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ABSTRACT. In this article the relativistic Lagrange function and
de Broglie’s model are discussed. An hypothesis is postulated which
suggests another fundamental energy equation of special relativity.
It leads to another relativistic variance and a new energy concept.
Some interesting and enlightening phenomena are presented.

RESUME. Cet article concerne la fonction de Lagrange et le modèle
de de Broglie. Il postule une hypothèse suggérant une équation alter-
native de relativité spéciale qui amène notamment à une autre vari-
ation relativiste et à un tout nouveau concept d’énergie. L’article
promet d’être intéressant sinon instructif.

Introduction

In classical dynamics, Lagrange function L is expressed as

L = T − V (1)

where T is kinetic energy, V is potential energy. For a free particle, one
has

L = T (2)

So the physical interpretation of Lagrange function for classical dynamics
is the difference between kinetic and potential energies. For a free parti-
cle, Lagrange function is equal to kinetic energy. However, in relativistic
dynamics, Lagrange function for a free particle becomes[1]

L = −m0c
2(1− β)1/2 (3)
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where m0 is rest mass, β = (v/c)2. The question which has never been
raised and discussed is : what is the physical interpretation of the rela-
tivistic Lagrange function ?

Let us consider another phenomenon. In 1924 Louis de Broglie[2,3]
proposed that matter possesses wave as well as particle characteristics.
He suggested for a particle at rest (v = 0) having relation

E0 = hµ0 = m0c
2 (4)

where frequency µ0 is described by de Broglie as a certain internal, clock-
like periodic process. When v 6= 0, according to relativistic variance for
clock frequencies, µ0 becomes

µ′ = µ0(1− β)1/2 (5)

Equations (4) and (5) yield

E′ = hµ′ = m0c
2(1− β)1/2 (6)

However de Broglie pointed out that the frequency µ of the wave as-
sociated with a moving particle is characterized by another relativistic
variance of the mass (m = m0/(1− β)1/2) as following

E = hµ = mc2 (7)

therefore
µ = µ0/(1− β)1/2 (8)

So µ′ and µ are two phenomena of essentially different nature disting-
wished from one another by their relativistic variance. What is interested
in is equation (6). If hµ′ is certain internal periodic process, then what
is the interpretation for energy term m0c

2(1− β)1/2 ?

Now it seems that function m0c
2(1− β)1/2 plays an unusual role in

relativistic dynamics. In what follows we attempt to propose an hypoth-
esis which might give certain physical understanding of this function.

Hypothesis

In relativistic dynamics, a free particle with velocity v has kinetic
energy

Ek =

∫
vd(mv) =

∫
vd[m0v/(1− β)1/2] (9)
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Integration by parts from 0 to v yields

Ek = m0v
2/(1− β)1/2 −

∫
m0vdv/(1− β)1/2

= mv2 +m0c
2(1− β)1/2 −m0c

2

= mc2 −m0c
2

(10)

This is one of the fundamental equations of special relativity. However,
the most interesting point to note is that from equation (10) one can
obtain following simple, beautiful equation

mc2 = m0c
2(1− β)1/2 +mv2 (11)

We propose that equation (11) is another fundamental equation of special
relativity. Here, m0c

2(1 − β)1/2 is certain internal energy of a moving
particle. Let us call it “moving mass-energy”. Since m0c

2 is rest mass-
energy of the particle at rest, we obtain another relativistic variance :
mass m0 of a rest particle will decreased to m0(1 − β)1/2 when it is in
motion, although the total apparent mass of the particle is increased to
m0/(1− β)1/2.

Next, we suggest that mv2 is “total kinetic energy”. From equations
(10) and (11), one gets

mv2 = Ek + ∅ (12)

where
∅ = m0c

2 −m0c
2(1− β)1/2 (13)

We call Ek “apparent kinetic energy” and ∅ “hidden kinetic energy”.
Of course, the “apparent kinetic energy” is just another terminology of
kinetic energy. However, the “hidden kinetic energy” is something new.
It suggests that part of the mass-energy can be changed into some other
forms of energy or movement. It tells us that characteristics of a moving
particle might be determined not only by external energy such as Ek,
but also by its inherent energy ∅. Notice that when 1� β, one has

Ek = ∅ = m0v
2/2 (14)

They are numerically equal.

Lastly, mc2 is the total energy. More precisely, it is “total potential
energy” for a free particle.
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Discussion

By considering equation (11), for a free particle relativistic Lagrange
function is

L = −m0c
2(1− β)1/2 = mv2 −mc2 (15)

The term corresponds to the “total kinetic energy” minus the “total
potential energy”. It means that the definition of Lagrange function by
equation (1) is eventually satisfied for relativistic dynamics too.

Let us look back at equation (6) again. It is clear that it describes
that for a moving particle certain internal periodic process hµ′ corre-
sponds to certain internal energy m0c

2(1 − β)1/2. Both of them are
consequence of relativistic variance.

Now let us consider equation (11) in the extreme case which v = c –
the velocity of a particle is equal to that of light. In this case, the internal
energy m0c

2(1 − β)1/2 is equal to zero. It means that the particle has
no mass-energy, its total energy is purely kinetic. Thus, equation (11)
describes the kinematics of a free particle for all velocities from O to c.

Conclusion

An hypothesis is proposed which suggests another fundamental en-
ergy equation of special relativity. Another relativistic variance is de-
scribed which gives self-consistent definition of Lagrange function for
both classical and relativistic dynamics. Its relation with de Broglie’s
model is also discussed. The hypothesis leads to a new energy concept
: the “hidden kinetic energy” ∅. Some interesting and enlightening phe-
nomena are presented. If the hypothesis is confirmed, it might give us a
much deeper understanding of relativity and microphysics.
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