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ABSTRACT. By considering a U(1)×U(1) gauge theory with each
gauge field strength represented by an electric and magnetic poten-
tial we discuss the screening and anti-screening properties of electric-
like charges by magnetic charge distributions carried by both gauge
groups.

RESUME. En considérant une théorie de jauge dans U(1) × U(1),
où chaque champ de jauge est représenté par un potentiel électrique
et magnétique, on discute les effets d’écran et d’anti-écran sur
des charges de type électrique dus à des distributions de charges
magnétiques portées par les deux groupes de jauge.

Introduction

The problem of charge screening in both Abelian [1] and non-
Abelian gauge theory [2] has fundamental significance because it sheds
light on the polarisible properties of the vacuum and the fundamental
nature of the electromagnetic force and quark-anti-quark force. In the
early universe where the energy scale of interactions is high, screening
effects may influence reaction rates and may influence such phenomena
as the onset of inflation [3], and the generation of the baryon asymmetry
of the universe [4]. Screening effects are also of fundamental significance
in calculating whether or not a theory is asympotically free and when
infrared slavery becomes important in a theory [5]. There are numerous
reasons that suggest that there may be additional U(1) groups in nature
other than the usual U(1) of electromagnetism. Additional U(1) factors
arise in symmetry breaking schemes of G.U.T. theories [6,7,8] as well as
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left-right symmetric theories of elementric particles [9]. Recent studies
involving gauged baryon and lepton number also lead to additional U(1)
gauge fields [10,11]. Also, it has been conjectured that the fifth force
might be mediated by an additional U(1) gauge field [12,13].

In fact Gasperini [14] and Gasperini et. al. [15] have elucidated
on the implications of an additional U(1) gauge field (baryonic photon)
which includes the modification of photon propagation, modification of
n̄n oscillation phenomena and the generation of magnetic fields by bary-
onic charge. Once additional U(1) gauge fields are introduced, we must
reckon with both the electric-like and magnetic-like charges that occur
in such a theory. It has been noted by Vinciarelli that four dimensional
space-time alone admits the dual symmetry of Maxwell’s equations [16]
and in non-Abelian gauge theory, the magnetic charge of a monopole or
dyon has topological significance [17]. Of course long ago Dirac demon-
strated that the existence of one unit of magnetic charge in the universe
leads to electric charge quantization [18] and Schwinger demonstrated
that two dyons admit the quantization condition [19]

e1q2 − e2q1
h̄c

=
n

2
.

(e1, e2 are electric charges, q1, q2 are magnetic charges of two dyons).

Remarkably Witten has demonstrated that CP violating interac-
tions lead to the fact that the electric charge of a dyon need not be
quantized [20]. Although monopoles would most likely not have sur-
vived inflation, they may have been produced around the time of helium
synthesis by energetic collisions [21]. Recently Dimopoulous et. al. [22]
and DeRujula et. al. [23] have pointed out that CHAMPS (charged
massive particles between 20 and 1000TeV predicted by particle theory)
may be a component of the dark matter in galaxies, an accumulation
of monopoles and CHAMPS would constitute a configuration of elec-
tric and magnetic charge that may give rise to a macroscopic dyon that
may generate far ranging astrophysical consequences. In view of the fact
that additional U(1) factors may occur in nature and magnetic charge
as well as electric charge may exist for each U(1) group, we study the
screening effects that magnetic charge generates for electric like charges.
The model lagrangian that we employ is the Born-Infeld lagrangian [24]
which also can be viewed as an effective action resulting from string the-
ory [25]. By assuming a particle with electric-like charge values for each
U(1) group we study how the magnetic charge of each group screens
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the electric-like charge of the second group. We also employ a two po-
tential theory for each Abelian gauge field which allows us to derive the
field equations from a lagrangian in the presence of magnetic charge [26].
Following the discussion of screening we remark on the possible astro-
physical consequences of our theory that may result from the screening
phenomena.

2. Magnetic Charge Screening In a U(1)× U(1) Gauge Theory

We begin our analysis by writing the lagrangian for a U(1)× U(1)
gauge theory coupled to a gravitation as

L =
c4

16πG
R
√
−g − b1

8π
(

√
1 +

J1
b1
− 1)
√
−g − b2

8π
(

√
1 +

J2
b2
− 1)
√
−g

+ α(
εµναβF1αβF2µν√

−g
)
√
−g − Jµ1EA1µ

√
−g − Jµ2EA2µ

√
−g

+ Jµ1MB1µ

√
−g + Jµ2MB2µ

√
−g

(2.1)
Here Jµ1E , Jµ2E , Jµ1M , Jµ2M are electric and magnetic four currents for
groups 1 and 2 respectively. Also J1 = F1µνF

µν
1 , J2 = F2µνF

µν
2 , where

F1µν =
∂A1µ

∂xν
− ∂A1ν

∂xµ
−

εαβµν
2
√
−g

(
∂B1α

∂xβ
− ∂B1β

∂xα
) (2.2)

F2µν =
∂A2µ

∂xν
− ∂A2ν

∂xµ
−

εαβµν
2
√
−g

(
∂B2α

∂xβ
− ∂B2β

∂xα
) (2.3)

Here F1µν , F2µν represent the gauge field strengths described by the
electric-like, and magnetic-like potentials A1µ, A2µ, B1µ, B2µ respec-
tively. This description was originally studied by Cabibbo and Ferrari
(Ref.26) allowing for a lagrangian variational approach in the presence
of magnetic charge. The terms

− b1
8π

(

√
1 +

J1
b1
− 1) , − b2

8π
(

√
1 +

J2
b2
− 1)

represent Born-Infeld terms with constants b1, b2 of dimensions erg/cm3.
The coupling between the two fields is

α(
εµναβF1µνF2αβ√

−g
)
√
−g (α = coupling constant)
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this represents a parity violating coupling term that generates the screen-
ing or anti-screening effects of one gauge field on the other [27].

Varying Eq.(1) with respect to A1µ, B1µ, A2µ, B2µ gives

∂

∂xν
(
Fµν1

√
−g

4π
√

1 + J1
b1

)− ∂

∂xν
(2αεµναβF2αβ)− Jµ1E

√
−g = 0 (2.4)

∂

∂xν
(

F̃µν1

4π
√

1 + J1
b1

)− ∂

∂xν
(
2αεµναβF̃2αβ√

−g
)− Jµ1M

√
−g = 0 (2.5)

∂

∂xν
(
Fµν2

√
−g

4π
√

1 + J2
b2

)− ∂

∂xν
(2αεµναβF1αβ)− Jµ2E

√
−g = 0 (2.6)

∂

∂xν
(

F̃µν2

4π
√

1 + J2
b2

)− ∂

∂xν
(
2αεµναβF̃1αβ)√

−g
− Jµ2M

√
−g = 0 (2.7)

For the field strengths we have

F 1
14 = E1(r) , F 2

14 = E2(r)

F 1
23 = r2 sin θB1(r) , F 2

23 = r2 sin θB2(r) ,

F̃µν1 =
εµναβF1αβ

2
, F̃µν2 =

εµναβF2αβ

2
,

Here E1, E2, B1, B2 represent the radial electric and magnetic fields of
the two groups. We employ a spherically symmetric metric of the form

(ds)2 = eν(dx4)2 − eλ(dr)2 − r2(dθ)2 − r2 sin2 θ(dφ)2,

the energy momentum tensor components for this metric obey T 1
1 = T 4

4

which implies λ + ν = 0 for r < R from the Einstein equation. For the
magnetic four currents we have

J4
1M = ρ01e

−ν/2J4
2M = ρ02e

−ν/2 (2.8)

for r < R, R = radius of configuration, (ρ01, ρ02,= proper magnetic
charge densities).
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If we set ρ01 = ρ01e
−λ/2, ρ02 = ρ02e

−λ/2 (ρ01, ρ02 = constant)
Eq.(2.4), Eq.(2.5), Eq.(2.6) and Eq.(2.7) become

∂

∂r
(

r2E1

4π
√
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2B2
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)− ∂

∂r
(4αr2B2(r)) = 0

∂

∂r
(

r2B1
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∂
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(
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4π
√

1 +
2B2

2
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− 2E2

2

b2

)− ∂

∂r
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(
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4π
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2
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− 2E2

2
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) +
∂

∂r
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Integrating the four equations in Eq.(2.9) gives

r2E1

4π
√

1 +
2B2

1

b1
− 2E2

1

b1

− 4αr2B2 =
e1
4π

(2.10)
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4π
√

1 +
2B2

1

b1
− 2E2

1

b1

+ 4αr2E2 =
r3ρ01

3
(2.11)

r2E2

4π
√

1 +
2B2

2

b2
− 2E2

2

b2

− 4αr2B1 =
e2
4π

(2.12)

r2B2

4π
√

1 +
2B2

2

b2
− 2E2

2

b2

+ 4αr2E1 =
r3ρ02

3
(2.13)

Here e1, e2 represent the electric-like charges of a particle at r = 0,
corresponding to the two U(1) groups.

We solve for E1, B1 to first order and α. To accomplish this we first
solve Eq.(2.12) and Eq.(2.13) to zeroth order in α

E2 =
e2

[r4 +
2e22
b2
− 2(q02)

2

b2
]1/2

(2.14)
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B2 =
q02

[r4 +
2e22
b2
− 2(q02)

2

b2
]1/2

(2.15)

where q02 = 4
3πr

3ρ02.

Now upon inserting the expressions in Eq.(2.14) and Eq.(2.15) into
Eq.(2.10) and Eq.(2.11) we have

E1 =
e1

[r4 +
2e21
b1
− 2(q1)

2

b1
]1/2

(2.16)

B1 =
q1

[r4 +
2e21
b1
− 2(q21

b1
]1/2

(2.17)

where

e1 = e1 +
16παr2q02

(r4 +
2e22
b2
− 2q202

b2
)1/2

(2.18)

q1 =
4

3
πr3ρ01 −

16παr2e2

(r4 +
2e22
b2
− 2q202

b2
)1/2

(2.19)

here

q01 =
4

3
πr3ρ01

from the above formula for E1 we have to first order in α
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[r4 +
2e21
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− 2
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( 4
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( 4
3πr
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16παr2q02
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2
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)]1/2[r4 +
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− 2
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( 4
3πr
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where

S(r) =
2

b1
[

32πr2q02e1

(r4 +
2e22
b2
− 2q202

b2
)1/2

+
128π2r5ρ01e2

3(r4 +
2e22
b2
− 2q202

b2
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] (2.21)

we see that the domainant correction term for large r is the third term in
Eq.(2.20) and the electric charge e1 will be anti-screened by the second
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field since E1 increases over and above its value for the non-interacting
case for large r. Also from Eq.(2.17) and Eq.(2.19) B1 will be screened by
the second gauge field for large r since the field B1 will decrease relative
to its value when interactions are not present. If we solve Eq.(2.10)
through Eq.(2.13) to second order in α for E1 and B1 we find that the
next order terms screens the electric charge of e1 and anti-screens the
magnetic charge distribution of q01. Thus the screening or anti-screening
property is a function of the order of α and depends on the strength of
the coupling constant α. This reversal of sign of the screening properties
for increasing powers of α for coupled Abelian gauge fields suggests that
if cosmological conditions determine the strength of α then the attraction
or repulsion of fundamental dyons can be altered with the evolution of
the universe if α is determined by cosmological factors.

This in turn would effect such processes as proton decay [28] in the
presence of dyons as well as baryogenesis and might provide an alternate
explanation of corrections to the neutron-proton mass ratio that other-
wise would be attributed to extra dimensions that might effect the fine
structure constant that determines the electromagnetic mass difference
of mp and mn [29].

To calculate the exterior charges in terms of the magnetic charge dis-
tributions and the fundamental electric charges (e1, e2) of the particle we
would have to solve Eq.(2.10) through Eq.(2.13) for r > R (R = radius
of configuration). Integrating Eq.(2.10), Eq.(2.11), Eq.(2.12), Eq.(2.13)
for r > R gives in the empty space surrounding the configuration.

r2E1

4π(1 +
2B2

1

b1
− 2E2

1

b1
)1/2
− 4αr2B2 =

e1E
4π

(2.22)
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4π(1 +
2B2

1
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− 2E2

1

b1
)1/2

+ 4αr2E2 =
q1E
4π

(2.23)

r2E2

4π(1 +
2B2

2

b2
− 2E2

2

b2
)1/2
− 4αr2B1 =

e2E
4π

(2.24)

r2B2

4π(1 +
2B2

2

b2
− 2E2

2

b2
)1/2

+ 4αr2E1 =
q2E
4π

(2.25)

where we have used λ+ ν = 0 for r > R which follows from the equality
T 1
1 = T 4

4 for the energy momentum component calculated from Eq.(2.1)
and the Einstein equations.
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Here e1E , q1E , e2E , q2E are effective electric and magnetic charges as
seen for r > R. If we solve Eq.(2.22) through Eq.(2.25) and match the
solutions of Eq.(2.10), Eq.(2.11), Eq.(2.12) and Eq.(2.13) at r = R we
may obtain expressions for the effective charges seen for r > R in terms
of the electric charges of the particle at r = 0(e1, e2) and the magnetic
charge densities ρ01, ρ02 for R > r.

To obtain an expression for the mass of the configuration we first
assume that there is no non-electro-magnetic energy density and pressure
in the interior of the configuration. From Eq.(2.1) the energy momentum
tensor for both U(1) fields is

Tµν =
2√
−g

∂L

∂gµν
=
gµνb1

8π
(

√
1 +

J1
b1
− 1) +

gµνb2
8π

(

√
1 +

J2
b2
− 1)

− 1

4π

F1µαF
α
1ν√

1 + J1
b1

− 1

4π

F2µαF
α
2ν√

1 + J2
b2

.

(2.26)
Note in Eq.(2.26) we do not have a contribution from the coupling term
since it does not contain gµν . From the (44) Einstein equation and T 4

4

from Eq.(2.26) we have for r < R

d

dr
(re−λ) = 1− 8πG

c4
r2T 4

4 (2.27)

giving

e−λ = 1− 8πG

c4R

∫ R

0

r2T 4
4 dr (2.28)

In Eq.(2.28) we use E1, B1, E2, B2 calculated from Eq.(2.10), Eq.(2.11),
Eq.(2.12) and Eq.(2.13) for r < R.

Also for r > R the same expression for the energy momentum ten-
sor is applicable from Eq.(2.26). From the solutions for the fields in
Eq.(2.22), Eq.(2.23), Eq.(2.24) and Eq.(2.25) we may obtain the energy
momentum components T 1

1 and T 4
4 for r > R from Eq.(2.26). From

Eq.(2.27) we may obtain the metric for r > R as

e−λ = 1− 2GM

rc2
− 8πG

c4r

∫ r

T 4
4 r

2dr (2.29)

(M = mass of configuration).
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In Eq.(2.29) M appears as an integration constant and the term
containing T 4

4 in Eq.(2.29) will yield powers of 1/rα with α > 2 providing
the radius of the charge configuration is large enough. When Eq.(2.28)
is matched to Eq.(2.29) a value of the total mass of the configuration can
be obtained in terms of e1, e2, the radius R, and the magnetic charge
densities ρ01, ρ02.

Conclusion

Our classically motivated calculation has suggested that the cou-
pling term in Eq.(2.1) generates anti-screening of electric charge by the
second Abelian gauge field to first order in α and screening of the B1

magnetic field by the second Abelian gauge field due to the coupling
term. The situation reverses itself to next highest order in α which sug-
gests that screening and anti-screening are dependent on the coupling
strength. If the early universe passed through epochs when the coupling
constants changed, the universe might experience a phase transition due
to enhancement of elementary processes involving dyons that may ra-
diatively correct the Higgs potential that to date had not been taken
into account. Also the screening of a dyon as mentioned might alter the
catalysis of proton decay since the interaction of the proton with dyons
or monopoles would be electro-magnetic prior to the time that the strong
G.U.T. forces take over. The asymptotic freedom of gauge theories has
suggested the existence of a quark-gluon plasma at high temperature
and the present result for the screening effects in a U(1) × U(1) gauge
theory might suggest certain critical phenomena in the early universe
brought about by cosmological variations of the coupling constant α.
Also if additional Z ′s are found in accelerator experiments, studies of
U(1) × U(1) screening effects due to mixing would shed light on elec-
troweak phenomena at high energy (Ref.6) for both gauge boson-gauge
boson interactions and interquark forces. In closing our classical analysis
might suggest a deeper analysis of the quantum field theory problem in-
volving U(1)×U(1) interactions and the corresponding screening effects
generated.
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