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Introduction

As pointed out in I. Prigogine and I. Stengers’ s book ”Order out
of Chaos” the problem of irreversibility is a cosmological problem[1].
The main idea is to show that the growth of entropy takes place in the
Universe due to some reasons. The first problem we shall discuss is the
problem of the definition of entropy for the whole Universe. The second
question is how to describe the process of coming to thermodynamical
equilibrium in an evolving Universe. Usually we define an entropy as
the entropy of matter. That’s why the production of entropy in the
Universe is considered in connection with the effects of particle creation
from vacuum in an external gravitational field. Some efforts have been
undertaken recently to give a thermodynamical meaning to the effects
of particle creation from vacuum and to generalize the second law of
thermodynamics in the external gravitational field of the Universe [ 2,
3, 4 ].

Besides that, beginning with the longstanding paper of R. Pen-
rose[5], there were some efforts to interpret matter creation from the
vacuum in an external gravitational field as a thermodynamical effect
of transition of the so called ”entropy of gravitation” into the entropy
of created matter. It is easy to see that only those configurations of
the gravitational field possess ”entropy”, which can create particles, and
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the number of these particles will be a measure of the ”entropy of grav-
itation”. Applied to cosmology this means that there is no ”entropy
of gravitation” for conformal matter fields in conformally flat Universe
since there is no massless particle production in a homogeneous and
isotropic Universe, because the field equations are conformally invari-
ant and there is no particle production in conformally flat space-time.
The situation changes when we have a nonconformal scalar field ( min-
imally coupled with gravity), or gravitons, the equations of which are
not invariant under conformal transformations. In this case the effect
of particle creation takes place and the creation rate is proportional to
the square of the scalar curvature of the metric. In this case the scalar
curvature of the metric can be taken as a measure of the ”entropy of
gravitation”. Anisotropic space-time is not conformally flat and mass-
less particle creation is possible here. As it was shown in a number of
articles and books[2,6] the effect is determined by the square of the Weyl
tensor, so in accordance with R. Penrose’s proposal the Weyl curvature
can be taken as a measure of the ”entropy of gravitation”. But there are
some problems in this identification, as it is not clear how to come to
the expression of the entropy from the formula for the particle creation
rate

dN

dt
=

V (t)

80πβ
[Cαβµν(t)Cαβµν(t) + 60γ(ξ − 1

6
)2R2(t)], (1)

N(t) = n(t)V (t),

where Cαβµν is the Weyl curvature, R is the scalar Ricci curvature, ξ is
the parameter of coupling of the scalar field with gravity (when ξ = 1/6
we have conformal coupling ), β = 24, γ = 1 for scalar particles, β = 4
for neutrino, β = 1 for photons and β = 1, γ = 1/6, ξ = 0 for gravi-
tons[2,6,7]; n is the number density of particles created, V (t) = vA3(t)
is the comoving volume. Hu[2] for example proposed that the hydrody-
namical approximation can be applied and the entropy is simply pro-
portional to N . But it is not easy to understand why in a strongly
nonequilibrium situation of particle creation this approximation is valid
for an arbitrary instant of time on a whole hypersurface t = const in
regions which have never been causally connected. Therefore one should
develop a more accurate approach to the calculation of the entropy, gen-
erated in the process of particle creation in an anisotropic Universe .
This will be the aim of our paper.
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1. Entropy production in an isotropic Universe.

Let us consider background matter and matter created due to quan-
tum effects in a homogeneous and isotropic cosmological model with
metric

ds2 = dt2 −A2(t)

3∑
i=1

(dxi)2 (2)

where A(t) is the scale factor of the model. The matter is described by
Stress-Energy-Tensor (SET)

T totµν = T backgrµν + T creatµν (3)

both parts of which are conservative

∇µTµ backgr
ν = 0, ∇µTµ creat

ν = 0 (4)

The last equation reflects the general property of SET in curved
space- time. In the metric ( 2 ) the SET ( 3 ) can be presented in the
form

T 0 tot
0 (t) = ρtot(t) = ρbackgr(t) + ρcreat(t)

T
(i) tot
(i) (t) = −pi tot(t) = −pi backgr(t)− pi creat(t)

and equations ( 4 ) will have the well-known form

d

dt
(ρbackgr(t)V (t)) + pbackgr(t)

dV (t)

dt
= 0 (5a)

d

dt
(ρcreat(t)V (t)) + pcreat(t)

dV (t)

dt
= 0 (5b)

By analogy with the first law of thermodynamics in the static case, the
total differential of the entropy for systems with a variable number of
particles, has the form

T (t)dS(t) = d(ρtot(t)V (t)) + ptot(t)dV (t)− µ(t)dNtot(t)

Here T (t), S(t), µ(t) are only symbols for temperature, entropy and
chemical potential, which ought to be defined precisely. From equations
( 5 ) we come to the formula
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T (t)dS(t) = −µ(t)(d(nbackgr(t)V (t)) + d(ncreat(t)V (t)))

which means that the only way for the entropy to be changed is due
to changes in the number of particles. Taking into account the fact that

nbackgr(t) ∼ V −1(t)

we come to the conclusion that any change in the entropy of matter
in an homogeneous and isotropic Universe is possible only due to the
effect of particle creation from the vacuum in an external gravitational
field:

T (t)dS(t) = −µ(t)d(ncreat(t)V (t)) (6)

Since we consider fields minimally coupled with gravity and without
any interaction with other matter fields, one can say that the entropy
S(t) , the temperature T (t) and the chemical potential µ(t) are the char-
acteristics of particles created on the whole hypersurface t = const and
are constant values for all points of this hypersurface not because created
particles have come somehow to the thermodynamical equilibrium but
rather by definition of S(t) , T (t) and µ(t) as global values. In principle
we can integrate the formula (6) and obtain the total amount of entropy,
produced in the isotropic Universe from the initial vacuum state at tin
to the arbitrary time t

S(t) = −
∫ t

tin

µ(t′)

T (t′)

d

dt′
(ncreat(t

′)V (t′))dt′

Using the isotropic part of the formula (1)

dN

dt
=

3V (t)

4πβ
γ(ξ − 1

6
)2R2,

we get an expression for the entropy of scalar nonconformal particles or
for gravitons , created in an isotropical Universe

S(t) = − 3

4πβ
γ(ξ − 1

6
)2

∫ t

tin

µ(t′)

T (t′)
V (t′)R2(t′)dt′,

but there still remains the question of how to calculate T (t) and µ(t).
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2. Production of entropy in an anisotropic Universe.

Let us consider the case of an anisotropic space-time with metric

ds2 = dt2 −
3∑
i=1

A2
i (t)(dx

i)2, (7)

where

Ai(t) = A(t)exp[λi

∫
A−3(t)dt]

and A(t) is the mean scale factor, corresponding to the isotropic contri-
bution to the Universal expansion;

3∏
i=1

Ai(t) ≡ A3(t) ≡ V (t),

3∑
i=1

λi = 0

It is seen from formula (7) that the type of anisotropic expansion is
determined by A as a function of t and can be found as a solution of the
Einstein equations

3H2 − 3
Λ2

A6
= 8πGρbackgr

d

dt
H(t) + 3

Λ2

A6
= −8πG

ρbackgr + pbackgr
2

,

where

Λ2 = 1/6

3∑
i=1

λ2
i .

Here, Eisot = H2/8πG gives the energy density of the total isotropic
expansion of the Universe and Eanis = (3/8πG)Λ2/A6 by analogy with
Ref. [8] may be considered as the energy density of anisotropy for the
gravitational field. For the parameters of the anisotropy we have the
following expressions

Hi =
1

Ai

dAi
dt

,

H =
1

3

3∑
i=1

Hi
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∆H = H3 −
1

2
(H1 +H2) =

1

A3
(λ3 −

1

2
(λ1 + λ2)) ≡ ∆λ

A3
,

∆H = H1 −H2 =
1

A3
(λ1 − λ2) ≡ ∆λ

A3
.

Supposing that the SET of background matter has a form corre-
sponding to the Kasner vacuum case we come to an equation similar to
( 6 ). As we shall show later the SET of created particles has a more
complicated structure in anisotropic homogeneous space-time. This SET
is conserved and, in accordance with (4), we have

d

dt
(ρcreat(t)V (t))+pcreat(t)

d

dt
V (t)+

2

3
∆λ∆pcreat(t)+

1

2
∆λ∆pcreat(t) = 0,

(8)
where

p =
1

3

3∑
i=3

pi,∆p = p3 −
1

2
(p1 + p2),∆p = p1 − p2.

Then for the total differential of entropy one can obtain

T (t)dS(t) = −(
2

3
∆λ∆pcreat(t)+

1

2
∆λ∆pcreat(t))dt−µ(t)d(ncreat(t)V (t)).

(9)

It is seen from here that the production of entropy in an anisotropic
Universe takes place due to two factors: a) the anisotropic structure
of the SET, i.e. the pressure gradients of the created matter; b) the
changes in the number of created particles . As in the isotropic case we
can integrate formula ( 9) using the expression (1 ) for the creation rate
of particles in anisotropic space-time:

S(t) = −
∫ t

tin

(
1

T (t′)
(
2

3
∆λ∆pcreat(t

′) +
1

2
∆λ ∆pcreat(t′))+

µ(t′)

T (t′)

V (t′)

80πβ
[Cαβµν(t′)Cαβµν(t′) + 60γ(ξ − 1

6
)2R2(t′)])dt′

But then we see that interpreting S(t) as the thermodynamical en-
tropy of a system of particles, created at the arbitrary moment of time
t , is not possible. This is because particles created in non-causally con-
nected regions of space would not have enough time to exchange any
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information and to come to a state, which we could call the state of
thermodynamical equilibrium at the moment of time t ( this is similar
to the so-called horizon problem in inflationary cosmology). The value
S has thermodynamical meaning only when t→∞ ; only in this case S
contains the contribution from all field modes beginning from momen-
tum K = ∞ and finishing at K = O; all these modes are inside the
infinite horizon and we can talk about S as a classical thermodynamical
quantity. One should mention also that the expression ( 1 ) was obtained
under the assumption that the Universe was isotropic at t = −∞ and
t = +∞ ; that is why the results given by the integration of ( 9 ) for
the calculation of the entropy of particles produced from tin until t with
∆H(tin) 6= 0, ∆H(tin) 6= 0, ∆H(t) 6= 0, ∆H(t) 6= 0 will not be correct.
That is why we shall calculate the entropy and the temperature of cre-
ated particles in another way. It corresponds to the idea that we may
correctly define the concept of particle in the asymptotic regions where
there is no interaction with field and vacuum is stable. At intermediate
moments of time between tin and t we can speak only about quasipar-
ticles which are created and are annihilated due to strong gravitational
fields. That’s why one should be very careful using the formulas (6) and
(9) for the definition of the entropy production. One should be sure that
N indeed increases. In other words one should show that dN > 0 and
µ/T < 0.

3. The problem of isotropization and the production of entropy.
The process of coming to thermodynamical equilibrium.

Let us consider in details equation (9) for the entropy production
and the equation of SET’s conservation (8). If we present ncreat(t) and
ρcreat(t) in the form

nc(t) = A−3(t)f(t), ρc(t) = A−4F (t)

and take into account the equation of state for created massless particles

p =
ρ

3
,

we can rewrite (8) as

1

A

d

dt
(ρcA

4) +
2

3
∆λ∆pcreat(t) +

1

2
∆λ ∆pcreat(t) = 0
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or
1

A

d

dt
F (t) +

2

3
∆λ∆pcreat(t) +

1

2
∆λ ∆pcreat(t) = 0, (10)

while for equation (9) we have

T (t)dS(t) =
1

A
dF (t)− µ(t)df(t).

It is easy to understand now that if in the process of evolution inside
a fixed volume of space F (t) is going to a constant value (F (t)→ const)
and the same takes place for f(t) (f(t) → const ), then from equation
(10) we see that ∆p→ 0 , ∆p→ 0, which means that the isotropisation
of matter has taken place inside the same volume. From the second
equation it follows that while the isotropisation of matter takes place,
the process of entropy production in this volume also finishes. This gives
us a strong evidence that the anisotropy of space-time is essential for
entropy production and particle creation. It is useful here to recall the
long-standing statement of Hu that the anisotropy acts as a ”tranducer”
of gravitational entropy (anisotropic space-time) to matter entropy (field
dynamics)[2]. If it were possible to point out the time interval during
which the functions F (t) and f(t) become constants, i.e. the distribution
of matter in the fixed volume of the Universe becomes like in the isotropic
Universe, we would be able to calculate the duration of time for the
process of matter isotropisation in this volume. Due to back-reaction the
matter isotropization naturally leads to isotropization of metric inside
this volume.

The most striking feature of massless particle creation in anisotropic
space-time is that for small scales in momentum space , i.e. for wave-
length less than the horizon length, it is possible to speak about an
effective isotropic space time for them, but in isotropic space-time mass-
less particle are not created due to conformal flatness. That is why one
has a good definition of particles as in S-matrix theory. Massless par-
ticles not only are not created by an isotropic metric but also are not
annihilated by it. This leads to an important effect of ”accumulation”
of particles which are created outside or near the horizon of anisotropic
space-time, then due to expansion they go inside the horizon of the effec-
tive isotropic space-time and are accumulated there. This is the reason
for fundamental irreversibility. One has always dN > 0 inside the hori-
zon.(As an example we show how this mechanism of separation of field
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modes works in isotropic case for massless nonconformal particles. See
Appendix 1.)

Now we propose the following concept of thermodynamical equilib-
rium in an expanding anisotropic Universe for massless particles without
any interaction with other matter fields. We will say that only those par-
ticles have reached ”thermodynamical equilibrium” , if their wavelength
is less than the size of the particle horizon for moment t′ . The growth
of the entropy and the process of coming to ”thermodynamical equilib-
rium” shall be described as a flow of the long field modes of field, which
were created at t < t′ through the surface of the sphere with radius of
the order of horizon.

We shall show below that the process of coming to thermodynam-
ical equilibrium, corresponding to the flow of field modes through the
surface of the horizon sphere, is ”automatically” accompanied by the
fact that the functions F (t) and f(t) become constant and by the end
of entropy production inside the horizon region. That is why only for
these regions we can say that a definite amount of equilibrium entropy
and temperature can be calculated.

4. Entropy of photons created in an anisotropic Universe.

We begin our calculation with the number of real vector massless
particles and the energy density of photons, which were created at earlier
times t′ < t by a quantum process as quasiparticles, and the wavelength
of which became less than the horizon. Due to the expansion of the
Universe their energy density at time t is given by the sum of all previous
increments δρ at earlier times arising from the change of the momentum
K(t) with time, and being red-shifted by a factor A(t′)/A(t). Thus we
have

nc =

∫ t

tin

(
A(t′)

A(t)

)3(
−∂nq(Kh(t′), t′)

∂Kh

)
∂Kh(t′)

∂t′
dt′ ≡ A−3(t)f(t)

(11a)

ρc =

∫ t

tin

(
A(t′)

A(t)

)4(
−∂ρq(Kh(t′), t′)

∂Kh

)
∂Kh(t′)

∂t′
dt′ ≡ A−4(t)F (t)

(11b)
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p =
ρ

3

(in Appendix 2 a justification for this equation of state is given)
where the time t = tin corresponds to the initial vacuum state of field,
Kh(t) = A/t - is the momentum, corresponding to the size of the hori-
zon at time t ; nq and ρq in general are defined as the vacuum mean
values of the particle number operators and the operator of SET of an
electromagnetic field obeying the Maxwell equations ∇µFµν = O

nq(t) =
1

V (t)v
< Otin | N̂(t) | Otin >,

ρ(t) = T 0
0 (t),

Tαµ(t) =< Otin | NtT̂αµ(t, x) | Otin >,

NtT̂αµ = T̂αµ− < 0t | T̂αµ | Ot >,

Tαµ = −g
νρ

2
{Fµρ, Fαν}+

1

8
gαµ{F βν , Fβν}

{A,B} = AB +BA.

The initial vacuum state | Otin > is determined by means of diag-
onalizing the Hamiltonian of the electromagnetic field at t = tin . The
transition to the vacuum state | 0t > at t is done by Bogolubov’s trans-
formations. So we can present the vacuum mean values of Tαµ in the
form :

Tµν =

∫
dϕdθsinθ

∫
dK0(t,K, θ, ϕ)T

µ

ν (t,K, θ, ϕ)

where K0(t,K, θ, ϕ) = Kg−1(t, θ, ϕ) is the physical frequency of a pho-
ton, K, θ, ϕ are spherical coordinates in momentum space, and

g−1(t, θ, ϕ) =
[sin2θcos2ϕ

A2
1

+
sin2θsin2ϕ

A2
2

+
cos2θ

A2
3

] 1
2 (12)

The non-zero components of Tµν can be expressed in the following
way:

T
0

O =
K3

V

∑
r

2Sr,
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T
1

1 =
K3

V

∑
r

(
−cos2ϕXr + sin2ϕY r − sin2θ

2
(2Sr + Ur)

)
,

T
2

2 =
K3

V

∑
r

(
cos2ϕXr − sin2ϕY r − sin2θ

2
(2Sr + Ur)

)
,

T
3

3 =
K3

V

∑
r

(
−2Srcos2θ + Ursin2θ

)
T

12
=

K3

A1A2V

∑
r

(sin2ϕXr + cos2ϕY r) ,

T
13

=
K3

A1A3V

∑
r

(
cosϕ

sin2θ

2
(2Sr + Ur) + sinϕtgθY r

)
,

T
23

=
K3

A2A3V

∑
r

(
sinϕ

sin2θ

2
(2Sr + Ur)− cosϕtgθY r

)
.

The fact that T 0i = 0 is due to the metric (7) being homogeneous;
the trace of the SET, Tµµ = 0 is due to the maslessness of the field and
the field equations being conformally invariant . For the values ( 11 ) we
are interested in one can obtain

nq(Kh(t′), t′) =
1

(2π)3A3(t′)

∑
r

∫ Kh

0

K2dK

∫ π

0

∫ 2π

0

sinθdθdϕSr(t′,K, θ, ϕ)

(13a)

ρq(Kh(t′), t′) =
1

(2π)3A4(t′)

∑
r

∫ Kh

0

K3dK

∫ π

0

∫ 2π

0

sinθdθdϕSr(t′,K, θ, ϕ)

(13b)
where r = +1,−1 corresponds to the two states of photon polarization.
Futher we will consider expressions (13 ) in second order of the anisotropy
parameter ∆H, restricting ourselves only to the axial-symmetric case
(A1 = A2 ). In this case S+1 = S−1 and the functions S(t, k, θ) obey
the set of equations

dS

dt
=

1

2
WU

dU

dt
= W (2S + 1)− 2(

K

A
)V
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dV

dt
= 2(

K

A
)U,

where W = −∆H(cos2θ − 1). In second order approximation one
can obtain

S = (
1

4
)

(∫ t

tin

W (t′)dt′
)2

Now we suggest that Ai has the form

Ai = Aiot
λi(t+trec)

2/3−λi , A = (

3∏
i=1

Ai)
1/3 = (

3∏
i=1

Aio)
1/3t1/3(t+trec)

1/3,

(14)

where trec is the time of recombination. It easy to see that if t <<
trec (14) has the Kasner form; in the case t >> trec it corresponds to
an isotropic metric with dust matter. Then we will use the new variable
X = 1 + Z , where Z is the red shift. In terms of X we have

H(X) = HoB(X3 +A3)1/2X3/2; ∆H(X) = ∆HoX
3;A(X) = AoX

−1,

dt = − dX

HoBX5/2(X3 +A3)1/2

where A = 2(1 + Zrec), B = (1 + A3)−1/2, Ho,∆Ho and Ao corre-
spond to the modern epoch. Now we are going to calculate nc and ρc
for the period of time Xin > X > Xrec. After a rather long calculation
one can get[9]

nc = (
9

8π2
)C2

θBH
3
o (

∆Ho

Ho
)2X3f(X),

ρc = (
81

32π2
)C2

θB
2H4

o (
∆Ho

Ho
)2X4F (X),

where
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f(X) = (1/8)(X6
in−X6)−X6ln2(X/Xin) + (1/3)X6ln(X/Xin), (15a)

F (X) = (1/32)(X8
in−X8)−X8ln2(X/Xin)+(1/4)X8ln(X/Xin) (15b)

It is seen that nc = 0, ρc = 0 at X = Xin, because at that moment
we have the vacuum state without any particles. We suggest thatXin has
a great value ≈ 1030 corresponding to the Planckian time tpl ≈ 10−44s.
Because we try to calculate nc and ρc for the evolution period Xin >> X
we can neglect all terms, contained X after a short period of the Universe
evolution beginning from Xin . Thus the main contribution to nc and
ρc comes from particles created near X = Xin. Afterwards ncX

−3 and
ρcX

−4 become constants and there will no more particle production and
entropy production. That is why if we assume that after X becomes of
order 0.01Xin we neglect all terms in ( 15 ) containing X; one can say
that the isotropization of matter has taken place during the period of
time when the relation of scale factors become equal

A(tin)

A(tis)
=

(1 + Zis)

(1 + Zin)
=
Xis

Xin
= 0, 01

Beginning from the moment of time X ≈ 0, 01Xin the particle den-
sity number and energy density have the thermodynamical form and
are changed in value only due to the total expansion of the Universe.
The contribution to the integrals nc and ρc from the epoch of time
trec < t < to (Xrec > X > 1) is negligible in comparison with the
previous one .

Then for the X << Xin we can write

nc =
9

144π2
C2
θBH

3
o (

∆Ho

Ho
)2X6

inX
3,

ρc =
81

1024π2
C2
θB

2H4
o (

∆Ho

Ho
)2X8

inX
4.

By analogy with the thermodynamics of black body radiation let us
define the temperature as

ρc
nc

= cTph,
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Tph = c′HoX
2
inX ≡

T

A
(16)

This expression is independent of the anisotropy parameter ∆Ho in
spite of the fact that this result was obtained for ∆H 6= 0. The effec-
tive thermodynamical temperature Tph doesn’t contain any information
about the anisotropy of the background space-time and type of matter
field. Then we can write

nc = cn(
∆Ho

Ho
)2T 3

ph, (17a)

ρc = cρ(
∆Ho

Ho
)2T 4

ph. (17b)

The expressions ( 17 ) have a quasi-thermodynamical form, which
differs from the standard black body radiation thermodynamics by a
multiplier

(
∆Ho

Ho
)2 = (

∆H(X)

H(X)
)2.

To give it strongly thermodynamical meaning let us suggest that we can
represent nc and ρc as integrals over the whole momentum space, as in
the case of the Bose-gas:

n = (
1

π2A3
)

∫ ∞
0

dKK2

exp( (K−µ)
T )− 1

(18a)

ρ = (
1

π2A4
)

∫ ∞
0

dKK3

exp( (K−µ)
T )− 1

(18b)

where K,µ, T are related to the corresponding physical values as it
was for temperature ( 16 ).

Ko(t) = K/A(t), µph(t) = µ/A(t)

Comparing the formulas (17 ) and (18) we can calculate the value of the
chemical potential. To do this let us turn to the new variable

z = K/T,

in the integrals; then we will have
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n =
1

π2
(
T

A
)3

∫ ∞
0

dzz2

exp(z − µ
T )− 1

ρ =
1

π2
(
T

A
)4

∫ ∞
0

dzz3

exp(z − µ
T )− 1

Let us suggest now that exp(µ/T ) << 1 ( we will verify this fact
below) then in the main order∫ ∞

0

dzzn

exp(z − µ
T )− 1

' χnexp(
µ

T
)

where χ2 = 2, χ3 = 3 and for nc and ρ we have

nc =
2

π2
(
T

A
)3exp(

µ

T
),

ρc =
6

π2
(
T

A
)4exp(

µ

T
)

Comparing these formulas with those previously obtained (17) we
get the relation

α(
∆Ho

Ho
)2 = exp(

µ

T
)

or
µ

T
= ln(α(

∆Ho

Ho
)2) = ln(α(

Eanis
Eisot

)) (19)

From here one can write the effective energy distribution of photons
created in anisotropic space-time the wavelength of which is less than
horizon length at moment t ; this distribution is constant in time and
the only reason for the particle density to change in time is the Universal
expansion:

nk =
1

exp
(
K/A
T/A − lnα(∆Ho

Ho
)2
)
− 1

(20)

We see then the meaning of the chemical potential in the particle
creation effect in anisotropic Universe : it is related to the property of
the gravitational field represented by the degree of anisotropy. From the
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expression of the chemical potential (19) one can come to the conclusion
that the growth of entropy takes place in an anisotropic Universe indeed,
because in the formula

dS(t) = −µ(t)

T (t)
dN(t) = −µ

T
dN(t)

µ/T < 0 (because ∆Ho/Ho << 1 ) while the number of particles
increases. In conclusion we calculate the entropy of photons created in
an anisotropic Universe beginning from the moment of time tin . By the
definition of the entropy through the thermodynamical potential

S = −
(
∂Ω

∂Tph

)
V,µ

For a Bose-gas with distribution (20) one can use the following re-
lation

Ω = −1

3
ρ,

for the density of entropy one obtains that

S =
1

3

(
∂ρ

∂(T/A)

)
V,µ

=
4

(2π)3
(
T

A
)3exp(

µ

T
)(4− µ

T
)

where µ/T is given by the formula (19).

On page 3 we called S(t), T (t) and µ(t) symbols. But here we show
that these symbolical values really correspond to some entropy, temper-
ature and chemical potential, because they coincide with their values at
times when thermodynamical equilibrium has already taken place.

Let us summarize the results of our paper.

1. We proposed a way of interpreting the process of coming to ther-
modynamical equilibrium in the system of particles, created in
an anisotropic Universe without any interaction with other matter
fields inside the region restricted by the horizon size.

2. We have shown that in this region the process of entropy produc-
tion takes place only during a short period of time after the initial
vacuum state of the field was chosen. During the same period of
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time the isotropization of matter created for the above mentioned
region takes place.

3. After the entropy production is finished photons behave like a Bose-
particle gas with negative chemical potential (which is determined
by the degree of anisotropy of the external gravitational field or
by the ratio of the energy of anisotropy to the energy of the total
isotropic expansion), and with a temperature which is independent
of the degree of anisotropy. The equilibrium value of the entropy of
created particles was calculated.
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Appendix 1. The separation of field modes for a massless non-
conformal scalar field in isotropic space-time.

Let’s consider an equation for a massless nonconformal scalar field

∇µ∇µϕ = 0

in the metric (2) in terms of the conformal time η

dt = A(η)dη

The time-dependent part of this equation has the form

d2

dη2ϕ(η, k) + 2
1

A

dA

dη

d

dη
ϕ(η, k) + k2ϕ(η, k) = O (A1)

After changing the variable to ϕ = φ/A we come to the equation

d2

dη2
φ+

(
k2 − 1

A

d2A

dη2

)
φ = 0 (A2)

We consider separately the two cases of power law and inflationary ex-
pansion 1) In the case of power law expansion A(η) = ηp,(where p=1
corresponds to the radiatiuon-dominated stage of evolution, p=2 - to the
dust matter) equation (A2) will have the form

d2

dη2
φ+ (k2 − p(p− 1)

1

η2
)φ = 0
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It is seen, that if k >> 1/η or in terms of synchronous time k/A >> 1/t
we have the usual equation for a massless conformal field in conformally-
flat space-time. Now we can separate those field modes with momentum
larger than the ”horizon momentum”

k >> Kh =
A

t

for which there is no parametric amplification by the external gravita-
tional field. Thios means that there is no creation or annihilation of
quasiparticles for these modes in the isotropic metric (2). That’s why
for these field modes one has a good definition of particles in the external
gravitational field like in S-matrix theory.

For field modes with

k << Kh

we have an essentially quantum regime of behaviour. Since the Universe
expands we can say, that those modes of the field which were created
by quantum process with a wavelength larger than the size of the hori-
zon, then go inside horizon region and are accumulated there, become
”frozen” (in the sense that they are not affected there by quantum ef-
fects). That’s why in this case we can talk about growth of particles
inside the horizon region.

2) Inflationary Universe. Let us consider a model of inflationary
expansion with scale factor

A(η) = (2− η

η1
)−1A(η1)

η < η1

corresponding to the de-Sitter stage of evolution, matched with the met-
ric

A(η) = (
η

η1
)A(η1)

corresponding to the radiation-dominated stage.

During the de-Sitter stage, as follows from Einstein equations

H2 =
8πG

3c2
ρ = A(η1)−2η1

−2 = const.
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If we take into account now that

d2A

dη2
= 2A2H2

one can rewrite equation (A1) as

d2

dη2
φ+ (k2 − 2A2H2)φ = 0

and we again can conclude that if

K2
phys =

(
k

A

)2

>> H2 = const

equation (A1) becomes the usual equation for a massless conformal field
in the isotropic metric (2), and there are no quantum effects inside the
region with constant horizon ∼ H−1.

It can be seen also from the solution of equation (A1) representing
a de-Sitter-invariant field vacuum state that

ϕ(η, k) =
A(η1)

A(η)

(
1 + i

A(η)

k
H

)
exp(−ik(η − η1)) (A3)

which corresponds to the Hadamard form of two-point function or vac-
uum state with a finite SET[10]. If AH/k << 1 then we can neglect the
second term in the brackets and we will have the usual solution for a
massless field equation in a conformally-flat metric.

If AH/k >> 1 then we can write (A3) in the form

ϕ(η, k) = i
A(η1)

k
Hexp(−ik(η − η1)).

The amplitude of ϕ is

| ϕ |= A(η1)

k
H = const.

In this case field modes are ”frozen” (in the classical sense) outside the
horizon in the de-Sitter space-time.
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During the radiation-dominated stage

d2A

dη2
= 0

we have a stable vacuum, there is no quasiparticle production and anni-
hilation there. One has again a good definition of real particles. After
the radiation-dominated era begins the ”long”, ”frozen” modes of the
field in the de-Sitter invariant vacuum are going inside the expanding
horizon and are accumulated there so that we can speak again about the
growth of particle number.

Appendix 2. An exclusion of the local part and the conformal
anomaly of SET as a justification for the equation of state for
real particles.

To justify using in our considerations the equation of state

p =
ρ

3

for real particles , which in ”classical” theory takes place due to trace-
lessness of SET

Tµµ = 0

we have to prove that in a approach of quantum field theory approach
it is also valid. In other words we have to show that there is no so called
”conformal anomaly” of the renormalized SET (RSET) for field modes,
corresponding to the particles, accumulated inside the horizon region.

Usually this conformal anomaly is connected with the local (in time)
part of RSET

T renµν = Tnonlocµν + T locµν

and
Tµanomµ ≡ lim

m→0
Tµlocµ (m)

Let’s take, for example, the T 0 loc
0 component of RSET. It is known that

the expression for it has the form[7]

T 0 loc
0 = lim

m→0

(
− 1

(2π)3A4

∫
d3kK0(Sf2 + Sf4 )

)
, (A4)
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where Sf2 and Sf4 are the corresponding terms in the sum

S =

∞∑
n=2

h−n(Sdn + Sfn)

when h→∞ ( the parameter h is defined in the standard way: m→ mh,
k → kh, K0 → K0h) and initially the theory is supposed to be massive.
The superscript ”d” denotes the terms in S2 and S4 having divergent
integrals in the ultraviolet limit (k → ∞). According to the generally
accepted point of view the expression T 0 loc

0 describes the energy density
of vacuum polarization.

Functions S2 and S4 arise in the expression for T renµν because of
the regularization in the ultraviolet part of the spectrum. This part
of the spectrum corresponds to those field modes with high momentum
k, which in our approach correspond to the real particles accumulated
inside the region of the size of the particle horizon. That’s why if we
represent (A4) in the form

T 0 loc
0 = lim

m→0

(
− 1

(2π)3A4
(

∫ λi

0

+

∫ ∞
λi

)d3kK0(Sf2 + Sf4 )

)

where λi is a parameter in momentum space of the order of the horizon

(λiphys = λi/A ∼ 1/t), the integral
∫ λi

0
will correspond to vacuum po-

larization connected with quantum effects outside the horizon and with
creation and annihilation of quasiparticles.

The integral
∫∞
λi

will correspond to the contribution in RSET from
field modes inside the horizon region. This part of the spectrum is as-
sociated with real particles accumulated inside horizon. We show now
that this contribution to the RSET is equal to zero.

To do this, consider the structure of the local part of RSET. Using
the results of Ref.7 for Sf2 and Sf4 we have

Sf2 = Y (g)
(mg)4

K6
0

,

Sf4 =

6∑
n=3

((mg)2)n−2

(K2
0 )n

Y2n(g),
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K2
0 = k2 +m2g2

where the expression for g is given by formula (12). Then

T 0 loc
0 (λi;∞) = lim

m→0

(
− 1

(2π)3A4

∫
dϕdθsinθ

(
Y (g)

∫ ∞
λi

k2dk
(mg)4

K5
0

+

6∑
n=3

Y2n(g)

∫ ∞
λi

k2dk
((mg)2)n−2

K2n−1
0

))
,

Consider the expression within the internal round brackets. The first
term is of no interest for our investigation because after integration it
goes to zero for m→ 0. Consider another term. Let’s take, for example
the term with n = 3. If just for the moment we take λi = 0, then we
will have ∫ ∞

0

k2dk
(mg)2

K5
0

=
1

3

and there is no mass in the final result. The same fact is true for n =
4, 5, 6 and as a result ∫ ∞

0

k2dk
((mg)2)n−2

K2n−1
0

= Cn.

Then

T 0 loc
0 = lim

m→0

(
− 1

π2A4

6∑
n=3

Y2n(g)Cn

)
= − 1

π2A4

6∑
n=3

Y2n(g)Cn,

gives a contribution to the vacuum polarization and for the trace Tµlocµ we
will have the conformal anomaly. But since we consider the contribution
into RSET only from those field modes with k > λi = A/t, i.e. in our
case λi 6= 0, we have

lim
m→0

∫ ∞
λi

k2dk
(mg)2

K5
0

= lim
m→0

1

3

(
1− λ3

i

(m2g2 + λ2
i )

3/2

)
= 0.

The same result holds for n = 4, 5, 6. In the long run we have[7]:

T 0 loc
0 (k > λi) = 0,
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Tµlocµ (k > λi) = 0.

This fact proves our choice for the equation of state

p =
ρ

3

for real particles, accumulated inside horizon region.
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