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ABSTRACT. After reviewing some of the unified field theories of
the contemporary period, the author’s approach is outlined, demon-
strating a unification of the gravitational and electromagnetic field
theories, in the sense of Einstein, with an underlying 16-component
quaternion field formalism. The electromagnetic part of the formal-
ism is shown to reveal a current density that conforms with that of
wave mechanics, in the local limit of the generally covariant unified
field theory.

RESUME. Après avoir passé en revue quelques unes des théories
du champ unifié contemporaines, les grandes lignes de l’approche de
l’auteur sont rappelées. Elles montrent une unification des théories
des champs gravitationnel et électromagnétique, au sens d’Einstein,
grâce à un formalisme de champ de quaternions à 16 composantes.
On montre que la partie électromagnétique de ce formalisme fournit
une densité de courant qui, par passage à la limite locale de la théorie
du champ unifié généralement covariant, s’accorde avec celle de la
mécanique quantique.

1. Introduction.

I will start out with a brief history of unified field theories, thence
to explain the basic differences between Einstein’s concept of a unified
field theory and that of the present day elementary particle approaches.
Finally, I will outline my own resolution of this problem in general rela-
tivity. The latter is based on a theoretical development shown in detail
in my two books, General Relativity and Matter (Reidel, 1982) and
Quantum Mechanics from General Relativity (Reidel, 1986).[1]
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There has been a great deal of discussion in this century and the
last one on the subject of a unified field theory. In the 19th century the
idea was proposed by Michael Faraday that the fundamental variables
of matter are continuous functions of the independent space and time
variables, rather than the discrete variables of singular things of matter.
To Faraday, the fields are to represent the continuously distributed ‘po-
tentialities’ for matter to act on other matter (the ‘test body’). This led
Faraday to the unification of the electric and magnetic fields of potential
force, as two of the manifestations of a general field of potential force.

In this century, Einstein found that a unified field theory is a con-
sequence of the theory of general relativity, except that the field, in his
theory, represents an ‘actuality’ rather than a ‘potentiality’, incorporat-
ing the ‘test body’ as a fundamental part of a closed system. His attempt
was to demonstrate a generalization of his field equations, that had al-
ready revealed the nature of gravitation, superseding Newton’s theory
of universal gravitation. He wished to generalize the formalism in such
a way so as to unify the gravitational manifestation of interacting mat-
ter with the electromagnetic field theory, as expressed with the Maxwell
formalism. His hope was that such a unification may also eventually ex-
plain the origin of the formalism of quantum mechanics –a problem that
was uppermost in his mind during the greater part of his professional
career– as well unifying all of the other fundamental forces [2].

The unified field theory was pursued by other 20th century physi-
cists, primary among them was Schrödinger [3]. Other important in-
vestigators of this subject were Eddington, Weyl, Lanczos, Kaluza and
Klein [4]. They were all trying to unify the electromagnetic formalism
with Einstein’s field equations in general relativity, though none of these
studies were successful. It was their hope, as it was Einstein’s, that a
successful unification would lead to further unification with other theo-
retical explanations, including the quantum theory.

In recent years a different sort of unified theory has been proposed in
the domain of elementary particle physics ; this is a theory that general-
izes the gauge of electrodynamics in the context of quantum field theory.
The idea is to thereby generate a generalization of the electromagnetic
force in the quantum domain, so that all forces may be included un-
der a single umbrella, including the force of gravitation. Thus far, this
approach has demonstrated a unification of the electromagnetic force
with the weak interaction –the electroweak gauge quantum field theory
of Glashow, Salam and Weinberg. The fusion with the other forces –the
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strong (nuclear) force and the gravitational force– are under investiga-
tion, but have not yet been demonstrated [5].

It is important to emphasize that this unified theory is in an entirely
different context than the unified field concept of Faraday and Einstein.
It is in the context of a quantum field theory –a theory of measurement
expressed in terms of a linear Hilbert space, describing an open system in
terms of fundamental probabilities that incorporate the different sorts of
force fields of elementary particles (as observed by an external, macroap-
paratus). The Einstein/Faraday theory is in the context of a nonlinear
field theory for a closed system. This is characterized by a single force
field whose different manifestations are a function of the nature of the
observation –e.g. the observation of a purely electric field if the observer
is at rest with respect to an electrical body or the observation of the
magnetic and the electric field if the observer is in motion with respect
to the electrical body. The philosophy of this approach, to Faraday as
well as Einstein, was to extend from the unification of electricity and
magnetism to include all other possible force manifestations of interact-
ing matter in this way, in terms of a single, general field of force, for
a closed system at the outset, manifesting itself in one way or another,
depending on the conditions of observation.

2. A unified field theory. Gravitation and electromagnetism.

I now wish to discuss the unified field theory that I have investi-
gated. It follows the philosophy of a unified field theory according to
Faraday’s and Einstein’s approach. I will focus here only on the unifica-
tion of gravitation and electromagnetism, though other extensions were
accomplished in this investigation, particularly to include the fusion with
the formalism of quantum mechanics [QMGR][1].

If such a unification is indeed achievable, what did the other authors
not do to achieve it ? I believe that the answer to this question lies in
advice that Einstein gave but did not follow, himself, in his study of a
unified field theory, nor did any of the other authors of this approach
to physics. In an article that he published in 1945, in the Annals of
Mathematics [6], Einstein said in the Introduction that toward the goal
of such a theory in general relativity one should not only exploit the
geometrical logic that is implicit but also the algebraic logic. This refers
to fully exploiting the algebraic symmetry group of general relativity –the
‘Einstein group’. This group is the set of spacetime transformations that
specifies the transferral from one spacetime coordinate frame in which
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the laws are expressed to an infinitesimally displaced spacetime frame,
such that the laws expressed in the different frames remain in one-to-one
correspondence. This is the requirement of the ‘principle of covariance’
–which is the axiomatic basis of the theory of general relativity.

A salient feature of the Einstein group is that it is a continuous
group of transformations. Thus this group lacks any reflections in space
and time. On the other hand, when we examine the mathematical struc-
ture of Einstein’s second-rank tensor formulation of general relativity, we
see that it not only is covariant with respect to the continuous transfor-
mations of the spacetime coordinates, as it should be, it is also covariant
with respect to the reflections in space and time. Indeed, it is this ex-
tra symmetry of the Einstein formalism that yields it as 10 independent
relations at each spacetime point, rather than 16 relations.

The reason that there should be 16 independent field relations at
each spacetime point in general relativity theory is that the Einstein
group is a 16-parameter group –it entails 16 essential parameters [7].
Just as the rotation group in three-dimensional space entails three es-
sential parameters (the three Eulerian angles to define a general rotation)
and the Poincaré group of special relativity entails 10 essential parame-
ters (three rotations is space, three components of the relative velocity
between inertial frames and the four infinitesimal translations in space
and time), so the Einstein group entails 16 essential parameters, char-
acterized by the derivatives of four space and time coordinates of one
reference frame with respect to any other,

∂x′
µ
/∂xν , (µ, ν = 0, 1, 2, 3).

Thus we see that Einstein’s field formalism in general relativity is too
symmetric, because it is covariant with respect to the reflections, not
contained in its underlying group, as well as the required continuous
transformations that define the covariance of the theory. If we should
then remove the reflections from the underlying covariance group of the
Einstein symmetric, second-rank tensor formalism, it would factorize,
yielding a new formalism with extra degrees of freedom, leading to the
proper number of component equations –16 independent relations at
each spacetime point.

The latter is entirely analogous to the factorization of the Klein-
Gordon equation in special relativity by Dirac, when the reflection trans-
formations are removed, yielding the factorized pair of two-component
spinor equations :

( +κ2)Φ = 0→ σµ∂µη = −κχ , σ̃µ∂µχ = −κη
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where

≡ σµ∂µσ̃µ∂µ = σ0(∇2 − ∂20).

In general relativity one starts out with the invariant Riemannian dif-
ferential metric. This may be factorized as follows :

ds2 = gµνdxµdxν = dsds̃→
{
ds = qµdxµ
ds̃ = q̃µdxµ

(1)

where qµ is, geometrically, a four-vector, but each of its vector com-
ponents is, algebraically, a quaternion-valued field rather than a real
number-valued field [8]. Thus, qµ has 4 × 4 = 16 independent compo-
nents. The hint is then present that this field could entail both gravita-
tion and electromagnetism because the gravitational field, according to
Einstein’s general relativity, entails 10 component fields and the electro-
magnetic field, according to Maxwell’s formalism, entails 6 component
fields (3 components of electric field and 3 components of magnetic field).

We proceed to formulate the unified field theory by starting out as
one does in Einstein’s formulation, except that here the metrical field
components are the quaternion variables qµ, rather than the metric ten-
sor variables gµν . The quaternion algebraic form is chosen because the
irreducible representations of the Einstein group (of general relativity)
–a global extension of those of the Poincaré group (of special relativity)–
obey the algebra of quaternions. One then proceeds as one does in the
formulation of general relativity theory, except that here the variational
parameters are the quaternion fields qµ, rather than the metric tensor of
the standard Riemannian spacetime.

From qµqµ = constant, it follows that the covariant derivatives of the
quaternion fields vanish. Taking account of the fact that the quaternion
qµ is equivalent to a second-rank spinor of the form, η × η∗, as well as
a four-vector, where η is a first-rank two-component spinor, it follows
from qµ;ρ = 0 that the spin-affine connection field has the form

Ωµ =
1

4
(∂µq

ρ + Γρτµq
τ )q̃ρ = −1

4
qρ(∂µq̃

ρ + Γρτµq̃
τ ) (2)

where Ωµ is defined in terms of the covariant derivatives of a first-rank
spinor, as follows :

η;µ = ∂µη + Ωµη
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Note that it follows from the factorization (1), as well as choosing the
proper normalization, that

gµν = −1

2
(qµq̃ν + qν q̃µ)

The local (flat spacetime) limit of the metric tensor is the diagonal form,
(1−1−1−1)δµν , corresponding in this limit to the limiting quaternions,
qµ → σµ, where σ0 is the unit two-dimensional matrix and σk are the
three Pauli matrices (with k = 1, 2, 3). The latter four matrices are the
basis elements of the quaternion variable qµ. The conjugated elements
of the quaternion above are its time- (or space-) reflected fields, with
σ̃µ = (−σ0, σk).

The explicit form of the Riemann curvature tensor, in terms of the
quaternion metrical field, Rµρλκ, follows from qµ;ρ;λ − qµ;λ;ρ = 0, taking
account of the behavior of qµ as a vector as well as a second-rank spinor
(GRM, Sec. 6.12). From this we determine the Ricci tensor, Rµρλµ = Rρλ,

and its contraction with gρλ yields the Riemann scalar curvature, having
the form :

R =
1

2
[Kρλq

λq̃ρ − qρq̃λKρλ + qλK
†
ρλq̃

ρ − qρK†ρλq̃
λ] (3)

where Kρλ is the spin-curvature tensor, defined as follows :

η;ρ;λ − η;λ;ρ = [(∂λΩρ + ΩλΩρ)− (∂ρΩλ + ΩρΩλ)]η ≡ Kλρη (4)

where η is the two-component spinor variable.

The factorized field equations for the metrical field are determined
with the variational principle, where L = Lq+Lm is the total Lagrangian
density, Lq is the metrical part, given by the trace of R (eq. (3)) and
Lm is the matter part of the Lagrangian density that yields the source of
the metrical field in the field equations. Taking the variation of L with
respect to the quaternion variables, we find :

−δLq
δq̃ρ

=
δLm
δq̃ρ

→ 1

4
(Kρλq

λ + qλK
†
ρλ) +

1

8
Rqρ = kTρ (5a)

and its conjugate (i.e. reflected) equation:

−δLq
δqρ

=
δLm
δqρ

→ −1

4
(K
†
ρλq̃

λ + q̃λKρλ) +
1

8
Rq̃ρ = kT̃ρ (5b)
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The fundamental metrical field equations, that are a factorization
of Einstein’s second-rank tensor field equation, is then given in eq. (5a),
or, equivalently, by its time- (or space-) reflected equation which is its
conjugate equation (5b).

The field equations (5a) are 16 independent relations at each space-
time point. To see that this formalism contains Einstein’s tensor formal-
ism (the 10 relations that predict the gravitational effects) and Maxwell’s
formalism (the 6 relations that predict electromagnetic effects), we may
proceed as follows: Multiplying eq. (5a) on the right with the con-
jugated quaternion solution q̃γ , and multiplying eq. (5b) on the left
with the quaternion solution qγ , and then adding and subtracting the
two second-rank tensor equations so- constructed - a procedure that is
unique only up to a constant k or k′ on the right –the following equations
are obtained :

1

2
(Kρλq

λq̃γ ∓ qγ q̃λKρλ + qλK
†
ρλq̃γ ∓ qγK

†
ρλq̃

λ) +
1

4
(qρq̃γ ± qγ q̃ρ)R

= 2

(
k
k′

)
(Tρq̃γ ± qγ T̃ρ) (6±)

The field equation (6+) is in one-to-one correspondence with the struc-
ture of Einstein’s equation :

Rργ −
1

2
gργR = kTργ (7+)

This follows from the dependence of the corresponding tensors of the
Riemannian spacetime on the quaternion variables, as discussed above,
[GRM][1].

3. The Maxwell field implicit in the quaternion formalism.

The field equation (6-) may be put into the form of Maxwell’s field
equations for electromagnetism by taking the covariant divergence of
both sides of this equation, yielding

F ;ρ
ργ = (4π/c)jγ (7-)

where the antisymmetric second-rank tensor on the left is :

Fργ = Q[
1

4
(Kρλq

λq̃γ+qγ q̃
λKρλ+qλK

†
ρλq̃γ+qγK

†
ρλq̃

λ)+
1

8
(qρq̃γ−qγ q̃ρ)R]

(8)



170 Mendel Sachs

and the four-current source term is

jγ = (cQk′/4π)(T ;ρ
ρ q̃γ − qγ T̃ ;ρ

ρ ) (9)

The constant Q in eqs. (8) and (9) is a constant electric charge inserted
on both sides of the field equation (6-) in order to give the solutions the
proper dimensions of electromagnetic field intensity and current density
in the equation (7-). In deriving the form (9), use was made of the
fact that the covariant derivatives of the quanternion variables qµ are
identically zero.

What has been done so far is to take a formalism given by the field
equations (5a) –16 relations at each spacetime point that are neither even
nor odd with respect to reflections in space or time– and re-express them
in a form that is a sum of an even part under reflections (10 relations)
and an odd part (6 relations).

The fact that the four-current density source term for the Maxwell
field is odd under reflections is then compatible with the identification
of the iterated equation (6-) and the Maxwell formalism. But it is to be
noted that the (arbitrary) charge Q is not derived here. It is only the
mathematical form of the laws of electrical charges that is derived from
general relativity, when the reflections are dropped from the underlying
covariance group. This is the requirement of a unified field theory.

4. Probability density of wave mechanics in a local limit.

Because Fργ is an antisymmetric second-rank tensor, it follows auto-
matically that the covariant divergence F ;ρ;γ

ργ must vanish. Thus equation
(7-) leads to the vanishing of the covariant divergence of the four-current
density, j;γγ = 0. Integration of the local limit of this equation, together
with Gauss’theorem and the boundary condition that jk vanishes on the
bounding surface of the volume that contains the charge Q, then gives
the time-conservation of charge :

σ0Q =

∫
j0d

3x = constant (10)

The insertion of the unit matrix σ0 on the left takes account of the
matrix structure (9) of the four-currrent in this quaternion formalism.

The local limit of j0 in eq. (9) is the following :

j0 = −(cQk′/4π)∂ρ(T (1)
ρ + T̃ (1)

ρ )
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where T (1)
ρ is the local limit of the matter source of the metric equations,

δLm/δq̃ρ. Taking the determinant of both sides of eq. (10) then yields
the value of the constant k′ as follows :

k′ = −(4π/c)/|
∫
∂ρ(T (1)

ρ + T̃ (1)
ρ )d3x|

Thus the four-current density jγ of this expression of the Maxwell theory,
has the general form :

jγ = Q(T ;ρ
ρ q̃γ − qγ T̃ ;ρ

ρ )/|
∫
∂ρ(T (1)

ρ + T̃ (1)
ρ )d3x| (11)

The matter density, interpreted in quantum mechanics as a ‘probability
density’, is then

σ0ρ = j0/Q = (q0T̃ ;ρ
ρ − T ;ρ

ρ q̃0)/|
∫
∂ρ(T (1)

ρ + T̃ (1)
ρ )d3x| (12)

In the local limit, q0 → σ0, q̃0 → σ̃0 = −σ0 and T ;ρ
ρ → ∂ρT (1)

ρ , so that

loc lim |
∫
ρd3x| = 1 (13)

This derived normalization condition was originally imposed by Born, in
his interpretation of nonrelativistic quantum mechanics as a probability
calculus. As we see above, however, this normalization is not a general
relation, in the full, generally covariant expression of this field theory [9].

We also see from the general form (11) of the current density that
the three-current part of this four-vector,

jk/Q = (qkT̃ ;ρ
ρ − T ;ρ

ρ q̃k)/|
∫
∂ρ(T (1)

ρ + T̃ (1)
ρ )d3x|

predicts a coupling of a ‘gravitational field’, qk, to the matter field com-
ponents Tρ = δLm/δq̃ρ, to define a gravitational current term, not fore-
seen in the conventional theories that neglect the gravitational coupling
to matter fields. It is anticipated that this current must entail physical
effects in the domain where gravitation and electromagnetism are on an
equal footing regarding their relative magnitudes of coupling.
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In the nonrelativistic quantum mechanical formalism, the conserved
density is ρψ = ψ∗ψ, where ψ is a scalar, complex number-valued field,
interpreted as a ‘probability amplitude’. In the relativistic extension, the

conserved density is ψ†ψ, where ψ is a four-component bispinor whose
law is covariant with respect to space and time reflections. It is made
up of the two-component spinor fields, η and χ as follows :

ψ ∼
(
η + χ
η − χ

)
where the field equations satisfied by η and χ are the most general re-
garding the symmetry of relativity theory –in the sense that they are

not covariant with respect to reflections. In the bispinor form, ψ†
is the hermitian conjugate, defined as the complex conjugate of the
transposed bispinor. In the two-component spinor formalism, χ is the
time- (or space-) reflection of η. In the latter formalism in general
relativity, the four-current that satisfies the equation of continuity is

Jγ = (η†qγη − χ†q̃γχ). Note that the second part of Jγ is the time
reversal of the first part, so that this current is odd with respect to re-
flections in time, as well as space, as it should. In the local limit, the
time-component of this four-current is proportional to

J0 ∼ (η†η + χ†χ)

The conserved density that corresponds to the quantum mechanical
probability current, in the local limit, is then the addition of the grav-
itational current discussed above, jγ , shown in eq. (11), and Jγ . That
is, it is the four-current (Jγ + jγ) that obeys the law of continuity, and
the law of conservation that follows.
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