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ABSTRACT. A deterministic theory of quantum mechanics is pre-
sented which is based on real guiding waves interacting with and
controlling the motions of localized particles. The guiding waves are
assumed to obey a plasma-type wave equation, which is equivalent
to the Klein-Gordon equation (a relativistic Schrodinger equation)
with an assumption that the plasma frequency for the wave is equal
to mc2/h̄. The waves entrain a phase space of particles and are
responsible for the wave-like distribution of particles during inter-
ference and tunneling,. . . .

RESUME. On présente une théorie déterministe de la mécanique
quantique basée sur l’idée de véritables ondes de guidage qui inter-
agissent avec des particules localisées en dirigeant leurs mouvements.
On présume que les ondes de guidage obéissent à une équation on-
dulatoire du type plasma, qui est équivalente à l’équation de Klein-
Gordon (une équation relativiste de Schrödinger) et en supposant
que la fréquence de plasma de l’onde soit égale à mc2/h̄. Les on-

des entraînent une espace de phase de particules et sont responsables
de la distribution à caractère ondulatoire des particules sous l’effet
d’interférence et pendant les effets tunnel, etc.

1. Introduction

Quantum mechanics is an amazingly successful centerpiece of mod-
ern physics. Starting with a few basic ideas at the turn of this century, it
has been expanded to explain virtually all observed microscopic phenom-
ena and has given birth to the technology of solid state electronics. While
many people have found its non-determinism unsettling [1], attempts to
provide a more classical foundation have so far been unsuccessful [2].
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Recently however, there have been a number of beautiful experiments
[3,4] in which classical electromagnetic fields have created long range
order and wave-like and crystal-like ordering of entrained particles, sug-
gestive of quantum mechanical phenomena. This paper tries to build on
these new, particle-capture concepts from experimental physics to model
quantum mechanics as a complex, but classical wave-particle interaction,
involving classical particles interacting with classical wave fields [5]. The
model presented here is similar to de Broglie’s double solution [6].

This model assumes that the de Broglie or guiding wave fields obey
the plasma equation [7]:

∇2ψ − 1

c2
∂2ψ

∂t2
− ωo

2

c2
ψ = 0 , (1)

where ψ is some unspecified potential, c is the free space velocity of
light, and ωo is the plasma resonance frequency. The ωo

2/c2 term is an
addition to the regular wave equation due to the plasma resonance. The
plasma equation is a very general equation which governs wave prop-
agation through any medium having a resonance at each point in the
medium of frequency ωo. Examples of such media are plasmas, waveg-
uides, and even mechanical systems (with a different c value) if they have
the required resonance in each unit cell or lattice point. We assume that
there is a special wave propagation mode in space corresponding to each
elementary particle type, each mode with its own distinct “plasma” or
resonant frequency ωo given by

ωo =
mc2

h̄
, (2)

where m is the rest mass of the particle and h̄ is Plank’s constant. Equa-
tion (1) is the same assumption used by de Broglie many years ago [6].
It might also be pointed out that (2) predicts such very high frequencies
for the waves (roughly 1020 Hz for an electron, and higher for heavier
particles), that technologically we could not be expected to have directly
observed these waves, even though perhaps we have witnessed them in-
directly in the quantum mechanical effects they bestow on particles.

One might think that (2) is a rather arbitrary assumption, wish-
fully relating two independently fundamental parameters. However we
will see that in the model presented in this paper, the particles are en-
trapped by the guiding wave field of (1) and it is this wave field which
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determines particle dynamics (much as in the conventional interpreta-
tion of quantum mechanics) instead of any local particle property, such
as mass. That is to say that a particle has an apparent mass m = h̄ωo/c

2

because it is trapped in a guiding wave field of plasma frequency ωo.

It is further assumed that each wave mode is selective and will
interact mostly with its associated particle type. This selectivity is based
on two factors. First, particles will respond most strongly to frequencies
near their “plasma” frequencies. Thus, for example, because the masses
of electrons and protons are so different, the corresponding frequencies
of these wave fields, as per (2), will differ by more than three orders
of magnitude, making it unlikely that the two wave fields will interact
much. Secondly, each particle type will be associated with a wave type
having many of the attributes normally associated with that particle
and will interact with its wave field via these attributes. For example, a
particle with spin will have associated waves which have a spin nature to
them, similar to the spin waves [8] in a ferromagnetic material, and will
interact with the waves via the spin interaction. A neutral particle will
have a very different type of wave field (perhaps with a large quadrupole
component) than will a charged particle. While it may seem artificial
to hypothesize space with so many types of waves, we should remember
that solids also have many types of waves. For example, a ferromagnetic
solid has many modes and polarizations for each of the following types
of waves: compressional, shear, surface, spin, plasma, etc. Each of these
wave types and each wave mode has a very special way of interacting
with its sources and scatterers and all can coexist simultaneously, often
with very little interaction.

Substituting (2) into (1), our defining wave equation becomes the
relativistic Schrodinger equation, the Klein-Gordon equation [9]:

−h̄2 ∂
2ψ

∂t2
= −h̄2c2∇2ψ +m2c4ψ . (3)

Because this is the Klein Gordon equation, it means that these classical
wave fields will faithfully model the guiding waves of quantum mechan-
ics. So far as the waves are concerned, the classical wave fields of this
model will have the same wavelengths and same interference patterns as
predicted by standard quantum mechanics.

In the case of a bound state such as an electron bound to an atom,
the wave field would be “bent” to form a circular standing wave or
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resonant configuration by the electrostatic field of the nucleus as per the
normal Klein-Gordon equation with the electromagnetic fields addition
[10]. The electric fields of the nucleus perturb the local phase velocity or
“metric” of the guiding waves of the electron and so cause the bending.
This interaction is also the non-linear basis of most scattering as will be
discussed later.

2. Wave controlled flow of an ensemble of particles.

As discussed above, each wave field will interact mainly with its
own type of particles. Quantum mechanics, however usually considers
the interaction of a wave with an ensemble of particles, where “ensemble”
means the superposition of all possible particles and trajectories for a
given physical setup. In this way of viewing the interaction, each wave
will interact with an ensemble of its particle type. This ensemble may
conveniently be viewed as a type of flowing fluid. Quantum mechanics
requires that a wave field coax the particle density in its ensemble to be
proportional to the wave amplitude squared, i.e. to the wave intensity:

ρ ∝ ψ2 (4)

For modeling a simple particle source, this proportionality is easy to
achieve. One simply requires that a source emitting particles also emits
waves of an intensity proportional to the average flux of particles. Both
the particles and waves will spread out with the inverse square law and
so stay in proportion.

Interference situations are more complex. Next, we will examine the
fields in a standing wave situation, and see that the interactions of high
frequency oscillating forces (of frequencies near ωo) and motions cause
much slower varying forces and motions (the normally observed forces
and motions), similar to the dynamics of particles in an electromagnetic
Paul trap [11]. These slower particle motions can be conveniently viewed
in their phase space orbits (which turn out to obey (4)). For simplicity
we will consider one-dimensional, steady-state, standing wave patterns,
where the particles are moving in the z direction. These calculations are
very simplistic to illustrate the general principle here.

First, as in fluid mechanics (Euler’s Equation [12]), particles in the
ensemble flow will obey:

Fav =
dp

dt
=
∂p

∂t
+
∂p

∂z

∂z

∂t
=
∂p

∂z
v

=
p

mr

∂p

∂z
=

1

2mr

∂p2

∂z
,

(5)
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where Fav, v, and p are the z directed force, particle velocity, and particle
momentum averaged over a wave cycle, and mr is the effective mass (to
be discussed below) for these slow or average motions. Also for simplicity,
we assume a steady-state ensemble flow field for which ∂p/∂t = 0.

Secondly, a particle and its waves will interact so that the waves
force the particle to oscillate with a time varying displacement of ξ̃,
which we will take to be the z direction. One might think that such an
oscillating force would average to zero. However if ∂F̃ /∂z is non-zero
and the force is therefore greater during the part of the cycle when ξ
is positive than when it is negative, then the average force will not be
zero. This effect is the basis for currently used traps for electromagnetic
particles. The average z directed force can be calculated as:

F = 1
2 Re

(
∂F̃

∂z
ξ̃∗

)
, (6)

where F̃ = aψ is the oscillating force on the particle (which is propor-
tional to the wave amplitude and a is the constant of proportionality),
and the tilde over the F and other variables is to remind us that these
are oscillating quantities. ψ is also oscillating; however, in keeping with
conventional quantum mechanics, we will not use a tilde over it. The
“Re” in (6) stands for “the real part of”. Considering the particle as a
classical entity with effective mass m1 in responding to the oscillating
force, we can write ξ̃ as:

ξ̃ =
ṽ

iω
=
−F̃
m1ω2

, (7)

where F̃ is the oscillating force on the particle, and ṽ is its time varying,
oscillating velocity. The mass m1 would consist of the mass of the naked
particle plus that of the fields close enough to the particle to follow it at
these high frequencies. Making this substitution yields:

Fav =
−1

2ω2m1

∂
∣∣∣F̃ ∣∣∣
∂z

∣∣∣F̃ ∣∣∣ =
−a

2ω2m1

∂ |ψ|
∂z
|ψ| . (8)

The third consideration involves the resonant nature of the plasma
type wave equation (1) for frequencies near ωo. This resonant nature,
coupled with low group velocity of the waves means that the particles,
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oscillating at frequencies near ωo, will excite local resonances in the fields
(governed by (1)) around themselves. It is reasonable to assume that this
local resonance has an energy U and an inertial mass mr = U/c2 which
are proportional to the external wave amplitude (i.e. the driving force)
squared:

U = mrc
2 = a1ψ

2

⇒ mr =
a1
c2
ψ2 ,

(9)

where a1 is a constant. In order to insure that the waves totally dominate
the particle dynamics, we assume that the inertial mass mr of these local
resonances dominates over any other masses the particles may have for
the motions which are slow compared to a wave cycle. A second effect
of the local resonance is to shield the particle from the external field on
average, effectively inverting the sign of the average force in (8).

Putting together (5), (8), and (9), we get:

∂(p2)

∂z
= 2mr

= 2
a1
c2
ψ2

(
−a2

2ω2m1

∂ |ψ|
∂z
|ψ|
)

= a2
2 ∂ψ

4

∂z
,

(10)

where a2 is a constant. Integration yields:

p2 = a2
2(ψ4 − ψo

4).

⇒ p = ±a2
√
ψ4 − ψo

4

= ±a1vg
√
ψ4 − ψo

4 .

(11)

This defines the phase space orbits of the entrained particles having
various integration constants ψo which are constant for each orbit and
equal the ψ potential amplitude at which point the orbit has zero z-
momentum. Also, ψo

2 is a binding potential of a particle to its orbit.
In (11) we also used the relationship a2 = a1/vg

2, as required to make
the momentum of a pure traveling wave ptw = mrvg = a1ψ

2vg with zero
binding potential or ψo

2 = 0.



A Physical Theory of Quantum Mechanics based on a wave . . . 203

Figure 1. Phase space orbits in the presence of a pure standing wave field.
Momentum is plotted versus particle position. The shaded region on the right
is a totally reflecting barrier.

For a situation where ψ = ψ1 sinωt cosκz, i.e. a pure wave, we get

the phase space orbits as shown in Fig. 1, where the particles are orbiting

around regions of maximum |ψ| values. Assuming that the phase space

is filled to the maximum “bound” orbits, i.e. to the ψo = 0 orbit for

which:

p = ±a1vgψ2, (12)

then the width in the p direction of the entrained phase space is equal

to 2a1vg
√
ψ4 − ψo

4 = 2a1vgψ
2, i.e. it is proportional to ψ2. Since the

number of particles is proportional to the occupied phase space area, we

expect the density of particles at any one position z to be proportional

to the orbital width and therefore to ψ2:

ensemble density(z) ∝ ψ2. (13)

Looking at Fig. 1, it is easy for us to understand the reason there are more

particles around the peak ψ2 regions: these regions represent potential

wells around which the particles orbit and as a consequence have the

greatest concentration of orbits and therefore particles.

The phase space for the case of a mixed wave having standing and

traveling waves together, as in front of a partially reflective barrier, is

shown in Fig. 2.
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Figure 2. Phase space orbits in a mixture of standing and traveling waves.
The shaded region on the right is a partially reflecting barrier.

We might note that there are two distinct regions. First, there is the
lower region of closed orbits whose particles are bound to the interference
region. This region is populated when the interference is first set up and
has half the density of particles as the second region. The second or
upper region has open orbits that travel through the barrier. We might
have also drawn a lower open region, the mirror image of the upper region
below the axis, however there is no means to populate these orbits.

Figure 3. Phase space orbits in the evanescent wave region inside a barrier.
The shaded region on the right is a very thick barrier whose potential is slightly
greater than the particles’ kinetic energy.

Fig. 3 shows the phase space created by a finite height poten-
tial barrier illustrating total reflection of the particles and evanescent
penetration of that barrier. Notice that the orbits near the barrier
carry the particles some distance into the barrier before they turn
around. Fig. 4 shows a similar, but finite length, barrier through which
the waves can “tunnel”. Here, the closed orbits are practically the
same as in Fig. 3, however there are also open orbits which allow a
net flow of particles through the barrier. The number of particles in
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these orbits that penetrate the barrier is proportional to the energy
(or ψ2) of the penetrating waves, since by (12) the height of the or-
bitals in phase space (i.e. p for ψo = 0) is proportional to ψ2.

Figure 4. Phase space orbits in a tunneling situation.

3. Measurement and scattering.

Just how do the waves and particles interact with other particles,
the walls of an experiment, and detectors? The scattering relationships
which govern such interactions are outlined next.

The waves are basically linear processes and can pass through other
waves without scattering. However, as discussed before, the fields of one
particle can perturb the local phase velocity or metric of waves of other
particles, and, for instance, can cause the waves of the electrons to bend
around the proton in the case of the hydrogen atom, or in the case of an
oscillating particle, this process will result in a non-linear mixing of the
perturbing particle’s field with other wave fields passing through. In the
latter case, the two frequencies create a third product frequency:

ψ(t) ∝ exp iω1t · exp iω2t = exp i(ω1 + ω2)t . (14)

In order to make this equation valid for various points rp in space along
the perturbing particle’s trajectory, we need to add the position depen-
dence of the product wave into the equation:

ψ(rp, t) ∝ exp i( κ1 · rp − ω1t) · exp i( κ2 · rp − ω2t)

= exp i[( κ1 + κ2) · rp − (ω1 + ω2)t] ,
(15)

where the κ’s are the wave numbers of the respective waves. For this
product signal to produce a reasonably intense product wave of frequency
ω3:

ψ3(rp, t) ∝ exp i(κ3 · rp − ω3t) , (16)
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i.e. the phase of the incident product must equal that of the final wave
fields at each point in space and time over which the mixing occurs,
so that the components of the scattered wave add up constructively.
This approach is similar to that used in the classical derivation of Bragg
scattering and in the scattering of waves by diffraction gratings [13].
That is, the exponent in (15) must equal the exponent in (16) over a
range of rp’s and t’s:

[( κ1 + κ2) · rp − (ω1 + ω2)t] = κ3 · rp − ω3t

⇒ κ1 + κ2 = κ3 and ω1 + ω2 = ω3.
(17)

This can be extended to a more general case involving any number of
particles, stationary or moving, to show in a general scattering process, a
classical wave-particle system will conserve frequency and wave number
totals. Note that similar to the case in Feynman diagrams, the processes
of emission, absorption and detection are simply special cases of general
scattering where one of the particles is initially or finally at rest, or in a
bound state.

4. Microscopic versus macroscopic parameters.

We have seen that this model allows for a varying dynamic mass mr

and, in a standing wave situation, varying particle velocities, whereas
conventional physics uses constant mass particles and a constant mag-
nitude of momentum in the same standing wave situations. Thus this
model diverges from the conventional interpretation of physics. In mea-
sured (or “observed”) results, on the other hand, we will hopefully get
agreement of the model with conventional quantum mechanics, which
has been well verified experimentally. Let’s think out what the model
would predict, for example, for a time-of-flight measurement. In this
model, a packet of waves is released with every burst of particles. Be-
cause these wave packets move at the group velocity of the wave field, in
a reference frame moving at the group velocity, they appear to be sta-
tionary wave packets with local, stationary field maxima similar to those
in simple standing waves. We would expect the particles to execute or-
bits, similar to those shown in Fig. 1 around each of these local maxima.
In this sense, the particles are trapped by the local maxima and carried
along with them at the group velocity, in agreement with conventional
quantum mechanics which has particles moving at the wave field’s group
velocity. At the same time, the particles will also be orbiting inside the
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wave packet and as such will have instantaneous velocities which vary
somewhat from the average. Experimentally, we do see this variation
and usually attribute it to quantum mechanical uncertainty. Thus, in
time-of-flight measurements, there does seem to be agreement between
this model and conventional physics, even though the dynamic details of
the two are fairly different. Note that the group velocity of the waves,
and not the instantaneous particle dynamics, is most important in de-
termining the outcome of the time-of-flight experiment. The particles’
chief role is to provide catalytic mixing sites for emission and detection
of the waves.

Other classical measurements such as measurement of particle mass,
momentum, and energy are made by similarly analyzing particle trajec-
tories, or by analyzing scatterings off other particles. (These would be
classified, along with the above time-of-flight measurement, as an in-
direct measurement by Lochak [14].) In the model here, average or
ensemble particle trajectories will be determined by the wave fields. In
scatterings also, we have seen that the wave properties, the wave num-
bers and wave frequencies in this case, determine the outcome. Thus
the model presented here mirrors conventional quantum mechanics in
having measurements of the propagation of particles be determined by
the wave fields. It should be pointed out that in all cases, because the
classical waves of (1) agree with those in the standard quantum mechan-
ical picture and the ensemble particle density flows with these waves, all
ensemble averaged properties of this model and conventional quantum
mechanics will be the same.

Classically calculated momentums and energies are linked with nor-
mal quantum mechanics using the energy and momentum operators on
the wave functions. For simple waves, these result in the following:

p ≡ mrelvg = h̄κ, (18)

and:

U ≡ mrelc
2 = h̄ω, (19)

where mrel is the relativistic mass. (We use the relativistic forms to
allow easy comparison with our model which uses the relativistic forms.)
Conventional quantum mechanics effectively replaces the particle mo-
mentum and energy with the wave number and frequency of the guiding
wave field. In the model, we can also use (18) and (19) which can be
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derived for the model from (3) and classical properties of the wave fields:
Using vg = dω/dκ with (3) we get mvg = h̄κ , i.e. the right most relation
of (18), where the left relation of (18) p ≡ mrelvg is the definition of
classical momentum. Making a Lorentz transformation on (2) results in
the right relationship of (19) with the left relationship being the defi-
nition of regular relativistic energy. Making these links, (18) and (19),
between our model and classical physics allows us to see that it is wave
number and frequency conservation in scattering, (16) and (17) that are
the foundations of the classically calculated, or macroscopic, momentum
and energy conservation.

Equation (2) links a particle’s conventional rest mass with the
“plasma resonance” of the wave fields associated with that species of
particles. Even though this model has particles of varying microscopic
masses mr instead of the fixed mass m, this link (2) will insure that the
wave field has the proper group velocity to force the ensemble of particles
to move with the same average trajectories and other same observable
parameters as would a conventional quantum mechanical particle ensem-
ble. In a sense, the classical particle mass, momentum, and energy have
been replaced, at the microscopic level, with the guiding wave field’s
plasma frequency, wave number, and frequency, respectively. We might
say that the waves carry the (macroscopic) particle mass, momentum,
and energy in the somewhat altered forms of plasma frequency, wave
number, and wave frequency. The microscopic or actual particle mass,
momentum, and energy are less important and certainly different from
their macroscopic or classical counterparts.

What happens to the microscopic wave energy in the model after
a wave spreads out? First of all, this energy would be usually hidden
in most experiments and would not play the central role in scattering
that macroscopic energy or the wave frequency do. Besides, the wave
field energy is diffuse and not as easy to account for as the energy of
a classical particle. On the other hand, it would power the waves and
particle dynamics and so is of interest. Most likely, the nearby parti-
cles would scatter and rescatter this remnant wave energy. However,
because the particles and their local resonances are resonant structures
(or scatterers), their scattering cross sections are much larger for scatter-
ings involving their resonant frequencies. Thus, most scatterings would
involve the resonant frequencies of the particles, perhaps similar to a
gambling house being involved in all gambling on the premises. As a
consequence, the populated resonance modes or states would have, on
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average, a very enriched share of the remnant wave energy, while the un-
populated states would have little. The average share of the populated
states would be proportional to their population densities, and, because
of special relativity, to their frequencies.

5. Relation to Bell’s Theorem and hidden variable theories.

Particle spin plays a very important role in quantum theory. As
mentioned earlier, particles with spin would need to involve spin in their
guiding waves, analogous to the spin waves in magnetic materials. Then
experiments that polarized beams would polarize the spin of the waves
which guide the particles. Experimentally, detection of spin usually in-
volves a non-spin sensitive detector behind a polarizer and really only
indicates the fraction of particles that traverse the polarizer and not
their microscopic spins (analogous to microscopic momentum). In the
model presented here, the spin waves would be split by the polarizer, in
the same way as quantum mechanics predicts, and a fraction of parti-
cles would be carried along with each wave in proportion to the energy
in each. Thus the detected spin is analogous to the detected energy or
momentum we discussed before: while the particle is an essential, non-
linear catalyst in the detection process, the spin of the waves determines
the fraction of particles penetrating the polarizer and thus the average
“spin” actually detected. Analogously, in a spin related transition, we
would expect the spins of the waves to be carefully conserved, with cer-
tain selection rules applying. Along these lines, Bell’s Theorem [15] does
not constrain the model presented in this paper, but instead constrains
theories having the observed spin determined by the spin of the actual
particles.

We might also examine the old criticism of hidden variable theories
[16], which are similar to the model proposed here in that both theories
postulate particle dynamics that are as yet unobserved. The old hidden
variable theories would allow new degrees of freedom and so create ad-
ditional contributions to specific heat, in conflict with experiments [17].
In a classical monatomic gas, for example, the degrees of freedom are
the three directions of particle motion in which the particles can move.
In quantum theory, the wave numbers take over this role as the degrees
of freedom, since particle motions are embodied in the wave dynamics.
In the theory presented here, the waves are also the dominant factor
and assume the role of the “degrees of freedom”: a wave field with the
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appropriate wave number (for the particle velocity) exists for each parti-
cle, with the average energy in this wave field being proportional to the
number of particles it entrains times their frequency. Wave field modes
or states which entrain no particles (i.e. are empty) will have most of the
energy removed from them by the particles via the resonant scattering
process discussed above. The particles are bound to the entraining waves
and have negligible energy compared with the wave fields. This differs
from the classical case of independent particle energy and independent
field energy: in the present theory there is only field energy.

6. Summary of the wave-entrained particle model.

[ 1.] Particles have real physical associated guiding waves obeying
the plasma equation, having some of the properties of the particles
they are associated with, and having a “plasma” resonant frequency
of mc2/h̄ where m is the classical particle mass.

[ 2.] Particle sources create the guiding waves with energy densities
in proportion to the average density of particles times the wave
frequency.

[ 3.] The particles are entrained by the waves and move in phase
space orbits. Details of the orbital processes make their density
proportional to the wave amplitude squared.

[ 4.] A process that splits the wave will also split the captured phase
space of particles in proportion to the energies of the two emerging
waves.

[ 5.] Scattering processes will conserve the vectorial wave number
sums and the frequency sums.

[ 6.] Resonant scattering will statistically put most of the remnant
microscopic wave energy into resonant modes or states that are pop-
ulated by particles in proportion to the particle densities and fre-
quencies.

[ 7.] The microscopic wave energy and momentum is hidden from con-
ventional, macroscopic experiments which detect particles. Instead,
the frequency and wave number of the guiding waves determine the
statistical outcome of scattering, absorption, and detection experi-
ments.

The de Broglie double solution model similarly involves a wave field
interacting with localized singularities, which act as oscillators, much the
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same as do the localized resonances of the present model. The model
presented in this paper gives a more physical interpretation of these
singularities and also assumes the wave field to have a physical reality.
The question immediately arises as to the meaning of multiparticle wave
functions; however that is topic for future work and will not be addressed
here. Also, the present model considers scattering, detection, etc. to be
wave mixing phenomena.

In conclusion, we see that it may be feasible to model quantum
mechanics as a complex, classical wave-particle interaction with deter-
ministic, phase space orbits for particles, providing we are willing to
change our mental picture of a particle from a classical body to that
of an essentially massless entity surrounded by a local resonance, whose
oscillator strength and microscopic mass depends on the intensity of the
local guiding wave fields. In this model, most of the “observables”, i.e.
the observed “particle rest mass”, “particle momentum”, “particle en-
ergy”, etc., are carried (or determined) by the guiding wave fields in
somewhat altered forms, i.e. plasma frequency, wave number, frequency,
etc., respectively.

This model is similar to the conventional interpretation of quantum
mechanics in that both exchange the classical picture of particles for a
wave-particle interaction and both replace particle momentum with wave
number and energy with frequency, etc. In both, emission and absorption
processes occur locally around particular particles, while propagation is
determined by the more spread out wave fields. The model presented
in this paper has the added attraction of providing a physical picture of
the intriguing wave-particle process.
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