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Spontaneous state vector collapse at large distances
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ABSTRACT. A structural interpretation for the quantum-mechani-
cal state vector of an unbound system allows, at sufficiently large
distances, spontaneous state reduction – not stimulated by mea-
surements. Scenarios for spin-singlet breakdown are proposed that
allow for a gentle deviation, at large distances, from the predictions
of usual quantum mechanics.

RESUME. En donnant une interprétation structurale au vecteur
d’état en mécanique quantique, on peut, pour un système non lié
et à des distances suffisamment grandes, arriver à une réduction
spontanée de l’état – non stimulée par une mesure. On propose des
scénarios pour la décomposition du singulet de spin, qui entrâınent
une faible déviation, aux grandes distances, des prédictions de la
mécanique quantique usuelle.

Suppose that, at some initial time, the quantum-mechanical state
vector for an unbound system is represented by a normalized superpo-
sition of eigenstates of the operator associated with some observable.
If the system remains unprobed then the state vector evolves unitarily,
continuing as a superposition state. On the other hand, a measurement
of the observable corresponds to a non-unitary reduction of the superpo-
sition state into a final state characterized by one eigenvalue, or a narrow
range of eigenvalues. Thus a wave function with a spreading domain in
position space continues, in principle, to expand indefinitely as long as
the position remains unprobed. This poses no conceptual problem if the
state vector is regarded as no more than a calculational tool. Then, wave
packet spreading and reduction do not represent actual physical struc-
tures and processes but are merely aspects of a set of rules –quantum
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mechanics– for calculating the relative frequency of certain experimental
outcomes.

Suppose instead one attempts a structural interpretation for the
state vector. For a system which is always detected as a single particle,
the state vector is then, even before any probe, a structural feature (al-
beit not an observable) of an actual physical entity –a quantum object
(QO)[1]. An expanding wave function characterizes an expanding, unde-
tected QO which acts as a coherent, irreducible unity over its extended
spatial domain. The structural integrity of the undetected QO is main-
tained by internal physical processes that are faster than any external
probe –that is, the time of interaction between a QO and another ob-
ject is always greater than the time required for those internal processes
to maintain the unified structure of the QO over its extended domain.
Even though this unifying connection over the QO’s domain must be
superluminal, it does not constitute signalling between distinct objects
separately identifiable by some external probe. The QO is quite unlike
usual extended bodies composed of spatially distinct component ”parts”
that can be separately distinguished from each other by certain probes.

With a real-structure outlook, the usual, detection-related, reduc-
tion of the position space wave function corresponds to an actual physi-
cal process for the QO –a structural transformation, collapsing the QO’s
spatial domain. Even though this collapse is superluminal, naive relativ-
ity is not violated –the QO collapses as a whole and there are not sep-
arate (component) objects racing at superluminal, relative speeds with
respect to each other. This lack of component parts and the constraint
of a speed limit for signal/object transmission is elaborated in reference
[1].

Now suppose there are no detectors around to stimulate reduction
and the undetected QO continues to expand. There may well be some
critical size beyond which the expanding QO becomes unstable and there
occurs ”spontaneous reduction”. If the process of internal coordination
over the undetected QO’s extended domain occurs at a finite (albeit su-
perluminal) rate, then a spatial coherence limit may be reached beyond
which the QO’s structural unity cannot be maintained. If so, internal in-
stability –and not outside probes– may prompt deviations from the usual
unitary development of the state vector. For certain interference phe-
nomena, measurements beyond the spatial coherence limit would then
show a deviation from the predictions of the usual quantum mechanics.

We examine here the physical consequence of spontaneous state
breakdown for a system in a superposition state yielding two detected
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particles. Consider a zero-spin system initially in a spin-singlet state
and whose final-state detected decay products are always two spin-half
particles β1, β2 found in opposite directions along a line (x-axis). The
spatial domain of the system is sufficiently large that the wave function
becomes :

Φ(1, 2) = φ1(x1)φ2(x2)(h̄2/4)| sing.(1, 2)〉 (1)

where the spin-singlet dependence is :

| sing.(1, 2)〉 ≡ [|�1 · n; +〉|�2 · n;−〉 − |�1 · n;−〉|�2 · n; +〉]/
√

2 (2)

where |�i ·n; +〉{|�i ·n;−〉} is the eigenvector corresponding to the eigen-
value +1{−1} of the spin-component operator �i · n for βi along the
direction of the unit vector n.

�i · n|�i · n; +〉 = |�i · n; +〉{�i · n|�i · n;−〉 = −|�i · n;−〉} (3)

The separation between the peaks of the spatial wave functions, φ1, φ2
grows with time.

Despite the factorized spatial dependence, the state function Φ(1, 2)
is not factorizable into a simple product each factor of which refers only
to one of the particles β1, β2. The spin singlet involves a rather extreme
superposition:

| sing.(1, 2)〉 =

∫
dn[1/2π

√
2]|�1 · n; +〉|�2 · n;−〉 (4)

If the system remains unprobed, then the state vector evolves unitarily,
maintaining the non-factorizable, superposition state.

On the other hand, a probe (placed on the positive x-axis) for the
spin component of β1 in the a direction requires a reduction of the
state vector into a factorized form corresponding to a pair of spin anti-
correlated β’s :

| sing.(1, 2)〉 stim.−→
{

either |�1 · a; +〉|�2 · a;−〉
or |�1 · a;−〉|�2 · a; +〉 (5)

Another probe (on the negative x-axis and farther from the source than
the probe on the positive x-axis) for the spin component of β2 in the
direction b requires a further reduction :

|�1 · a; +〉|�2 · a;−〉 stim.−→
{

either |�1 · a; +〉|�2 · b;−〉
or |�1 · a; +〉|�2 · b; +〉 (6)
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and similarly for |�1 · a;−〉|�2 · a; +〉.
Before any probe, the system consists of one undetected QO, char-

acterized as a whole by the state vector Φ(1, 2). It is not two distinct
objects each having some definite spin orientation –notwithstanding the
formulation of Φ(1, 2) in terms of final state eigenvectors of the individ-
ual particles β1, β2. The widespread, tacit and unwarranted assumption
that there are actually two objects in the singlet state –and not just one
object with a private connection over spatially disparate public domains
[2]– is incompatible with quantum mechanics and lies at the heart of the
spin version [3] of the EPR paradox [4].

The probe of the spin component of β1 stimulates the transformation
of the expanding, singlet-state QO into two objects each with a definite
spin orientation (as indicated in (5)). Before the probe, there is no
question of superluminal signalling ; there is, however, a superluminal
process, internal-to-the-QO, that maintains the structural identity of
the QO in the singlet state until the external probe catalyses the QO’s
collapse into two distinct objects.

Now, what is expected if the two spin-component detectors are dis-
tanced farther and farther from the source of the singlet QO ? Canonical
quantum mechanics allows no deviation from the predictions for the sin-
glet state as long as the system is not disturbed before reaching the
detectors. But what if the QO does have a limited stability domain
and –without external disturbances– there does occur a spontaneous
breakdown of the singlet state before anything reaches either detector
? The simplest possibility for such spontaneous singlet-state collapse is
the Bohm-Aharonov proposal [5] wherein the singlet is spontaneously
transformed into a spin anti-correlated pair of β states :

| sing.(1, 2)〉 spont.−→ |�1 · n; +〉|�2 · n;−〉 (7)

with an isotropic distribution for the spin direction n. The unprobed,
singlet-QO breaks into a pair of β −QOs.

Experimental results over moderate distances contradict the Bohm-
Aharonov proposal and are consistent with the predictions of usual quan-
tum mechanics. But this is not surprising since the Bohm-Aharonov
proposal should apply only for those, possibly huge, distances where the
singlet-QO has necessarily and entirely fallen apart. A scenario more ap-
propriate for the interim domain where spontaneous reduction is possible
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–but not necessary– is :

| sing.(1, 2)〉

{
usual evolution−→ | sing.(1, 2)〉 with probability [1− |η|2]
spont−→ |�1 · n; +〉|�2 · n;−〉 with probability [|η|2/4π]

(8)

where |η| is very small (near zero) for moderate separations between the
source of the spin-singlet QO and the spin probes. |η| grows larger as
the source-to-nearest-probe distance is increased.

Another (seemingly different) scenario for spontaneous state vec-
tor reduction is the gradual erosion of the singlet-QO into a state that
superposes both a singlet and an anti-correlated pair :

| sing.(1, 2)〉 spont.−→ |ψ(n)〉| ≡ λ| sing.(1, 2)〉+ η|�1 · n; +〉|�2 · n;−〉 (9)

where there is no preference in the spin direction n. The state vector
normalization is maintained :

〈ψ(n)|ψ(n)〉 = 1 (10)

giving the condition relating the complex parameters λ and η :

|λ|2 + |η|2 + η∗λ/
√

2 + λ∗η/
√

2 = 1 (11)

Both of the mixed ensembles in (8) and (9) have the same density oper-
ator :

Dens.op = [1− |η|2]Dens.opsinglet +|η|2 Dens.opBohm−Aharonov

(12)
The likelihood for a detected final state, |�1 · a; +〉|�2 · b;−〉, becomes

P (a,b) = [1 + a · b(1− 4|η|2/3)]/4 (13)

This interpolates smoothly between the pure singlet result (when |η| = 0)
and the Bohm-Aharonov prediction (when |η| = 1). Detected deviation
from spin anti-correlation in a given (a = b) spin direction should occur
in only |η|2/3 of the trials.

The expectation value of the observable [�1 · a⊗ �2 · b] becomes

C(a,b) = −a · b(1− 2|η|2/3) (14)
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and the quantity, B(a,a′,b,b′) ≡ |C(a,b) − C(a,b′)| + |C(a′,b) +
C(a′,b′)| takes on the maximum value

Bmax = 2
√

2(1− 2|η|2/3) (15)

For sufficiently small |η| (not just for the pure singlet case), Bmax vi-
olates the Bell inequality [6], B ≤ 2. As |η| grows the Bell inequality
is eventually saturated. For |η|2〉0.44, Bmax satisfies the Bell inequality
(as does the Bohm-Aharonov result).

There are more elaborate possibilities for singlet breakdown –such
as :

| sing.(1, 2)〉 spont.−→
{
|ψ(n)〉 with probability [P (η)/4π]
|ψ′(n)〉 with probability [1− P (η)]/4π

(16)

where 〈ψ′(n)|ψ(n)〉 = 0 and P (η) is initially (i.e. up to moderate dis-
tances) close to unity –say, as in

P (η) = |〈ψ(n)| sing.(1, 2)〉|2 = [1− |η|2/2] (17)

The essential features in all these scenarios, (8), (9), (16) is that they
allow for a very gentle departure from the predictions of usual quantum
mechanics and interpolate smoothly between usual quantum mechanics
(|η| = 0) and the Bohm-Aharonov proposal (|η| = 1). Thus the successes
of usual quantum mechanics can be retained for moderate size domains
while allowing unexpected developments –resulting from spontaneous
state reduction– at larger distances.

Even though measurements over moderate distances have shown the
usual quantum mechanics to be adequate [7], it is important to devise
and carry out experiments testing quantum mechanics for greater and
greater detector separations to check whether |η| systematically departs
from zero. The successes of quantum mechanics over moderately-sized
domains and the failure of models always satisfying Bell’s inequality do
not rule out those real-structure pictures that deviate from the predic-
tions of quantum mechanics only in exceptional –and as yet unexplored–
circumstances (such as for sufficiently large distances).

I have sketched here a possible physical basis for spontaneous state
vector reduction and pointed out some of the phenonological implications
for the spin-singlet system. There are mathematically well –formulated
models of spontaneous reduction based on Hilbert space hitting processes
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or diffusion processes [8]. It may be worthwile to adapt the qualitative
picture presented here to the formalism of reference [8].

References

[1] J.R. Freeman, What’s Going on in Certain Quantum Interference Pro-
cesses, Really ! Physics Essays, 5, 164 (1992).

[2] To visualize such a private connection, consider a two-dimensional po-
sition space. The envelope of a single QO includes the disparate public
domains of φ1, φ2 privately connected together off the public surface –say,
by a tube.

[3] D. Bohm, Quantum Theory, Prentice-Hall, Engelwood Cliffs NJ (1951).
[4] A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777-780 (1935).
[5] D. Bohm and Y. Aharonov, Phys. Rev. 108, 1070 (1957).
[6] J.S. Bell, Physics I, 195 (1965).
[7] A.R. Wilson, J. Love, D.K. Butt, J. Phys. G 2, 613 (1976); D. Bohm,

B. Hiley, Nuovo Cimento 35, 137 (1976); V. Paramananda, D.K. Butt,
J. Phys. G 13, 449 (1987).

[8] For a summary see : G.C. Ghirardi, B. Grassi and P. Pearle, Foundations
of Physics 20, 1271 (1990).
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