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An extension of wave mechanics to the rest frame
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ABSTRACT. An extended form of the de Broglie hypthesis is pro-
posed, as the basis for a new particle concept. The extended hy-
pothesis identifies a massive particle in its rest frame with a stable
standing-wave packet that can be decomposed into travelling waves
counter-propagating along the particle trajectory. This packet trans-
forms, in frames moving with respect to the particle, to produce a
stable packet composed of de Broglie waves with the correct prop-
erties, combined with waves of very short wavelength, that would
generally not be detectable in experiments involving objects with
atomic dimensions. A consequence of the proposed hypothesis is
that the description of events in the history of a particle must be
strictly symmetrical with respect to time.

RESUME. On propose une forme étendue de l’hypothèse de de
Broglie comme base d’un nouveau concept de particule. Cette hy-
pothèse identifie une particule massive dans son référentiel propre
à un paquet d’ondes stationnaires pouvant se décomposer en on-
des se propageant en sens contraires sur la trajectoire de la par-
ticule. Ce paquet se transforme dans les systèmes de référence se
déplaçant avec la particule et produit un ensemble stable composé
d’ondes de de Broglie, de propriétés convenables, qui sont associées
à des ondes de faibles longueurs d’onde généralement non décelables
lors d’expériences sur des objets de dimensions atomiques. Une
conséquence de l’hypothèse proposée est que l’historique d’une par-
ticule doit être décrit sans faire de distinction dans la chronologie
des événements passés et futurs.

1. Introduction.

This work shows how some changes to the basic assumptions of
wave mechanics can lead to a new conception of a quantum particle.
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The changes include the creation of a stable wave packet to represent
the particle in all inertial frames, including the rest frame, and the as-
sumption that the trajectory of a quantum particle is fixed in space-time.
In some simple examples, the resulting kinetics are shown to agree with
experiment, and to produce the correct quantum mechanical results, in-
cluding the selection of the appropriate portions of the waveforms arising
from interaction with, for example, a double slit system, or a partially
reflecting barrier.

2. Historical background.

We begin by recalling the background of current particle concepts
[1]. Wave mechanics received a major impetus from de Broglie’s hypothe-
sis, which stated that with a free particle of energy γmc2 and momentum
γmv, there is associated a travelling wave with frequency γmc2/h, and
wavelength h/γmv (h is Planck’s Constant and γ is 1/

√
{1− (v/c)2}).

Moving-frame (or moving-particle) wave properties were associated with
the energy and momentum of the particle. The work of Schrödinger, and
later Dirac and many others, modified and extended the concept of de
Broglie, introducing the concept of a wave packet, and identifying the
particle energy and momentum with differential operators. Wave equa-
tions were developed for describing moving particles as waves (herein
generically referred to as de Broglie waves). Current wave mechanics
thus describes the behaviour of a particle that is in motion with respect
to the observer. The de Broglie wavelength of a particle becomes in-
finitely large as the particle comes to rest, and there is essentially no
information available from quantum mechanics on the particle location,
and very little on other rest-frame properties.

3. Rest frame properties.

There seems, however, to be no a priori reason to preclude a more
informative rest-frame description of a particle. This does not imply a
violation of the uncertainty principle, since, as we shall see, the principle
is not directly applicable to particles in the rest frame.

Based on well-established principles of relativity theory, one would
expect all inertial frames with v < c to be equivalent, accessible in the
physical description of a massive particle, and to contain exactly the
same information concerning the intrinsic properties of the particle. It
therefore seems anomalous that this is not the case for quantum me-
chanics.
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These considerations, and the hope for further insight into the na-
ture of de Broglie waves, have led to a search for an extended hypothesis
that permits the particle description to include the rest frame. Such a
hypothesis must, of course, produce a kinetic theory that agrees with ob-
servation, and should have a logical connection with the wave equations.
The hypothesis should also include massless particles in a consistent
manner.

4. Extended hypothesis.

An extended hypothesis analogous to that of de Broglie (that is,
without reference to fields and spin), is presented here and used to illus-
trate the main features of the concept. The hypothesis would, of course,
have to be augmented to accomodate fields and spin, in developing a
comprehensive theory. The hypothesis is in three parts :

(i) With a massive free particle in its rest frame can be associated a
stable standing wave packet, with central wavelength λ = h/mc,
and frequency f = mc2/h. The standing waves of the rest-frame
packet transform, in a frame moving at velocity −v, to travelling
waves with two sinusoidal components. One component is the de
Broglie wave; the other has a wavelength equal to h/γmc, and moves
with velocity v. These travelling waves combine to produce a stable
packet in all frames.

(ii) With a massless free particle moving at velocity c can be associated
a (dispersionless) wave packet with central wavelength λ = hc/E,
and frequency f = E/h.

(iii) The wave packet of a massive or massless free particle can be decom-
posed into counter-propagating travelling waves moving at velocity
c along the particle trajectory, which is fixed in space-time.

To illustrate the consequences of the hypothesis, we will discuss
some simple examples, and we assume that the rest-frame waveforms
introduced are acceptable if they transform to moving-frame waveforms
containing familiar de Broglie wavefunctions. The examples here are
taken from the low velocity region, v << c, to allow comparison with
results from the Schrödinger equation. But it should be noted that the
treatment is relativistically covariant up to where approximations are
made to bring the waveforms to resemble Schrödinger wavefunctions.
Other wave functions will be included in a future study.
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5. Example 1 : plane standing waves.

In the first example, we represent the particle in its rest frame not
as a packet, but as a plane-standing-wave pattern, and transform it to a
frame moving with velocity −v. The standing wave will later be localized
to form a packet. The plane-standing-wave pattern is represented by:

F (z, t) = Z cos(kz) cos(2πft), (1)

where k = 2πf/c, and Z is, in general, a complex number.

To transform F (z, t) to an inertial frame moving in the negative-z
direction at speed v, we first decompose F into its component counter-
propagating travelling waves:

F (z, t) = (Z/2)[cos(2πft− kz) + cos(2πft+ kz)]. (2)

The travelling wave components are then Doppler-shifted appropriately
to transform to the moving frame. The wave travelling in the positive-z
direction has the new frequency:

f→ = γf(1 + β),

while that of the wave moving in the negative-z direction is:

f← = γf(1− β) , with β = v/c.

Substituting these frequencies and the corresponding wavenumbers into
(2) gives:

F ′(z, t) = Z ′ cos 2π(γft− γβfz/c) cos 2π(γβft− γfz/c), (3)

where the coordinates now refer to the moving frame.

The first cosine term in (3) is the de Broglie wave, with wavelength
λ′ = h/p, frequency f ′ = γmc2/h and velocity c2/v. The second cosine
term has wavelength βλ′, frequency βf ′ and velocity v.

If the wavelengths of these two terms differ greatly, i.e., if β << 1,
the de Broglie wave becomes a long-wavelength modulation of the “car-
rier wave” denoted by the second cosine term. In this case, the pres-
ence of the rapid spatial oscillations of the latter term are undetectable
in most experiments (see the discussion of the next example); for in-
stance, the electron carrier wavelength is nearly constant at about
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2.43 × 10−10cm. The long-wavelength de Broglie component can, how-
ever, result in observable interference and diffraction effects on inter-
acting with structures having atomic dimensions. As v/c approaches 1,
the de Broglie and carrier wavelengths, frequencies and velocities respec-
tively, approach equality.

The de Broglie wave in this picture is a modulation that appears
when there is relative motion of the reference frame and the particle. A
natural consequence is that a momentum change of the particle causes
the de Broglie wave modulation in the original moving frame to disap-
pear, to be replaced by one corresponding to the new particle momen-
tum. When the particle comes to rest, the de Broglie wave increases
indefinitely in wavelength, and vanishes when v = 0.

6. Localization in the rest frame.

A packet can be constructed using a standing wave similar to that
of (1), and modulating its space and time dependences with any smooth,
symmetric function of position and time, having a single well-behaved
maximum. For a stable particle, we use a time-independent Gaussian
function, setting k0 to be the rest-frame central wave number of the
particle:

G(z, t) = Z exp(−z2a2) cos(k0z) cos(k0ct). (4)

The choice of modulating function might be made with some particle
model in mind, for example the electron model of Barut and Zanghi [2].
Representing (4) by a Fourier integral in z reveals that the spectrum of
travelling waves that contribute to the function ranges in k from 0 to
∞, with the greatest weights given to values near k0, as indicated by the
weighting function for the integrals:

φ(k) = exp
[
− (k + k0)2

4a2
]

+ exp
[
− (k − k0)2

4a2
]

. (5)

7. Transformation of a wave packet.

Selecting the weighted central waves in G represented by k0, we can
write them as:

g(z, t) = z′[1 + exp(−k
2
0

a2
)][cos k0(ct− z) + cos k0(ct+ z)]. (6)
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This pair of waves will thus be added together in the Fourier integral in
phase and with equal weights, so when transformed to a moving frame,
their sum produces a product of sinusoidal functions like [3]. All the
travelling waves contributing to (4) can be paired in this way. The rela-
tive weights of the wave pairs is also preserved; thus counter-propagating
waves are produced in every moving frame. Again viewing the packet
in its form (4), the packet is narrower in a moving frame, since 1/a
transforms to 1/a′ = 1/γa.

If we express the rest frame packet in the form:

h(z, t) = Z exp−(a2z2) cos(k0z) cos(k0ct) = f(z)g(z, t), (7)

where

g(z, t) = 1/2 cos k0(ct− z) + 1/2 cos k0(ct+ z) = g→(z, t) + g←(z, t),

we can expand the factors in (7) as Fourier integrals at some time t. We
do this by finding the Fourier transforms of the factors in

h(z, t) = f(z)g→(z + z0) + f(z)g←(z − z0), (8)

where z0 = ct. The Fourier transform, H(k), of h(z, t) is then

H(k) = (1/π)[F (k)⊗G→(k) + F (k)⊗G←(k)],

where the symbol ⊗ denotes the convolution, and F (k), G→(k), G←(k)
are the Fourier transforms of f(z), g→(z, t) and g←(z, t) at time t. Note
also that:

G→(k) = exp(+ikct)G(k) and G←(k) = exp(−ikct)G(k),

where G(k) is the transform of g(z, 0). Evaluating the integrals and
convolutions results in:

h(z, t) = (1/a
√
π)

∫ ∞
0

φ(k)[cos(k0ct− kz) + cos(k0ct+ kz)]dk, (9)

where

φ(k) = exp− (k − k0)2

4a2
+ exp− (k + k0)2

4a2
,

as discussed above (equation 5).
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To study transformations, we consider a standing wave packet in
the rest frame and transform it to a frame moving at velocity −v. The
counter-propagating pairs of waves in the packet transform to Doppler-
shifted pairs, as previously described. The resulting wave packet can be
obtained by applying a Lorentz transformation to the coordinates in the
function modulating the Doppler-shifted waves:

h′(z, t) ∼ exp−γ2a2(z−vt)2{cos γk0(1+β)(ct−z)+cos γk0(1−β)(ct+z)}.

The transformed packet must, of course, remain stable, but its observable
width in the moving frame would be 1/γa, narrower than that observed
in the rest frame by the factor γ.

The effect of the Doppler shift is to produce the carrier and de
Broglie components of the packet. If a standing-wave packet exists in
the rest frame, each of its component waves transforms in this way. The
Fourier integral in the rest frame,

2π

∫ ∞
0

φ(k){cos(k0ct− kz) + cos(k0ct+ kz)}dk, (10)

transforms to :

2π

∫ ∞
0

φ′(k) exp−ik(βct− z)dk (11)

in the moving frame, in which the weighting function is now:

φ′(k)

∼ exp i
k0ct

γ
· exp− (k + k→)2

4γ2a2
+ exp−ik0ct

γ
· exp− (k − k→)2

4γ2a2

+ exp−ik0ct
γ
· exp− (k + k←)2

4γ2a2
+ exp i

k0ct

γ
· exp− (k − k←)2

4γ2a2

(12)

where k→ and k← are γk0(1+β) and γk0(1−β). The form of the integral
(11) shows that the waves contributing to the moving packet are all of
the “carrier-wave” type, with the same velocity, v. The time-varying
modulation of these waves generates the de Broglie component.

The stability of this packet in all frames is at variance with the
standard treatment of wave packet spreading, because the latter includes
only the de Broglie components of the waves [3].
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It is also clear from the relationship of the de Broglie waves to the
rest-frame wavepacket, that the uncertainty principle cannot be directly
applied to position and momentum in the rest frame, because the de
Broglie waves to which the uncertainty principle refers do not exist in
this frame.

It is important to note that the packet is composed of a spectrum
of counter-propagating pairs of travelling waves in all reference frames.
These waves traverse the particle trajectory in both the negative-z and
positive-z directions.

9. Time symmetry and fixed space-time trajectory.

In the present conception, the particle description is made symmet-
ric and equivalent in the space and time co-ordinates by requiring that
the (relativistic) wave packet of a free particle decompose in all frames
into counter-propagating plane waves moving along a fixed trajectory.
This is in contrast to the special status of the time in relativistic wave
mechanics, as embodied in the Klein-Gordon and Dirac wave equations
[4], but parallels the co-ordinate equivalence incorporated in the path in-
tegral formulation of relativistic quantum mechanics [5,6], and a similar
approach based on the notion of a gauge transformation [7].

The time symmetry and fixed trajectory of the particle will be shown
to imply that the correct quantum-mechanical results can be obtained
without recourse to “collapse” of unwanted components of the wavefunc-
tion.

10. Massless particles.

An analogous picture can be developed for a massless particle. It
is considered to be a stable wave packet that is composed of travelling
waves traversing the trajectory of the particle in a manner similar to
that described for massive particles.

11. Example 2: interaction with a partially reflecting barrier.

We next analyse the interaction of a free particle incident normally
at speed v � c, on a partially reflecting potential barrier.

We will assume that the barrier potential is slightly greater than
the particle kinetic energy, and that the barrier width is comparable
to the de Broglie wavelength of the incident particle. These conditions
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lead, according to the Schrödinger equation, to both transmission and
reflection of components of the packet at the barrier.

We start by representing the incident free particle in its rest frame
by a plane standing wave packet, that can be decomposed into travelling
waves counter-propagating along the line of relative motion of the barrier
and the incoming particle. As described previously, these waves combine,
in the frame in which the barrier is stationary, to produce a packet
containing trains of travelling carrier waves moving toward the barrier
at speed v, modulated by a packet of de Broglie waves with central
wavelength h/p.

In determining their behaviour at the potential barrier, we use an
exponential form for the waves in the moving frame:

F (z, t) = exp(i/h̄)[γmc2t− pz] exp(i/h̄)[cpt− γmcz] = FdbFc (13)

We first put Fdb into the Schrödinger form for β � 1, and set γmc2 =
mc2+p2/2m. Following Schrödinger, we extract the rapidly time-varying
component:

Fdb = [exp(i/h̄)mc2t]ψs , where ψs = exp(i/h̄)[p2t/2m− pz],

is the Schrödinger wavefunction. Now comparing time derivatives,

(dFc/dt)/(dψs/dt) = 2mc/p� 1,

we are justified in extracting the rapidly time-varying component from
Fc, as we did the mc2 term from Fdb. Comparing the space derivatives,

(dFc/dz)/(dψs/dz) = γmc/p� 1,

we extend the extraction process to rapidly space-varying terms, and
remove the corresponding mc term in the approximation γmc = mc +
p2/2mc :

F (z, t) = {exp(i/h̄)[(mc2 + cp)t−mcz] exp(i/h̄)[p2z/2mc]}ψs. (14)

We note that (p2/2mc)/(dψs/dz) = p/2mc � 1, so the term p2z/2mc
can be neglected in comparison to pz in ψs. We therefore write, for
β � 1 :

F (z, t) = {exp(i/h̄)[(mc2 + cp)t−mcz]}ψs(z, t) . (15)
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We then note that the rapid time and space oscillations of the first expo-
nential term will average out over intervals of the coordinates observed
in experiments, so the low-velocity variation of F is dominated by ψs,
the Schrödinger wavefunction.

It is thus plausible that the particle in this picture behaves like a
Schrödinger wave packet when interacting with the barrier, except for
the consequences of time symmetry, as we now illustrate.

It is suggested that the behaviour of the packet on encountering
the barrier is not entirely what would be predicted by the Schrödinger
equation for de Broglie waves alone. The incoming packet can interact
with the barrier and divide to produce a reflected packet and a trans-
mitted packet, as usual, but to exist, each packet should be composed
of travelling waves arriving from opposite directions along its trajectory.
The particle is assumed to be a stable object, with a fixed, though not
necessarily single, trajectory in space-time.

The set of travelling waves arriving from one direction should there-
fore follow the past trajectory of the incident packet and, subsequently,
that of the reflected and/or transmitted packets. The waves arriving
from the opposite direction should trace, in reverse, the future trajecto-
ries of the packets, connecting them with the future particle waveforms.

Thus the only packets, reflected or transmitted, that should be gen-
erated at the barrier are those connected with the particle waveform
following the interaction with the barrier.

For example, if an absorber is placed in the path of either the trans-
mitted or reflected packet, and results in an energy change of the particle,
the corresponding packet would automatically be present, and the other
absent, since the latter would not be connected with the new waveform
resulting from the energy change. If the two packets are brought to-
gether so they first interfere before an energy change, then both packets,
composed of past– and future– going travelling waves, would traverse
their respective paths prior to the interaction.

Note that the Schrödinger equation describes quantitatively the
splitting of the incoming packet into two packets at the barrier, but
provides no logical way to eliminate one or the other when it takes no
part in the future history of the particle. This results in the require-
ment that the unwanted components “collapse” at the time of an energy
change, in the usual representation of wave mechanics.

The exact description of the experiment would follow if time sym-
metry is maintained. This implies that a particular outcome must be
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included in the a priori specification of an experiment; this is automatic
in the proposed conception, by virtue of the requirement for both past–
and future–directed travelling waves, and is also automatic in the Feyn-
man integral formulation [5,6], and similar approaches [7].

12. Example 3: double slit interference experiment.

We next consider a double-slit interference experiment, consisting
of a massive free particle incident with velocity v � c on a barrier with
two slits, and a screen that is many de Broglie wavelengths away from
the slits.

We again represent the particle by a plane standing wave packet in
its rest frame, then transform to the frame in which the slits and screen
are stationary and the particle is approaching the slits at speed v. If the
resulting de Broglie modulation has a wavelength commensurate with the
slit spacing, then the wave passing through the slits would experience
interference and diffraction as would be predicted for de Broglie waves
alone, since the carrier wavelength is too short to affect these processes
significantly.

Experimental results suggest that the spread in k values in the
Fourier expansion of free particle wave packets must be very small; the
observed interference patterns are relatively sharp, so the only wavenum-
bers contributing significantly are close to the central value. This sug-
gests the possibility of experimental verification of the existence of the
carrier waves in an interference experiment, but the angular resolution
required is equivalent to a spatial resolution of 10−10cm, and would be
very difficult to achieve. The more serious problem with such attempts
to observe the carrier wave would be that normal matter does not exhibit
sufficiently rapid spatial transitions on the scale of the carrier wavelength
to provide sharp interference patterns or other phenomena with optical
counterparts.

An experiment capable of detecting the electron carrier wave would
require, for example, a crystalline solid whose lattice spacing in at least
one direction has been reduced by a factor of over 100. This might
be achievable using inertial compression techniques similar to those em-
ployed in fusion experiments.

The incident packet in this conception is connected to waves passing
through the slits, which there form packets that interfere and converge
to the small region on the screen where the particle is absorbed. As in
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the previous example, only those portions of the interference pattern are
produced that are in packets connected with the trajectory of the particle
preceding the interaction with the slits, and following the interaction
with the screen.

13. Time symmetry and determinism.

In this picture, quantum wave mechanics would rigourously adhere
to the principle of time symmetry, that no distinction is allowed between
past-directed and future-directed sequences of events.

This time-symmetric approach would maintain the single-particle
nature of the energy exchanges with the environment, and would re-
move the requirement for collapse of extraneous components of the final
wavefunction.

It is interesting to note that this conception of a particle involves
near-classical determinism, similar to that identified previously by Bell
as removing the apparent non-locality from quantum-mechanics [8]. All
events in the history of a quantum particle would be determined. There
is an important difference, however, between this picture and classical
determinism: given an outcome, a particle interaction would be exactly
describable (using time symmetry), but the desired outcome would have
to be specified in advance, and is not predictable. The existing wave
equations would only identify the possible outcomes and estimate their
probabilities.

14. Conclusion.

An extended form of the de Broglie hypothesis is proposed as the
basis for a new conception of a particle. The extended hypothesis repre-
sents a massive particle in its rest frame as a stable standing-wave packet
that can be decomposed into travelling waves counter-propagating along
the fixed particle trajectory. This waveform transforms, in frames mov-
ing with respect to the particle, to produce a stable packet comprising de
Broglie waves with the correct properties, combined with waves having a
very short wavelength, that are generally not detectable in experiments
involving objects with atomic dimensions.

In this picture, the particle is thus treated as a stable wave packet
propagating in space along a fixed trajectory.

A consequence of the proposed hypothesis is that the description
of events in the history of a particle must be strictly symmetrical with
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respect to time. This should lead to the correct quantum-mechanical
description of these events, using the proposed picture and stable wave
packets.
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