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ABSTRACT. We establish the relation among Quantum Field The-
ory variables, like amplitudes and phases, with macroscopic fluid
variables: proper energies and four-velocities. This approach puts
into evidence the low energy relation between relativistic fluid dy-
namics and Quantum Field Theory. We perform the WKB expan-
sion of the Lagrangians and the energy-momentum tensors corre-
sponding to free spin 0 and spin 1/2 (Dirac and Majorana) massive
fields. We keep classical terms and prove how non interacting La-
grangian fields conduce, for both spin 0 and spin 1/2 cases, to the
Lagrangians of ideal fluids without pressure.

RESUME. Nous signalons la relation entre les variables de la théorie
quantique des champs (par exemple amplitudes et phases), avec les
variables macroscopiques d’un fluide : énergies propres et 4-vitesses.
Cette approche met en évidence la relation que, à faibles énergies, il
y a entre la dynamique d’un fluide relativiste et la théorie quantique
des champs. Nous faisons l’expansion WKB des lagrangiens et des
tenseurs d’énergie-moment correspondant aux champs massifs libres
de spin 0 et spin 1/2 (Dirac et Majorana). Nous gardons les termes
classiques et prouvons, de quelle façon les lagrangiens des champs
sans interaction, ramènent, aussi bien pour les cas de spin 0 comme
de spin 1/2, aux lagrangiens de fluides parfaits sans pression.

∗ Work supported in part by the Directorate General for Science, Research and
Development of the Comission of the European Communities under Contract
n◦ C11-0540-M(TT) and Fundación Antorchas.
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1. Introduction

Quantum Field Theory (QFT) is successful in describing microscop-
ical behavior of matter. Here we are interested in studing its macroscop-
ical limit. We show how the Lagrangian of free spin 0 and spin 1/2
massive fields conduce, up to the lowest order in the Planck constant h̄,
to the dynamics of ideal fluids.

In II we perform the WKB expansion of the scalar field and find
the main contributions of the Laurent series in h̄ in both the Lagrangian
and the energy-momentum tensor. We are able to interpret them as
the classical Lagrangian and the classical energy-momentum tensor. We
find the proper energy density expression in terms of the highest order
amplitudes and the mass. We use this magnitude and the four-velocity
definition in order to demonstrate that we are dealing with an ideal fluid
without pressure. In III we apply essencially the same procedure for the
spin 1/2 Dirac and Majorana fields and a straight-foward computation
shows that even spinorial matter conduces, in the classical limit, to an
ideal fluid. In IV we discuss our results.

Before describing our approach, we discuss some general aspects of
the WKB expansion. In the first quantification scheme, the complex
wave function of a particle can be expressed as a path integral:

ψ(x0, xf ) = N

∫
eiScl[x]/h̄Dx (1.1)

where Scl[x] is the classical action, a functional of the trajectory x(t)
which depends on the initial and final fixed data (x0, xf ). N is a nor-
malizing factor. If S is the action of a non-relativistic particle then ψ is
the wave function which satisfies the Schroedinger equation [1]. On the
other hand, for a relativistic action Scl[x], ψ must be considered a field
which satisfies the relativistic field equation corresponding to the respec-
tive representation of the Lorentz group. This can be seen by explicit
computation over the expression (1.1), taking into account that the x
dependence in the path integral is through the initial and final points of
Scl[x], and

∂αScl = Pα (1.2)

is the four-momentum; α, β . . . = 0, 1, 2, 3. The field equations may also
be obtained extreming the action S with respect to the field

δS[ψ]

δψ
= 0 (1.3)
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The expansion of (1.1) in powers of h̄ :

ψ = Nei/h̄Scl[xcl]
∫
e
∫

1
2

δScl
δx1δx2

[x]Dx1Dx2+...Dx =

∞∑
n=0

(−ih̄)nψne
iS/h̄

(1.4)
with xcl the classical trajectory, is known as the WKB expansion of the
field. Replacing this expansion in S for any group representation, we are
able to identify the Scl term in

S[ψ] = Scl[x] +O(h̄) (1.5)

(In this sense the h̄ = 0 limit of S[ψ] in a first quantification scheme
conduces to Scl[x] in the same way as the h̄ = 0 limit of the effective
action conduces, in a second quantification scheme, to S[ψ]).

2. Spin 0 field

We start from the action functional S which is constructed from a
Lagrangian density L, a function of the fields ψ and their first derivatives
:

S[ψ] =

∫
L(ψ, ∂ψ)d4x (2.1)

The Euler-Lagrange equations (1.3) read:

∂α
∂L

∂(∂αψ)
− ∂L
∂ψ

= 0 (2.2)

where α, β, . . . = 0, 1, 2, 3. We take c = 1 and ηαβ = diag(−1, 1, 1, 1).

Translation invariance of (2.1) conduces “on shell”, i.e. using (2.2),
to the conservation of the energy-momentum tensor via the Noether
theorem

∂αT
αβ = 0 (2.3)

where

Tαβ =
∂L

∂(∂αψ)
∂βψ − ηαβL (2.4)

First we study the massive spin 0 field φ. The corresponding Lagrangian
density reads

L = ∂αφ∂
αφ∗ +

m2

h̄2 φ
∗φ (2.5)
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where m is the mass. In this case, equations of motion (2.2) are

( −m
2

h̄2 )φ = 0 , ( −m
2

h̄2 )φ∗ = 0 (2.6a,b)

means ηαβ∂α∂β . The energy-momentum tensor (2.4) for this field is

Tαβ = ∂αφ∂βφ∗ − 1

2
ηαβ∂γφ∂

γφ∗ − 1

2
ηαβ

m2

h̄2 φφ
∗ (2.7)

In order to study the classical behavior of the scalar field, we perform
its expansion in powers of (−ih̄), i.e., the WKB expansion:

φ =

∞∑
n=0

(−ih̄)nφn(x) exp[iSφ(x)/h̄] (2.8)

Field (2.8) will represent a classical particle if the phase Sφ is the Hamil-
tonian principal function of a particle whose canonical momentum is

Pα = ∂αS = muα (2.9)

Replacing (2.8) into (2.5) we obtain a Laurent series in powers of h̄. The
highest (classical) contributions of this series are the h̄−2 terms

(h̄−2)

Lφ =
1

h̄2φ0φ
∗
0∂αS∂

αS +
m2

h̄2 φ0φ
∗
0 (2.10)

On the other hand, the main contribution of (2.8) to the energy-
momentum tensor (2.7) is:

(h̄−2)

Tαβ=
1

h̄2 [∂αS∂βS − 1

2
ηαβ∂γS∂

γS − 1

2
ηαβm2]φ0φ

∗
0 (2.11)

Using the fact that UαU
α = −1, expression (2.11) becomes

(h̄−2)

Tαβ=
m2

h̄2 φ0φ
∗
0U

αUβ (2.12)

Now we are able to find the proper energy density ρφ of the scalar field
which is nothing but the 00 component of (2.12) in the reference system
where the particle is at rest:

ρφ =
m2

h̄2 φ0φ
∗
0 = T 00

rest (2.13)
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This last result shows the relation among field variables (amplitudes)

and a classical fluid variable (proper energy density). So,
(h̄−2)

Tαβ may be
written as

(h̄−2)

Tαβ= ρφU
αUβ (2.14)

In (2.14) we recognize the expression of the energy-momentum tensor of
an ideal fluid without pressure.

We now return to the Lagrangian density (2.10) and write it in
terms of the macroscopical variables ρφ and Uα:

(h̄−2)

Lφ = ρφη
αβUαUβ − ρφ (2.15)

Integrating expression (2.15), we obtain the final form of the Lagrangian
(h̄−2)

L and its corresponding classical action

(h̄−2)

Lφ =

∫
ρφη

αβUαUβd
3x (2.16)

Sφ[x] =

∫
(h̄−2)

Lφ dt (2.17)

where x(t) is the trajectory of the particle. In (2.17) we have omitted
the constant

Mφ =

∫
ρφd

3x

Finally, from δS/δx = 0 we obtain

Uβ∂βU
α = 0 (2.18)

i.e. straight line trajectories, as it is expected for free particles.

3. Spin 1/2 field

The Lagrangian density for the spin 1/2 massive Dirac field λ reads:

L =
1

2
λ̄∂/λ+

1

2

m

h̄
λ̄λ (3.1)
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where ∂/ = γα∂α, γα are the Dirac matrices and λ̄ is the Dirac adjoint of
λ. Then, the equation of motion is

∂/λ+
m

h̄
λ = 0 (3.2)

We expand the spin 1/2 field in powers of (−ih̄)

λ =

∞∑
n=0

(−ih̄)nλn(x) exp[iSλ(x)/h̄] (3.3)

The corresponding canonical momentum of the spin 1/2 particle is de-
fined as in (2.9). Replacing (3.3) into (3.1) we see that the highest
contributions to the Laurent series are now of h̄−1 order

(h̄−1)

Lλ =
1

2h̄
λ̄0γ

αλ0mUα +
1

2

m

h̄
λ̄0λ0 (3.4)

The main contribution of (3.3) to the energy-momentum tensor (2.4) is:

(h̄−1)

Tαβ=
λ̄0γ

αλ0mU
β

h̄
(3.5)

Let us find the proper energy density ρλ of the spin 1/2 Dirac field, i.e.
the 00 component of (3.5), in the reference system where the particle is
at rest.

(h̄−1)

T 00
rest= ρλ =

1

h̄
λ̄(0)γ

OU0λ(0)m =
1

h̄
λ̄(0)λ(0)m (3.6)

We have made use of the fact that the lowest order corresponding to the
field equation (3.2) written in that reference system implies:

γ0U0λ(0) = λ(0)

Replacing (3.6) into (3.5),
(h̄−1)

Tαβ reads:

(h̄−1)

Tαβ= ρλU
αUβ (3.7)

as in the scalar field case.
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Now we return to the Lagrangian density (3.4). Making use of the
relation

γαPαλ0 = λ0

arising from the field equation, we obtain

(h̄−1)

Lλ =
1

2h̄
λ̄0γαU

αmγβU
βλ0 +

1

2

m

h̄
λ̄0λ0 (3.8)

Using γ matrices properties {γα, γβ} = 2ηαβ and definition of ρλ given
by (3.6), eq. (3.8) becomes

(h̄−1)

Lλ =
1

2
ρλUαU

α +
1

2
ρλ (3.9)

So the macroscopical Lagrangian and the macroscopical action read:

(h̄−1)

Lλ =

∫
1

2
ρλη

αβUαUβd
3x (3.10)

Sλ =

∫
(h̄−1)

Lλ dt (3.11)

which correspond to a free classical fluid moving along straight line tra-
jectories.

Up to now we have been dealing with the Dirac representation of
the spin 1/2 field for which the operation of parity is well defined. But if
we need equivalence between spin 1/2 particles and anti-particles, that
is, self-conjugation under charge conjugation operation, we must use the
Majorana representation [2]. Another relevant feature of this represen-
tation is that it is usually used in supersymmetric theories which admit
a transformation of bosons into fermions and viceversa, keeping the in-
variance of the whole Lagrangian. Majorana representation describes
objects with have as many degrees of freedom as Dirac spinors. For a
Majorana field with mass m, the Lagrangian density reads:

Lλ = −1

2
[λ̄∂/λ+ (i

m

h̄
)λ̄λ] (3.12)

where

λ =

(
λL
λR

)
=

(
λL
−σ2λ

∗
L

)
, λ̄ = λ+γ0
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σ2 =

(
0 −i
i 0

)
, γ0 =

(
0 1
1 0

)
Spinors λL and λR are the left and right handed components of the field,
respectively. We can perform the WKB expansion of the Weyl spinor
λL:

λL =

∞∑
n=0

λnL(−ih̄)n exp[iS/h̄] (3.13)

Replacing (3.13) into (3.12) and taking into account that the Lagrangian
density (3.12) is of first order, classical contributions arise from its h̄−1

terms (L(h̄−1)). After a straightforward computation, we are able to ob-
tain the highest contributions which are of h̄−1 order for the Lagrangian
density, the energy-momentum tensor and the rest energy. In the four-
component formalism, these results read:

(h̄−1)

Lλ =
1

2
[i

˙̄̃
λγαγ5

˙̃
λPα/h̄+ i

m

h̄

˙̄̃
λ

˙̃
λ] (3.14)

(h̄−1)

Tαβ= i
˙̄̃
λγαγ5

˙̃
λP β/h̄ (3.15)

(h̄−1)

T 00
rest= i

˙̄̃
λγ0γ5

˙̃
λmU0/h̄ (3.16)

where
˙̃
λ = λ0

L exp[iSλ(x)/h̄]

Pα = mUα = ∂S/∂xα

(h̄−1)

∂αλ= iγ5
˙̃
λPα/h̄

γi =

(
0 −σi
σi 0

)
, γ5 =

(
1 0
0 −1

)
, i = 1, 2, 3

On the other hand, the h̄−1 order of the field equation:

∂/λ = −im
h̄
λ (3.17)

may be written as
˙̃
λ = −γαγ5

˙̃
λUα (3.18)
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In the proper system, eq. (3.18) reads:

˙̃
λ = −γ0γ5

˙̃
λU0 (3.19)

Replacing (3.19) into (3.16), we obtain

(h̄−1)

T 00
rest= ρλ =

−i ˙̄̃λ ˙̃
λm

h̄
(3.20)

If we now replace eq. (3.18) into (3.14), we have

(h̄−1)

L =
1

2h̄
(i

˙̄̃
λγαγ5γ

βγ5
˙̃
λUβPα + im

˙̄̃
λ

˙̃
λ) (3.21)

Using the properties of the γ matrices

{γ5, γα} = 0 , {γα, γβ} = 2ηαβ , (γ5)2 = 1

in eq. (3.21), we obtain

(h̄−1)

L =
i

2h̄

˙̄̃
ληαβ

˙̃
λUβmUα +

i

2h̄
m

˙̄̃
λ

˙̃
λ (3.22)

Substituting (3.20) into (3.22), the Lagrangian density reads

(h̄−1)

L = −1

2
ρλU

αUβηαβ −
1

2
ρλ (3.23)

Integrating eq. (3.23), we obtain the final expression for the Majorana

spin 1/2 classical Lagrangian L
(h̄−1)
λ :

(h̄−1)

Lλ = −1

2

∫
ρλU

αUβηαβd
3x (3.24)

where we have again omitted a (mass) constant. Finally, the classical
contribution to the energy-momentum tensor reads:

(h̄−1)

Tαβ= ρλU
αUβ (3.25)

This corresponds again to the energy-momentum tensor of an ideal fluid
without pressure.
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4. Discussion

We have found the macroscopical variables ρ and Uα which describe
the classical behavior of bosonic and fermionic fields. We have shown
that these variables can be built up as a combination of the first terms of
WKB expansions and its derivatives. This gives a fluid like interpretation
of the WKB variables and renders evident the relation between micro
and macro variables.

Our treatment acquires interest in curved backgrounds where some
results, obtained via the WKB expansion of the field equations (see for
example ref. 3 and 4 for the Dirac case), may now be understood as a
covariantization of the special relativistic expressions obtained here. The
formalism applied to free fields may be easily extended to interacting
cases, giving interesting tools for describing classical consequences of
QFT. In fact, fields appearing in interacting terms may also be replaced
by classical fluid variables: we have shown how supersymmetric matter
fields interacting with gravity in Supergravity, are expressed in terms of
fluid variables [5],[6]. Moreover, this “supersymmetric fluid”, when used
as the source of a Robertson-Walker cosmology, reproduces the correct
inflationary phase [7].
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