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ABSTRACT. I give a new discussion of a ‘diagonalization theorem’
on composite systems, described quantum-mechanically, established
by J. von Neumann in connection with his analysis of the measuring
process. My approach stresses the algebraic aspects of the proof,
which are made evident by considering the state “vector” of the
composite system as a

(
0
2

)
tensor, whose nature, similar to that of

a manifold’s fundamental tensor, a non-degenerate, not necessarily
symmetric

(
0
2

)
tensor, is pointed out. Since it is independent of

specific assumptions, as emphasized in my presentation, the theorem
sheds light on the universal character of the Einstein-Podolsky-Rosen
correlations, analysed in recent papers by L. Accardi and H. Primas.
Such correlations are in fact akin to those established by a manifold’s
fundamental tensor between vectors and co-vectors. The history of
the diagonalization theorem is briefly outlined, and its connection
with generalizations of Bell’s theorem is pointed out.

RESUME. Je donne une nouvelle discussion d’un “théorème de diag-
onalisation”, valable pour les systèmes composés en mécanique quan-
tique, qui fut établi par J. von Neumann dans le cadre son analyse du
processus de mesure. La discussion souligne les aspects algébriques
de la démonstration qui sont mis en évidence si l’on considère le
vecteur d’état du système composé comme un tenseur

(
0
2

)
, dont on

souligne l’affinité avec le tenseur fondamental d’une variété, c’est-
à-dire un tenseur non dégénéré, non nécessairement symétrique.
Puisque le théorème, comme il résulte de ma démonstration, ne
dépend d’aucune hypothèse spécifique, il éclaircit le caractère uni-
versel des corrélations d’Einstein-Podolsky-Rosen, analysé dans des
articles récents de L. Accardi et H. Primas. Ces corrélations sont
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en effet proches de celles établies entre vecteurs et covecteurs par
le tenseur fondamental. L’histoire du théorème de diagonalisation
est esquissée en soulignant sa relation avec des généralisations du
théorème de Bell.

1. Introduction.

Correlations between subsystems of a physical system described in
terms of quantum mechanics are best analysed in terms of a general
theorem established by von Neumann in his treatise [1].

The theorem can be formulated as follows [2]: let H1 and H2 be two
separable Hilbert spaces and let Φ be a unit vector in H1 ⊗H2. Then
there exist two orthomormal bases {ψi}, {ηi}, i = 1, 2, . . ., respectively
of H1 and H2 , and positive numbers wi such that:

Φ =
∑
i

√
wiψi ⊗ ηi (1.1)

Since, given two bases, {φm} and {ξn},m, n = 1, 2, . . . , respectively
in H1 and H2 , an expansion of the form

Φ =
∑
m,n

cmnφm ⊗ ξn (1.2)

is obviously valid, the emphasis is on the one-to-one correlation that
expansion (1.1) establishes between the elements of the two bases.

A comparison between expansions (1.1) and (1.2) suggests that the
essence of the theorem amounts to nothing more than the diagonalization
of the matrix C of elements cmn.

In the general case, however, C is an “infinite dimensional matrix”,
and the algebraic aspects of the proof are likely to be overshadowed (von
Neumann original demonstration is no exception, as can be checked by
general inspection). The analytical aspects, related to the polar de-
composition of Hilbert-Schmidt operators [3], are of course important.
Nevertheless, as I will argue, it is the peculiarities of the algebraic as-
pects what makes the theorem an indispensable tool in discussions about
the foundations of quantum mechanics. Since the main purpose of this



Quantum mechanical correlations between . . . 55

paper, whose scope is therefore mainly pedagogical1, is to illustrate these
peculiarities, I shall avoid the complications arising as a consequence of
the (possible) infinite dimensionality of H1 and H2. Actually H1 and H2

will be here assumed to be of the same finite dimensionality n, so that
they are isomorphic to Cn.

Since the presentation will be rather lengthy due to my wish to be
exhaustive, it is perhaps worthwhile to outline the peculiarities of the
diagonalization procedure in advance. They are best seen if the tenso-
rial character of the entities involved is clearly indicated from the start.
To be definite, and for future reference, let us assume that, in Dirac’s
terminology, φm, ξn and Φ are bra’s; then Φ is in fact a

(
0
2

)
tensor, and

not a
(
1
1

)
tensor corresponding to a linear operator of Cn. The specific

tensorial nature of Φ makes it reminiscent of a metric. A metric is, how-
ever, a non-degenerate2 symmetric

(
0
2

)
tensor. Here, however, we must

give up symmetry from the start, since we are interested in the case in
which elements of of the two sub-spaces are physically distinguishable.
A non-degenerate, not necessarily symmetric,

(
0
2

)
tensor on a space-time

manifold is generally called the manifold’s fundamental tensor. Non-
degeneracy is a more basic property than symmetry: it is in fact a nec-
essary and sufficient condition for the fundamental tensor to establish a
one-to-one correspondence between the manifold’s vectors and covectors
(one-forms). Φ is generally neither symmetric nor non-degenerate. The
lack of non-degeneracy forbids in general the establishment of a one-to-
one correspondence between kets of the first (second) subsystems and
bras of the second (first) one: in other words, the mappings described
above have no inverse. The first clue of the demonstration is to deal
first with the particular case of a non-degenerate Φ, i. e. of a “non-
degenerate” (i.e. regular) matrix C; complications arising in the general
case are then easily disposed of.

The case of a fundamental tensor g stricto sensu, in which no com-
plication due to the complex nature of the state space arises, is recalled
in section 2, to stress similarities and point out a basic difference. Such
a tensor is certainly diagonalizable by a transformation of the class

g −→ g′ = OT gO, (1.3)

1 Its first motivation was in fact the wish to make more explicit and formally
more transparent the discussion presented in the 1985 paper by Accardi quoted
above.
2 The term is customary in differential geometry and General Relativity; see
footnote 3 below for details.
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withO an orthogonal matrix3, only if it is symmetric. It may thus appear
that in general “the fundamental tensor in the state space” will not be
diagonalizable, even if non-degeneracy is assumed. It is worth stressing,
as the essential peculiarity of the procedure, that this is not the kind of
diagonalization which is at stake here. In other words, what is sought for
is not a basis transformation, such as would be described by Eq. (1.3),
but rather a “segment” transformation, involving only one of the basic
sets. It is easily shown that this problem has one and only one solution.
The essential reason is that the non-symmetric fundamental tensor γ
determines a one-to-one relationship between bases in the sub-spaces 1
and 2: the natural choice in 2, say, which can always be made in a unique
way, is that of a basis {ē2j}, which, together with {ē1i }, diagonalizes γ.
The discussion extends straightforwardly to the case of the “fundamental
tensor” Φ (section 3).

It is somewhat suggestive to read the conclusions of this discussion
as follows: the typical non-local quantum mechanical one-to-one correla-
tions holding for entangled4 states are due to the overall state “vector”
acting as a fundamental tensor (a “metric”) in the product Hilbert space
independently of the causal structure of spacetime.

Section 4 contains a short discussion of the physical meaning of
operators appearing in the demonstration; in section 5, the complica-
tions arising in the general case, when the non-degeneracy condition is
released, are briefly discussed.

As already mentioned, the purpose of this paper is mainly pedagog-
ical. I do not pretend that something really new is implied here, with a
possible exception as regards the use of a tensorial language. Actually, it
is perhaps of some interest to highlight some episodes in the history and
chronicle of the diagonalization theorem. This is briefly done in section
6. Finally, in section 7, the connections with generalizations of Bell’s
theorem are pointed out.

3 The transformation corresponds to the similarity transformation which ap-
plies to

(
1
1

)
tensors. Note that, since a fundamental tensor g is a mapping from

Rn ⊗ Rn into R, not from Rn into itself, the notion of an eigenvector of g is
strictly meaningless, and so is, properly speaking, that of an eigenvalue. One
may however agree to call the eigenvalues of g the elements of the matrix in
the diagonal form (if it is diagonalizable at all). The matrix is non-degenerate

(see footnote 2) if it has no vanishing “eigenvalues”.
4 The term seems to have suddenly become popular: it is, by the way, a fair
translation of the German “verschränkt” which was first used by Schrödinger
referring to such states.
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Notations are, in general, as in Schutz [4]: in particular, vectors are
denoted with a bar, co-vectors with a tilde; tensors other than

(
0
1

)
and(

1
0

)
are in bold-face; elements of a basis (co-basis) are denoted with a

subscript (superscript) index.

2. The fundamental tensor analogy.

A fundamental tensor is a
(
0
2

)
non-degenerate tensor, i.e. a bilinear

mapping
γ : Rn ⊗Rn −→ R (2.1,a)

by
Ū ∈ Rn, V̄ ∈ Rn 7−→ γ(Ū , V̄ ), (2.1,b)

such that:
γ(Ū , V̄ ) = 0 ∀V̄ ∈ Rn ⇒ Ū = 0. (2.2)

We shall be interested in the case in which elements of the first and
second sub-spaces, hereafter to be denoted as Rn

1 and Rn
2 , in Eq.(2.1,a)

are physically distinguishable. Then it does not make sense to ask of γ
to be symmetric, as it would be asked of a metric tensor.

Bases of vectors {ē1i }, {ā2j}, and dual bases of co-vectors {ω̃i1}, {σ̃
j
2},

i, j = 1, . . . , n, are introduced in Rn
1 and Rn

2 such that

γ = γijω̃
i
1 ⊗ σ̃

j
2 (2.3)

with
γij = γ(ē1i , ā

2
j ), (2.4)

< ω̃i1, ē
1
k >= ω̃i1(ē1k) = δik (2.5,a)

< σ̃j2, ā
2
l >= σ̃j2(ā2l ) = δjl , (2.5,b)

where the brackets indicate saturation and the letters denoting bases of
the same tensorial character in the two spaces are kept distinguished to
stress the independence of the basis choice in Rn

1 and Rn
2 . The require-

ment of non-degeneracy, Eq.(2.2), is equivalent to the condition | γ |=
det (γij) 6= 0.

With the tensor γ, other mappings may be associated in a natural
way. If it is stipulated that one of the basis forms in Eq.(2.3), say the
first one, does not operate, then

γijω̃
i
1 ⊗ σ̃

j
2( ) (2.6)
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(where the bracket indicates that σ̃j2 is going to take on its argument) is
a mapping

Rn
2 −→ Rn∗

1 (2.7)

(Rn∗
1 is the dual space of Rn

1 ) by:

V̄ ∈ Rn
2 7−→ γijω̃

i
1σ̃
j
2(V̄ ) = γijV

jω̃i1 (2.8)

The result is a covector belonging to Rn∗
1 ,which we may denote as

Ṽ = Viω̃
i
1, (2.9)

with
Vi = γijV

j . (2.10)

The antilinear operator (2.6) is not an operator of Rn
2 (it maps a vector

of Rn
2 into a covector of Rn∗

1 ). An alternative notation for it is γ(−, ).

Similarly, one can introduce

γijω̃
i
1( )⊗ σ̃j2, (2.11)

or, in alternative notation γ( ,−), which is a mapping

Rn
1 −→ Rn∗

2 (2.12)

by:
Ū ∈ Rn

1 7−→ γijω̃
i
1(Ū)σ̃j2 = γijU

iσ̃j2. (2.13)

The result is a covector belonging to Rn∗
2 , which we may denote as

Ũ = Uj σ̃
j
2, (2.14)

with
Uj = γijU

i. (2.15)

Side by side with γ, we introduce a
(
2
0

)
(also non-degenerate) tensor, i.e.

a bilinear mapping
γ∗ : Rn∗

1 ⊗Rn∗
2 −→ R (2.16,a)

by:
Ũ ∈ Rn∗

1 , Ṽ ∈ Rn∗
2 7−→ γ∗(Ũ , Ṽ ) (2.16,b)
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γ∗ may be analysed according to

γ∗ = γij ē1i ⊗ ā2j , (2.17)

with:
γij = γ∗(ω̃i1, σ̃

j
2). (2.18)

With the tensor γ∗ other mappings may be associated in a natural
way. If it is stipulated that one of the basis vectors in Eq. (2.17), say
the first one, does not operate, then:

γij ē1i ⊗ ā2j ( ) (2.19)

is a mapping
Rn∗

2 −→ Rn
1 (2.20,a)

by:
Ũ ∈ Rn∗

2 7−→ γij ē1i ā
2
j (Ũ) = γijUj ē

1
i . (2.20,b)

The result is a vector belonging to Rn
1 , which we may denote as

Ū = U iē1i , (2.21)

with
U i = γijUj . (2.22)

The antilinear operator (2.19) is not an operator of Rn∗
2 (it maps a

covector of Rn∗
2 into a vector of Rn

1 ). An alternative notation for it is
γ∗(−, ).

Similarly, one can introduce

γij ē1i ( )⊗ ā2j . (2.23)

or, in alternative notation, γ∗( ,−), which is a mapping

Rn∗
1 −→ Rn

2 (2.24,a)

by:
Ṽ ∈ Rn∗

1 7−→ γij ē1i (Ṽ )ā2j = γijViā
2
j . (2.24,b)

The result is a vector belonging to Rn
2 , which we may denote as

V̄ = V j ā2j , (2.25)
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with

V j = γijVi (2.26)

The diagonalization of the matrix γ may be looked at from different
points of view. Let us preliminarly make the obvious remark that, since
γ is a mapping from Rn ⊗Rn into R (Eq.2.1,a), and not from Rn into
itself, the notion of eigenvector of γ is meaningless, and so is, properly
speaking, that of eigenvalue. We may however agree to call eigenvalues of
γ the elements of the matrix in the diagonal form (if it is diagonalizable
at all).

With γ in the form of Eqs.(2.3) and (2.4), the matrix γ can be

diagonalized if a new basis {ω̃j
′

2 } can be found, for instance in subspace
Rn∗

2 ,

σ̃j2 = Λjj′ ω̃
j′

2 (2.27)

(with Λjj′ a regular matrix), such that

γ = γij′ ω̃
i
1 ⊗ ω̃

j′

2 (2.28)

with

γij′ = γijΛ
j
j′ = pj′δij′ , (2.29)

that is:

γ = piω̃
i
1 ⊗ ω̃i2 (2.30)

Note that we cannot claim at this stage that the pi are real numbers,
since γ is not assumed to be symmetric.

For the same reason, in general γ will not be diagonalizable by the
trasformation that for a

(
0
2

)
tensor corresponds to a similarity transfor-

mation, that is

γ −→ γ
′

= OT γO, (2.31)

with O an orthogonal matrix. But this is not what is at stake here, since
the procedure outlined does not involve an overall basis transformation,
but only a “segment” transformation in one of the subspaces. To show
that this problem is always solvable, which is the essential point of our
discussion, we observe that γij′ , Eq.(2.29), is given by

γij′ = γ(ē1i , ē
2
j′), (2.32)
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where {ē1i } and {ē2j′} are the dual bases of {ω̃i1} and {ω̃j
′

2 }.This may be

read as the scalar product, ē1i · ē2j′ , of the vectors ē1i , ē
2
j′ , generated by

the fundamental tensor γ. Eq.(2.29), written as

ē1i · ē2j′ = pj′δij′ , (2.33)

expresses the weighted orthogonality5 of the two sets {ē1i }, {ē2j′}. Given

the set {ē1i }, the problem of finding a set {ē2j′}, such that Eqs.(2.33)
hold, has one and only one solution.

Things may be looked at form a slightly different point of view.
The scalar product in Eq.(2.33) can be described, in a non-explicitly
metric language, as a two-step process as follows.As the first step, the
Rn

1 −→ Rn∗
2 mapping of Eq.(2.11) connects with a basis {ē1k} a co-basis

in Rn∗
2 according to:

γijω̃
i
1(ē1k)σ̃j2 = γijδ

i
kσ̃

j
2. (2.34)

The right-hand side of Eq.(2.34) identifies indeed a set of co-vectors
labeled by k. Let us set

ω̃k2 =
1

pk
γijδ

i
kσ̃

j
2 (2.35)

(no summation over k in the right-hand side! pk 6= 0 as a consequence
of the assumption of non-degeneracy). We are thus mapping a basis in
Rn

1 into a co-basis in Rn∗
2 according to

f ≡ γijω̃i1( )⊗ σ̃j2 : Rn
1 −→ Rn∗

2 , (2.36,a)

by:

ē1k 7−→ ω̃k2 =
1

pk
γijδ

i
kσ̃

j
2 ≡

1

pk
f ē1k, k = 1, . . . , n. (2.36,b)

5 see Courant and Hilbert [5], p. 404; Morse and Feshbach [6], p. 885; in
the terminology of these authors, the normalization factor of Eq. (2.37) deter-
mines the “biorthogonality relations” expressed by Eq. (2.38). The notion of
“biorthogonal sets” apparently first arose in connection with Sturm-Liouville
problems for non-Hermitian operators L, in which case the eigenvectors of
L and L† do not coincide, but satisfy biorthogonality relations; it will prove
appropriate to our case as soon as the choice γlj ≡ γlj will be made (see below)



62 S. Bergia

As the second step, the saturations

< ω̃k, ēj′ >≡ ω̃k2 (ē2j′) =
1

pk
γ(ē1k, ē

2
j′) (2.37)

are performed.

With {ω̃k2} the dual basis of {ē2j′}, it is:

< ω̃k2 , ē
2
j′ >= δkj′ (2.38)

Eqs.(2.37) and (2.38) agree with Eqs.(2.32) and (2.33).

The above discussion may be summarized in the following terms. A
fundamental tensor γ determines a natural relationship between bases
in the sub-spaces Rn

1 and Rn
2 . According to line 1, the natural choice in

Rn
2 , say, is that of a basis {ē2j′}, which, together with {ē1i }, diagonalizes

γ, much in the same way as a proper metric chooses an orthonormal
basis. According to line 2, the natural choice in Rn

2 is that of a basis
{ē2j′}, dual to a co-basis {ω̃k2}, that γ connects with {ē1k}; if {ē2j′} is such

as to diagonalize γ, the normalization of {ω̃k2} is fixed (by Eq.(2.36,b)).

As to now, we have given no indication as to the evaluation of the
eigenvalues pi. We notice however the following. The composition of the
mappings

f ≡ γijω̃i1( )⊗ σ̃j2 : Rn
1 −→ Rn∗

2

and

f∗ ≡ γij ē1i ⊗ ā2j ( ) : Rn∗
2 −→ Rn

1 (2.39)

is
(
1
1

)
tensor, i.e. a mapping of Rn

1 into itself

f∗ ◦ f : Rn
1 −→ Rn

1 (2.40)

by:

ē1k 7−→ γij ē1i ā
2
j (σ̃

l
2)γrlδ

r
k = γijγrlδ

l
jδ
r
kē

1
i = γijγkj ē

1
i . (2.41)

That is, f∗◦f connects with each vector of the basis {ē1k} in subspace
Rn

1 , the vector γijγkj ē
1
i , and we may write:

f∗ ◦ f ē1k = γijγkj ē
1
i . (2.42)
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It is thus achieved in one step what was obtained in two steps in the
procedure outlined above. According to Eq.(2.42), f∗ ◦ f has matrix
elements:

(f∗ ◦ f)lk =< ω̃l1, f
∗ ◦ f ē1k >= γijγkj < ω̃l1, ē

1
i >

= γijγkjδ
l
i = γljγkj

(2.43)

If we take, in particular, the matrix elements of γ∗ as

γlj = γlj , (2.44)

then, as a matrix:
f∗ ◦ f = γ · γ̃; (2.45)

Since γ · γ̃ is symmetric positive semi-definite, it is diagonalizable
with non negative eigenvalues.

Rn
1 can be made a metric (Euclidean) space via a scalar product

( , ); in the basis which diagonalizes f∗ ◦ f , it is:

(ē1i , f
∗ ◦ f ē1j ) = wjδij , wj ≥ 0. (2.46)

Alternatively, one may write:

< ω̃i1, f
∗ ◦ f ē1j >= wjδ

i
j . (2.47)

For the well-defined square root H of the operator f∗ ◦ f holds, in
the same basis,

Hα
β e

β
k =
√
wke

α
k , (2.48)

where greek indices label the vector components and we have suppressed
the superscript for simplicity.

A completeness relation for the basis {ē2k′} in subspace Rn
2 may be

formally written as: ∑
k

ē2k′ >< ω̃k
′

2 = I. (2.49)

To use it in connection with Eq. (2.47), one should see e2k′ > (< ωk
′

2 )
as acted upon by f(f∗) from the left (right). One should also let f and
f∗ act on two arguments, rather than on a single one as in Eqs. (2.36,a
and 2.39).
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Then, from Eq. (2.36,b), and using dual bases, one gets:

< f , ē1j ē
2
k′ >= pj < ω̃j2, ē

2
k′ >= pjδ

j
k′ . (2.50)

Since, with f∗ (Eq. (2.41)) written as

f∗ = γlj ē1l ( )⊗ ā2j , (2.51)

one has the mapping

ω̃i1 7→ ē2i =
1

pi
γljδil ā

2
j ≡

1

pi
ω̃i1f
∗, (2.52)

it is also:
< ω̃k

′

2 ω̃
i
1, f
∗ >= pi < ωk

′

2 , e
1
i >= piδ

k′

i . (2.53)

Inserting Eq. (2.49) into Eq. (2.47), and using Eqs. (2.50), (2.53),
one obtains:

< ω̃k
′

2 ω̃
i
1, f
∗ >< f , ē1j ē

2
k′ >= pipjδ

j
k′δ

k′

i = (pj)
2δij = wjδ

i
j . (2.54)

The ”eigenvalues” of the fundamental tensor γ, Eq. (2.30), are
therefore the square roots of the positive eigenvalues of f∗ ◦ f , the eigen-
values of the square root operator H. Note that the assumption of
non-degeneracy of the fundamental tensor (Eq. (2,36,b)) is equivalent
to strict positiveness of f∗ ◦ f . This completes the essential of the dis-
cussion. For completeness and for further reference, we also consider the
mapping

f ◦ f∗ : Rn∗
2 −→ Rn∗

1 (2.55)

by

σ̃k2 7−→ γijω̃
i
1(ē1l )γ

lrσ̃j2ā
2
r(σ̃

k
2 ) = γijγ

lrδilδ
k
r σ̃

j
2 = γijγ

ikσ̃j2. (2.56)

That is, f ◦f∗ connects with the basis {σ̃j2} the basis γijγ
ikσ̃j2 in subspace

Rn∗
2 , and we may write:

f ◦ f∗σ̃k2 = γijγ
ikσ̃j2. (2.57)

According to Eq.(2.57),f ◦ f∗ has matrix elements:

(f ◦ f∗)lk =< ā2l , f ◦ f∗σ̃k2 >= γijγ
ik < ā2l , σ̃

k
2 >= γijγ

ikδkl = (γ̃ · γ∗)kl
(2.58)
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With the choice of Eq.(2.44), as a matrix:

f ◦ f∗ = γ̃ · γ. (2.59)

Of course, f ◦ f∗ is also a symmetric positive semi-definite operator,
coinciding, as a matrix, with f∗ ◦ f . Hence, it has the same eigenvalues
wi.

3. The case of the theorem.

The state vector of a quantum system made up of two subsystems
1 and 2, with state subspaces H1 ≡ Cn

1 , H2 ≡ Cn
2 is represented by a

bra Φ.

Φ can be considered as a
(
0
2

)
tensor, i.e. a bilinear mapping

Φ0
2 : Cn

1 ⊗Cn
2 −→ C, (3.1,a)

by
|ψ1 >∈ Cn

1 , |ψ2 >∈ Cn
2 7−→ Φ0

2(|ψ1 >, |ψ2 >). (3.1,b)

If bases of vectors {|e1i >}, {|a2j >}, and co-vectors, {< ω1
i |}, {< σ2

j |},
are introduced in Cn

1 and Cn
2 , one may conventionally write

Φ0
2 ≡ Φij < ωi1|⊗ < σj2| (3.2)

with
Φij = Φ0

2(|e1i >, |e2j >), (3.3)

< ωi1|e1k >= δik (3.4)

< σj2|a2l >= δj l. (3.5)

The scalar products in Dirac’s notation in Eqs.(3.4) and (3.5) may be
looked at as saturations.

With the tensor Φ, other mappings may be associated in a natural
way. If it is stipulated that one of the basic bras in Eq. (3.2), say the
first one, does not operate, then

Φij < ω1
i |⊗ < σj2 (3.6)

(where the omission of the bar indicates that σj2 is going to take on its
argument) is a mapping

Cn
2 −→ Cn∗

1 (3.7)
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(Cn∗
2 is the dual space of Cn

2) by:

|ψ >∈ Cn
2 7−→ Φij < ωi1| < σj2|ψ >= Φijψ

j < ωi1| (3.8)

The result is a co-vector (bra) belonging to Cn∗
1 , which we may

denote as
< ψ| = ψi < ωi1| (3.9)

with:
ψi = Φijψ

j . (3.10)

The antilinear operator of Eq. (3.6) is not an operator of Cn
2 (it

maps a vector of Cn
2 into a co-vector of Cn∗

1 ).

Similarly, one can introduce:

Φij < ωi1⊗ < σj2|, (3.11)

which is a mapping
Cn

1 −→ Cn∗
2 (3.12)

by:
|ψ >∈ Cn

1 7−→ Φij < ωi1|φ >< σj2| = Φijφ
i < σj2|. (3.13)

The result is a co-vector (bra), belonging to Cn∗
2 , which we may

denote as
< φ| = φj < σj2|, (3.14)

with:
φj = Φijφ

i. (3.15)

On the other hand, if the state vector of the composite system is
represented by a ket Φ, this can be considered as a

(
2
0

)
tensor, i.e. a

bilinear mapping
Φ2

0 : Cn∗
1 ⊗Cn∗

2 −→ C (3.16,a)

by
< ψ1| ∈ Cn∗

1 , < ψ2| ∈ Cn∗
2 7−→ Φ0

2(< ψ1|, < ψ2|). (3.16,b)

Φ2
0 may be analysed according to

Φ2
0 = Φij |e1i > ⊗|a2j >, (3.17)
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with:
Φij = Φ2

0(< ωi1|, < σj2|). (3.18)

With the tensor Φ2
0, other mappings may be associated in a natural

way. If it is stipulated that one of the basis vectors in Eq. (3.17), say
the first one, does not operate, then:

Φij |e1i > ⊗a2j > (3.19)

is a mapping
Cn∗

2 7−→ Cn
1 (3.20,a)

by:
< ψ| ∈ Cn∗

2 7−→ Φij |e1i >< ψ|a2j >= Φijψj |e1i > (3.20,b)

The result is a vector (ket) belonging to Cn
1 , which we may denote as

|ψ >= ψi|e1i >, (3.21)

with:
ψi = Φijψj . (3.22)

The antilinear operator of Eq. (3.19) is not an operator of Cn∗
2 (it

maps a co-vector of Cn∗
2 into a vector of Cn

1).

Similarly, one can introduce

Φije1i > ⊗|a2j >, (3.23)

which is a mapping
Cn∗

1 −→ Cn
2 (3.24,a)

by:

< φ| ∈ Cn∗
1 7−→ Φij < φ|e1i > |a2j >= Φijφi|a2j > . (3.24,b)

The result is a vector (ket) belonging to Cn
2 , which we may denote as:

|φ >= φj |a2j >, (3.25)

with:
φj = Φijφi. (3.26)
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Let us now see how the discussion of section 2 may be adapted to
the case of the diagonalization of the matrix Φ of elements Φij . Con-
siderations similar to those made in section 2 apply to the notion of
eigenvalue of the matrix here discussed.

In this case, with Φ0
2 in the form of Eqs. (3.2), (3.3), the matrix Φ

can be diagonalized if a new basis, {< ωj
′

2 |}, can be found, for instance
in subspace Cn∗

2 ,

< σj2| = T jj′ < ωj
′

2 |, (3.27)

such that,

Φ0
2 = Φij′ < ωi1|⊗ < ωj

′

2 | (3.28)

with
Φij′ = pj′δij′ = ΦijT jj′ , (3.29)

that is:
Φ0

2 = pi < ωi1| < ωi2|. (3.30)

Again, we cannot claim at this stage that the pj are real numbers.
Nor can we claim that they are all different from 0. Throughout this
section, it will be assumed that it is indeed so. This is the equivalent of
the assumption of non-degeneracy of the fundamental tensor of section
2.

Recalling that the symmetry of Φ0
2 is not requested, in general Φ

will not be diagonalizable by the transformation for a
(
0
2

)
tensor which

corresponds to a similarity transformation , that is:

Φ −→ Φ′ = U†ΦU, (3.31)

with U a unitary matrix. Again, this is not, however, what is involved
here, since the procedure does not imply an overall basis transformation,
but only a “segment” transformation in one of the subspaces. Since Φij′ ,
Eq.(3.29), is given by

Φij′ = Φ0
2(|e1i >, |ej′2 >), (3.32)

where {|e1i >}, {|e2j′ >} are the dual bases of {< ω1
i |}, {< ωj

′

2 |}, Φ con-
nects, very much as the fundamental tensor of section 2, with the vectors
|e1i >, |ej′2 >, a number, which may be taken as their scalar product.
Eq.(3.29) may then be read as expressing the weighted orthogonality of
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the two sets {|e1i >}, {|e2j′ >}. Again, given the set {|e1i >}, the problem

of finding a set {|e2j′ >}, such that Eq.(3.29) hold, has one and only one
solution.

Much like in the fundamental tensor analogy, things may be looked
at from a slightly different point of view. The scalar product can be
described, in a non-explicitly metric language, as a two-step process as
follows. As the first step, the Cn

1 −→ Cn∗
2 mapping of Eq.(3.12) connects

with a basis {|e1k >} a co-basis in Cn∗
2 according to:

|e1k > 7−→ Φij < ωi1|e1k >< σj2| = Φijδ
i
k < σj2|. (3.33)

The right-hand side of Eq.(3.33) identifies indeed a set of co-vectors
labeled by k. Recalling that we have assumed pk 6= 0,∀k, let us set:

< ωk2 | =
1

pk
Φijδ

i
k < σj2| (3.34)

(no summation over k on the right-hand side!). We are thus mapping a
basis in Cn

1 into a co-basis in Cn∗
2 according to

F† ≡ Φij < ωi1⊗ < σj2| : Cn
1 −→ Cn∗

2 , (3.35,a)

by:

|e1k > 7−→< ωk2 | =
1

pk
Φijδ

i
k < σj2| =

1

pk
F†|e1k > . (3.35,b)

As the second step, the saturations:

< ωk2 |e2j′ >=
1

pk
Φ0

2(|e1k >, |e2j′ >) (3.36)

are carried through. With {< ωk2 |} the “dual basis” of {|e2j′ >}, it is:

< ωk2 |e2j′ >= δkj′ . (3.37)

The discussion following Eq. (1.88) can be immediately adapted to
these results .

The above discussion may be summarized in the following terms:
the state vector Φ of a composite system determines a natural relation-
ship between bases in the state spaces of the subsystems Cn

1 and Cn
2 .

According to line 1, the natural choice in, say, Cn
2 is that of a basis
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{|ej′2 >}, which, together with {|e1i >}, diagonalizes Φ, much in the
same way as a proper metric chooses an orthonormal basis. According
to line 2, the natural choice in Cn

2 is that of a basis {|e2j′ >},dual to

a co-basis {< ωk2 |} that Φ0
2 connects with {e2k′}; if {e2j′} is such as to

diagonalize Φ, the normalization of < ωk2 |} is fixed (by Eq.3.35,b).

As regards the determination of the eigenvalues pi, we note the
following. The composition of the mappings:

F† = Φij < ωi1⊗ < σj2| : Cn
1 −→ Cn∗

2

and
F = Φij |e1i > ⊗a2j : Cn∗

2 −→ Cn
1 (3.38)

is a
(
1
1

)
tensor, i.e. a mapping of Cn

1 into itself

F ◦ F† : Cn
1 −→ Cn

1 (3.39)

by
|e1k > 7−→Φij |e1i >< σl2|a2jΦrlδrk

= ΦijΦrlδ
l
jδ
r
k|e1i >

= ΦijΦkj |e1i > .

(3.40)

That is, F ◦ F† connects with each vector of the basis {|e1k >} in
subspace Cn

1 , the vector ΦijΦkj |e1i >, and we may write:

F ◦ F†|e1k >= ΦijΦkj |e1i > . (3.41)

According to Eq.(3.41), F ◦ F† has matrix elements:

(F ◦ F†)lk =< ωl1|F ◦ F†)|e1k >= ΦijΦkj < ωl1|e1i >
= δli = ΦljΦkj

. (3.42)

If we take, as we must in quantum mechanics:

Φkj = Φ̄kj (3.43)

then, as a matrix:

F ◦ F† = Φ · ¯̃Φ = Φ · Φ†. (3.44)
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An operator of this form is in general self-adjoint positive semi-definite,
and therefore diagonalizable with non-negative eigenvalues.

In the basis which diagonalizes F ◦ F†, it is:

< ωi1|F ◦ F†|e1j >= wjδ
i
j . (3.45)

For the well-defined square root H of the operator F ◦ F†, in the same
basis, one has the eigenvalue equation:

Hα
βe
β
k =
√
wke

α
k (3.46)

(notations in Eq.(2.48)).

A completeness relation for the basis {|e2k′ >} in subspace Cn
2 reads:∑

k′

e2k′ >< ωk
′

2 = I. (3.47)

Its use in connection with Eq.(3.45), along lines similar to those following
Eq.(2.47), leads to the conclusion that F and F† are “diagonal in mixed
(1,2) bases”, with real eigenvalues pj =

√
wj , the eigenvalues of the

square-root operator H.

Note, in particular, that, with F written as:

F = Φlj |e1l ( ) > |a2j >= e1l > ⊗|a2j >, (3.48)

one has the mapping:

< ωi1| 7−→ |e2i >=
1

pi
Φljδl

i|a2j >≡
1

pi
< ωi1|F. (3.49)

Again, for completeness and for further reference, we also consider
the mapping

F† ◦ F : Cn∗
2 −→ Cn∗

1 (3.50,a)

by:
< σ2

k| 7−→Φ̄ij < ωi1|e1l > Φlr < σj2| < σk2 |a2r >
= Φ̄ijΦ

lrδilδ
k
r < σj2| = Φ̄ijΦ

ik < σj2|
. (3.50,b)

That is, F ◦F† connects with the basis {< σ2
k|} the basis Φ̄ijΦ

ik{< σj2|}
in subspace Cn∗

2 , and we may write:

< σk2 |F† ◦ F =< σj2|Φ̄ijΦik. (3.51)



72 S. Bergia

According to Eq. (3.51), F† ◦ F has matrix elements:

(F† ◦ F)
k

l =< σk2 |F† ◦ F|a2l >= Φ̄ijΦ
ikδj l = (Φ† · Φ)

k

l . (3.52)

Therefore, as a matrix:
F† ◦ F = Φ† · Φ. (3.53)

Of course, F† ◦F is also a Hermitian positive semi-definite operator,
coincident, as a matrix, with Φ◦Φ†. It has therefore the same eigenvalues
wi.

4. Physical interpretation of the operators F ◦ F† and F† ◦ F.

The composition Φ ◦Φ† determines a mapping from Cn
1 ⊗Cn

1 into
Cn∗

1 ⊗Cn∗
2 , by:

|ψ1 > ∈ Cn
1 , |ψ2 >∈ Cn

2

|ψ1 >, |ψ2 > 7→Φij |e1l > ⊗|a2j > Φ̄kl(< ωk1⊗ < σl2)(|ψ1 >, |ψ2 >)

= ΦijΦ̄kl|e1i > ⊗|a2j >< ω1
k|ψ1 >< σ2

l |ψ2 > .

(4.1)

Φ ◦ Φ† is by definition the density operator of the composite system:

ρ|Φ >< Φ| ≡ Φ ◦ Φ†

On the other hand, the density operators for subsystems 1 and 2
are obtained according to:

ρ1 =
∑
m

< σm2 |ρ|a2m >=
∑
m

ΦijΦ̄klδj
mδlm|e1i >< ω1

k|

= ΦljΦ̄kj|e1l >< ωk1 | = (F ◦ F†)
l
j |e1l >< ωk1 |

(4.2)

ρ2 =
∑
n

< ωn1 |ρ|e1n >=
∑
n

ΦijΦ̄klδi
nδn

k|a2j >< σ2
l |

= ΦikΦ̄il|a2k >< σl2| = (F† ◦ F)l
k|a2k >< σl2|

(4.3)

(see Eqs. 3.42 and 3.52). We see then that F ◦ F† and F† ◦ F represent
respectively the density operators for the subsystems 1 and 2. We can
therefore conclude that the solution of the diagonalization problem for
Φ stems from the solution of the eigenvalue problems for ρ1 and ρ2.
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5. Complications arising from degeneracy and infinite dimen-
sionality.

In section 3 it was explicitly assumed the strict positiveness of the
eigenvalues of F ◦ F† and F† ◦ F, i.e. of ρ1 and ρ2. These operators
are however, in general, only positive semi-definite. Therefore, in the
general case, the procedure outlined in section 3 must be modified.

The essential point is that the co-vectors < ωi2| of Eq.(3.35.b)

< ωi2| =
1

pi
F†|e1i >, (5.1)

and the vectors |ei2 > of Eq. (3.49)

|e1i >=
1

pi
< σi2|F, (5.2)

can only be defined for pi 6= 0. Starting from a complete set in subspace
1 (2), we cannot define in this way a corresponding complete set in
subspace 2 (1).

However, the sets may be completed by adding the eigenvectors of
ρ1 and ρ2 corresponding to vanishing eigenvalues.

The result for the diagonalization theorem is not altered, since no
further term appears in Eq. (1).

The complications arising from the infinite dimensionality of the
(separable) Hilbert spaces H1 and H2 are of analytic character, and
concern only the validity of the spectral decompositions:

ρ1 =

∞∑
k=1

w′kPψk′ (5.3)

ρ2 =

∞∑
k=1

w′′kPψk′′ (5.4)

where Pψk′ and Pψk′′ are projection operators onto the eigenvectors of ρ1
and ρ2 corresponding to the eigenvalues w′k, w′′k . However, no problem
arises, in particular in connection with the proof that w′k = w′′k = wk
and with the strict positiveness of ρ1 and ρ2.
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6. History.

An expansion such as that expressed by Eq. (1.1) may be called a
Schmidt decomposition of the state, after the mathematician E. Schmidt
[7], who discussed a related problem arising in the theory of integral
equations with asymmetric kernels, when quantum mechanics had not
yet been heard of. Schmidt’s paper is referred to in the treatise of
Courant and Hilbert6. That such a decomposition is possible in the
widest generality for any quantum mechanical state was first shown by
von Neumann [1] in his treatise (Schmidt’s paper is quoted by von Neu-
mann), as initially recalled. The theorem provided actually the basis of
von Neumann’s theory of measurement.

The original demonstration by von Neumann contains undoubtedly
the essential of what has been here developed in some detail. In par-
ticular, operators such as F, F† and their compositions are introduced
and used much in the same way as here, with only minor differences.
However, as already mentioned, the basically algebraic character of the
proof remained hidden, partly due to the necessary attention paid to
analytic aspects, partly because of the fact that no mention was made of
dual spaces and of the tensorial character of the operators introduced.

It is interesting to recall that Schrödinger, as far as one can judge
independently of von Neumann (Schrödinger referred to Schmidt through
Courant-Hilbert’s treatise, and not to von Neumann), had achieved, as
early as in 1935 [8] the conclusion that an expansion of the type of Eq.
(1.1) should hold in general for a composite quantum system, by arguing
in a way which is very close to the one followed here. Schrödinger had
in mind the Einstein, Podolsky, Rosen (EPR) paper [9] appeared earlier
that year, and his argument intended to make more manifest what was
implied by it. Actually, the expansion:

Ψ(x, y) =
∑
n

cngn(x)fn(y) (6.1)

was his starting point. The meaning he attached to it is the following:
fn(y) is the set of orthonormal eigenfunctions of some set of commuting
observables in subsystem 2; Eq.(6.1) is nothing but an expansion of the
overall state Ψ(x, y) over the functions fn(y), whose coefficients cngn(x)

6 [5]. p. 134.
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depend on x only. The coefficients cn are introduced to allow for the
normalization of the gk: ∫

ḡk(x)gk(x)dx = 1 (6.2)

|ck|2 then represents the probability that a measurement on 2 leaves it
in the state fk(y). The essential point, from our point of view, comes
with the equations

ckgk(x) =

∫
f̄k(y)Ψ(x, y)dy, (6.3)

which, together with Eq.(6.2), determine both the coefficients ck and
the functions gk, except for an inessential phase factor in gk and for the
indetermination of some of the gk, if the integral on the right hand side
vanishes identically for some value of k. This presentation clearly shows
that the overall state vector Ψ(x, y) connects naturally a wave function
gk(x) to any wave function fk(y) of subsystem 2. Schrödinger went on
observing that there is no reason why the gk should be mutually orthog-
onal. The question is, how the functions fk must be chosen in order
that this happens. Schrödinger found the answer that the inverses of the
|ck|2 and the functions fk(y) must respectively be the eigenvalues and
the eigenfunctions of an homogeneous integral operator, whose kernel is
what we have called the density matrix for subsystem 2. This shows
that, in some way, our approach is a paraphrase os Schrödinger’s.

In his paper, as we said, Schrödinger had in mind the EPR paper,
and he stated explicitly that his aim was to show that, even limiting one-
self to measurements on one subsystem, the function representative of the
other is by no means independent of the particular choice of the (com-
pletely arbitrary) observations adopted for the purpose. Schrödinger
referred to this peculiarity of the quantum mechanical description of
subsystems - seen as physical systems having interacted in the past -
as the characteristic feature of quantum mechanics7. This point has re-
cently repeatedly stressed by Primas [12], [13], who has also insisted on
the universal character of the EPR correlations. We hope that this note

7 The must undoubtedly be in the literature many references to, and elabo-
rations upon, these early studies: I have only been made aware of work by
Jauch [10] and Kochen [11].
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will contribute to clarify, by further developing Accardi’s [2] analysis,
that this universality stems from the universality of von Neumann’s ex-
pansion of Eq.(1), i.e. is of algebraic origin, and is ultimately rooted in
the fact that the state vector of a composite tensor acts as a fundamental
tensor in the tensor product of the subspaces.

The basic diagonalization theorem holds for the most general quan-
tum state of a composite system. The Bohm system [14] is on the other
hand a very particular case: the singlet state is in fact a state of van-
ishing total angular momentum, a quantity which, as a consequence of
the invariance under rotation, is assumed to be conserved. Immedi-
ate generalizations are still rather specific: the most natural extension
appears indeed to be a generic two-particle state of vanishing angular
momentum. The way to further extensions is indicated by the obser-
vation that one is here dealing with a stationary state, a simultaneous
eigenstate of the Hamiltonian, of the total angular momentum and of one
of its components (not necessarily corresponding to a vanishing eigen-
value of the latter: a one-to-one correlation obtains also in the case of a
non-vanishing component of the overall angular momentum). For such a
state, the standard Schmidt decomposition is the Clebsch-Gordan expan-
sion. More generally, one may wish to consider generic stationary states,
simultaneous eigenstates of the Hamiltonian and of the set formed by the
compatible generators and the Casimir operators of the widest symme-
try group of the system (which might be a direct product). The Schmidt
expansion will coincide in this case with the corresponding generalized
Clebsch-Gordan expansion. In all these cases the quantum one-to-one
correlations are a direct consequence of it.

The question arises as to the relation between the Schmidt decom-
position and a Clebsch-Gordan expansion. The former is evidently more
general, since it does not depend on the assumption that the overall state
is a stationary state, nor on the validity of a conservation law. What
the theorem shows is that a Schmidt decomposition is nonetheless always
possible. Since in the case of a Clebsch-Gordan expansion one-to-one cor-
relations appear to be a consequence of a conservation law, one wonders
in the first place as to what is the mechanism which in the general case
plays its role. The answer goes as follows: one may associate infinitely
many observables A =

∑
m am|ψm >< ψm| and B =

∑
n bn|ηn >< ηn|,

defined by their spectra {am}, {bn}, with the orthonormal bases di-
agonalizing the matrix of the overall state vector. They can always be
choosen such that aν+bν = K, withK a constant, for each ν. The overall



Quantum mechanical correlations between . . . 77

state “vector” is then an eigenstate of the observable M = A⊗ I+ I⊗B
corresponding to the eigenvalue K. The observable M is then “con-
served” in the state, and for each K a one-to-one correspondence is
established between the eigenvalues of the subsystem observables A and
B.

On the other hand, in the case the system physical nature is spec-
ified, and an explicit conservation law is active, one would like to check
on an explicit example the way the general Schmidt decomposition re-
duces to the corresponding Clebsch-Gordan expansion. This aspect was
analysed in Bergia et al. [15].

7. Connections with extensions of Bell’s theorem.

One aspect of Bell’s original philosophy was the intent, specified
in the very Introduction of his 1964 paper [16], to provide a set-up in
which the EPR argument, in Bohm’s version [14], could be experimen-
tally checked. Now, what the EPR experiment points out, is first of all,
the peculiarity of the one-to-one quantum correlations between subsys-
tems. Thus an extension of Bell’s original framework to any entangled
quantum state of a two-body system8, no matter what the dimensionality
of the subsystems state space is [18], implies examining likewise the way
in which EPR correlations extend to general two-particle systems. The
diagonalization theorem establishes first of all the pattern for this exten-
sion. This was clear enough to Schrödinger, who was already perfectly
aware that “entanglement” is one of the essential, if not the essential fea-
ture of quantum mechanics, and that the Schmidt decomposition is the
instrument which makes its consequences transparent, and permits the
generalization of the EPR situation to any quantum mechanical system
[8], but has been often overlooked in the recent literature.

The diagonalization theorem proves its usefulness in another re-
spect. It is now agreed that Bell’s theorem extends to the general situ-
ations just mentioned, that is to say that quantum mechanics predicts
results that are inconsistent with local realism for any entangled two-
particle state [18, 19, 20, 21, 22]. While everybody agrees that violations
of Bell’s inequality depend, in the general case, on the choice of the ob-
servables and not on the state, provided it is entangled, little emphasis

8 Further independent extensions refer to decays producing more than two
particles [17].
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has been given to the role the diagonalization theorem has in achieving
proofs of Bell’s theorem, though such proofs do make use of it [20, 21].

In conclusion, I express the hope that the stress I have put on the
algebraic aspects of the diagonalization theorem may shed light on the
essential reasons of its relevance in these fields.
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