Rα6Z8/n8)(1/8)(n/k)5 + (3/8)(n/k)4 + (1/8)(n/k)3

− (15/8)(n/k)2 + (15/8)(n/k)− (35/64)}]
(5.2.1)

with n = k

ν =[−(1/2){m0v
2/(hc)} − (1/8){m0v

4/(hc3)}
− (1/16){m0v

6/(hc5)} − (5/128){m0v
8/(hc7)}]

(5.2.2)

Our decrease of relativistic potential energy eqn.(5.3) when expanded to
four terms, the term values become

ν =[−(1/2){m0v
2/(hc)} − (1/8){m0v

4/(hc3)

− (1/16){m0v
6/(hc5)} − (5/128){m0v

8/(hc7)}]
(5.2.3)

There is remarkable agreement between eqns. (5.2.2) and (5.2.3). The
former has been obtained by Sommerfeld [8,17] from the relativity theory
and illiptic orbit with the help of integration through complex variables.
Whereas the latter has been obtained from the relativity theory and the
simple concept of decrease of relativistic potential energy difference.

6. Discussion and conclusion

For a stationary observer B the rest energy for a material particle is
E0 = E1 = m0c

2. The preceding arguments, deductions and experimen-
tal evidences show that when the material particle is uniformly moving
with velocity v, for the above stationary observer the kinetic energy
level of the particle is not only increased to E2 = m0c

2(1 − β2)−1/2

but also the internal rest or potential energy level is decreased to
E3 = m0c

2(1 − β2)1/2, Fig.1. The paper thus presents a broader view
on the energy and energy level concept of a relativistic material particle.
Further, the familiar result of release of rest energy, say from the electron
positron annihilation, may be explained from another approach i.e. the
potential energy difference equation (4.2)

[Pdiff = m0c
2 −m0c

2
(
1− v2

c2
)1/2

] (4.2)
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At v = c, the second term on the RHS of the above equation giving the
variable part of relativistic potential energy comes to zero. Thus the
difference of potential energy now represented by the inherent potential
energy m0c

2 is released for the stationary observer B.

We have seen that Sommerfeld’s relativistic energy equation (5.2)
is same as our decrease of relativistic potential energy equation (5.3) for
an electron moving with high velocity around the nucleus. The term
values ν1 and ν2 cm−1 given by both methods are exactly same as given
by eqn. (5.1.4) and in Table-1. The equivalence of above two equations
(5.2) and (5.3) is complete when we extend them to four term values
and find they are also exactly same.

Another interesting result of this study is that we already know,
in the nonrelativistic Newtonian approximation the increase of kinetic
energy eqn. (4.4) gives 1

2m0v
2. The decrease of potential energy eqn.

(4.5) also gives 1
2m0v

2. Thus the total change of energy is m0v
2 for a

particle of rest mass m0 moving with a small uniform velocity, v � c,
eqn. (4.7). This may possibly help us in understanding and solving some
basic problems in physics Kundu [15].

Finally, we feel that the change in internal rest or inherent potential
energy is a real and a physical quantity. It is a hidden quantity. This
concept for a moving material particle, and even for a material body,
from Einstein relativistic mechanics to Newton classical mechanics, will
probably have far reaching consequences in physics.
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